Lecture 5: Adversarial Robustness

Trustworthy Machine Learning Spring 2024

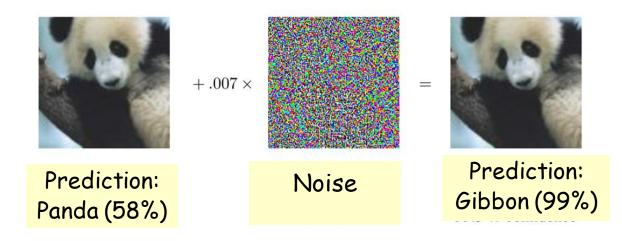
Deep Neural Networks are "mostly" accurate, yet brittle

"car"

"truck"

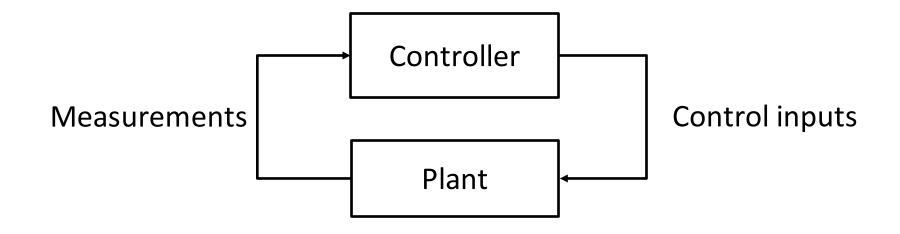
Deep Neural Networks are "mostly" accurate, yet brittle

Deep Neural Networks are "mostly" accurate, yet brittle



robustness: similar images \Rightarrow same label

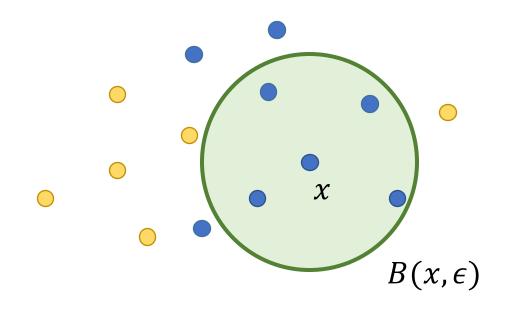
Historical Context: Robust Control



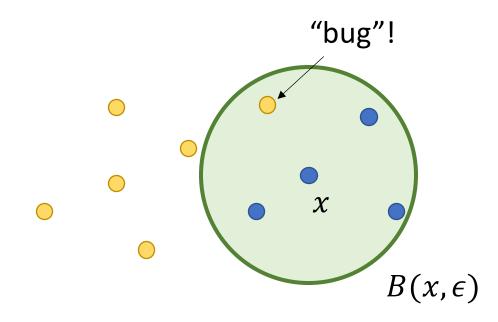
Desired robustness property of the controller:

When sensor measurements change slightly, control inputs should not change drastically

robustness: $||x - x'||_{\infty} \le \epsilon \Rightarrow$ same label



 ϵ -robust at x



not ϵ -robust at x

Research Directions

- How to make neural networks robust?
- Can we "fool" neural networks to misclassify?
- Can we design learning algorithms to get robustness guarantees?
- Can we verify that a given model is robust?
- What about LLMs?

Agenda

- Today: Attack: Adversarial Examples
- Feb 7: Defense: Adversarial training and randomized smoothing
- Feb 12: Guest lecture by Alex Robey on robustness for LLMs
- Feb 14, 19 (and maybe 21): Formal methods for verified robustness
- Homework 1 on adversarial robustness

Today: Adversarial Examples

Key publications:

Intriguing properties of neural networks; Szegedy et al, 2014
 Explaining and harnessing adversarial examples; Goodfellow et al, 2015

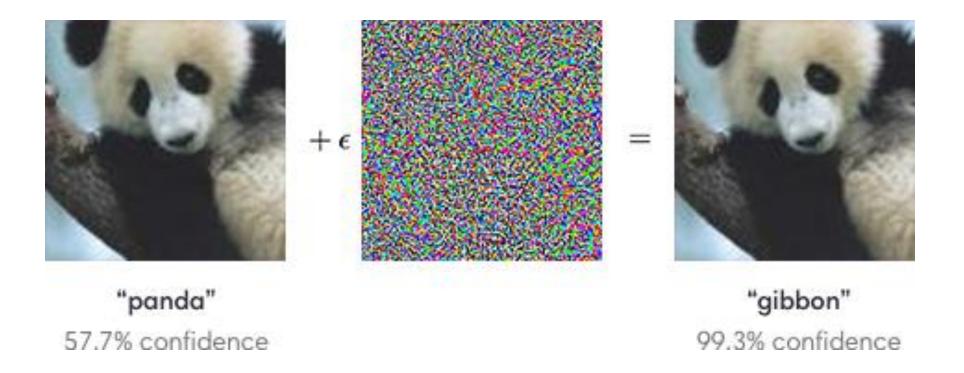
Acknowledgement for slides:

 \odot Osbert's lecture in CIS 5190

 \odot Eric Wong's lectures in "Debugging Data and Models"

 \odot Tutorial: Adversarial robustness: Theory and practice; Kolter and Madry

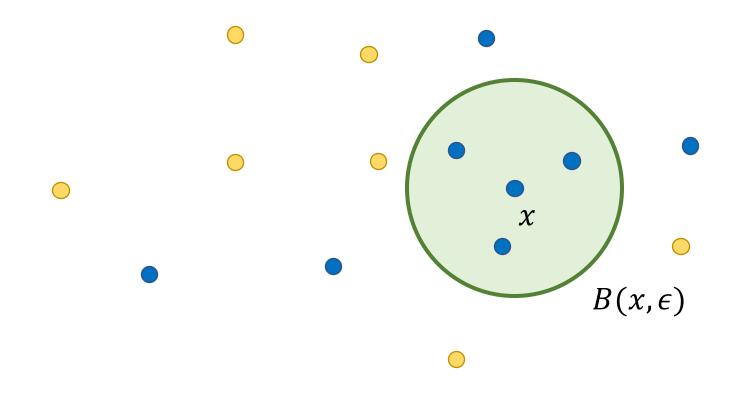
A Legendary Adversarial Example



Szegedy et al., Intriguing Properties of Neural Networks, 2014

Is there a simple fix using data augmentation ?

Doesn't work to ensure robustness! In theory as well as practice!!

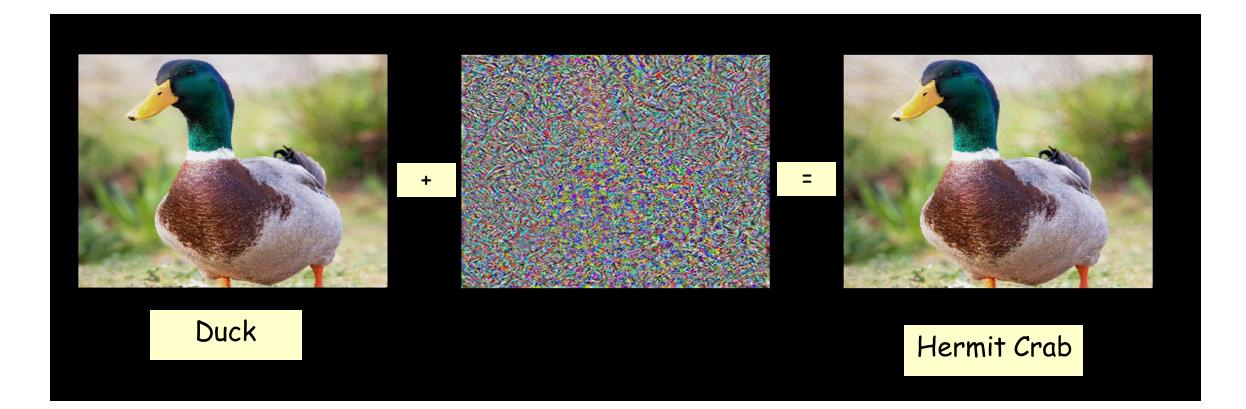


- Sample multiple points close to x
- Assign them same label as x
- Add them to training data set and retrain

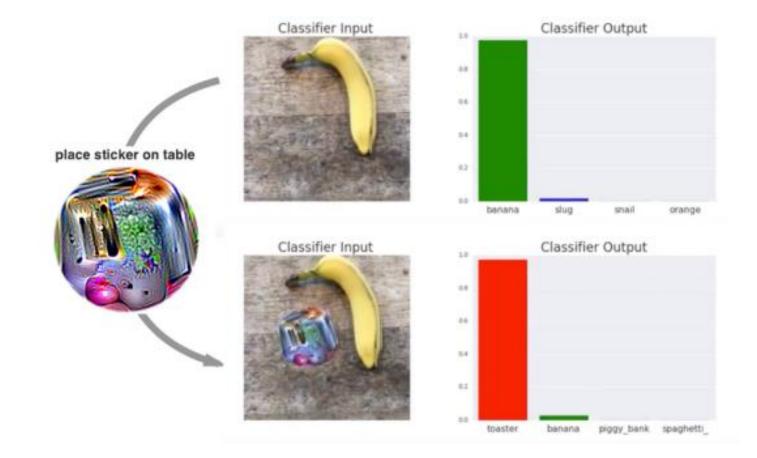
Szegedy et al (2014) discovery

A surprisingly robust strategy for finding adversarial examples

Adversarial examples everywhere ...



Patch attack



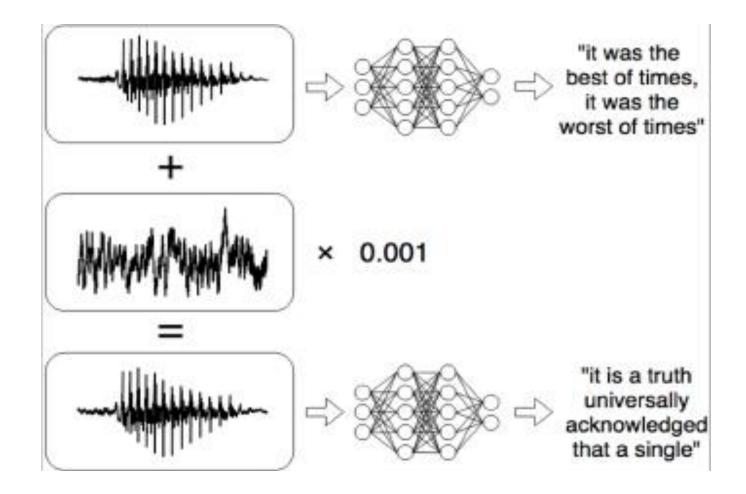
Brown et al, 2017 "Adversarial Patch"

Sentences and language models

	Sentence
Р	I am currently trying to give this company an-
	other chance. I have had the same scheduling
	experience as others have written about. Wrote
	to them today
Ν	I am currently trying to give this company an-
	other review. I have had the same dental
	experience about others or written with a name.
	Thanks to them today

Hsieh et al. 2019 "Natural Adversarial Sentence Generation with Gradient based Perturbation"

Speech recognition



Carlini, Wagner, 2018

Adversarial Perturbations can be dangerous ...

• Task:

- Photo ID verification
- Goal is to check whether uploaded photo matches a photo ID

• Attack:

- User perturbs their image to match the photo in the ID
- Challenge for machine learning in online identity verification!

(Valid photo ID from Papesh 2018)

Finding Adversarial Examples

Szegedy et al, 2014

Supervised Learning

- $\hfill\blacksquare$ Given a model f parameterized by θ
- Loss(x, y; θ) denotes the error of f_{θ} on input x with respect to desired output y
- Learning as optimization:

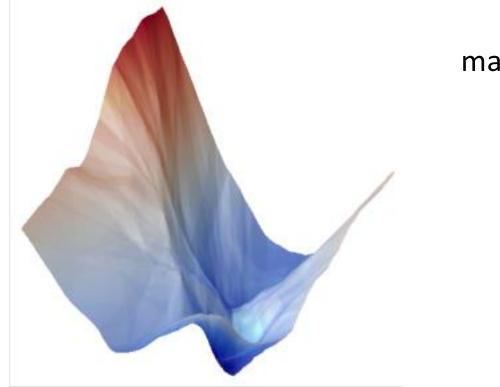
Given a training set of labeled input/output pairs (x, y), find θ to minimize the average training loss

Adversarial Example Computation

- Given a (trained) model f with parameters θ
- Fix input x and corresponding output $y = f_{\theta}(x)$
- Loss(x+ δ , y; θ) denotes the "change" in output with respect to δ -perturbation in input
- How can we formalize searching for adversarial example as optimization?

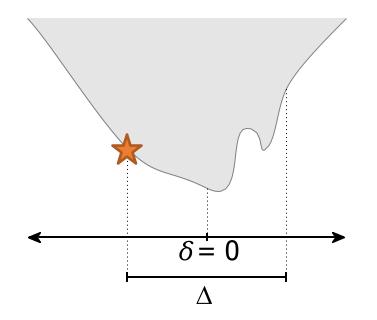
Given a bound Δ on input perturbation, find $0 < \delta < \Delta$ to maximize Loss(x+ δ , y; θ)

Challenge: Complexity of model / loss function



 $\max_{\delta < \Delta} \text{Loss}(x+\delta, y; \theta)$

Solution: Local Search using Gradient Descent



 $\max_{\delta < \Delta} \text{Loss}(x+\delta, y; \theta)$

How to implement desired gradient descent?

Key step in learning:

Computing the gradient ∇_{θ} Loss(x, y; θ) using backpropagation

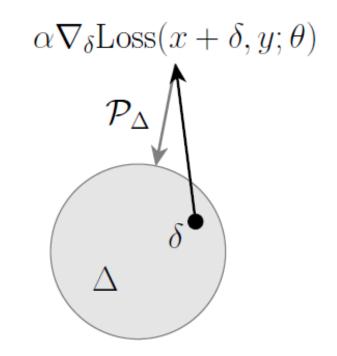
- Question: How will you compute ∇_{δ} Loss(x+ δ , y; θ)?
- Question: To find the (locally) optimal value, is it ok to repeatedly update x to $x + \alpha \nabla_{\delta} Loss(x+\delta, y; \theta)$, where α is the learning rate ?
- No! We want $\delta < \Delta$, so this is an instance of "constrained optimization"

Projected gradient descent

Recall we are optimizing $\max_{\delta \in \Delta} \operatorname{Loss} (x + \delta, y; \theta)$

We can employ a projected gradient descent method, take gradient step and project back into feasible set Δ

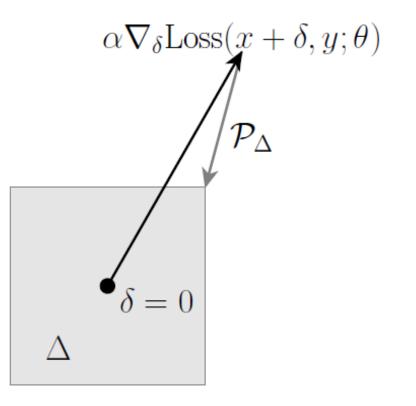
$$\delta \coloneqq \mathcal{P}_{\Delta}[\delta + \nabla_{\delta} \mathrm{Loss}(x + \delta, y; \theta)]$$



Fast Gradient Sign Method (FGSM)

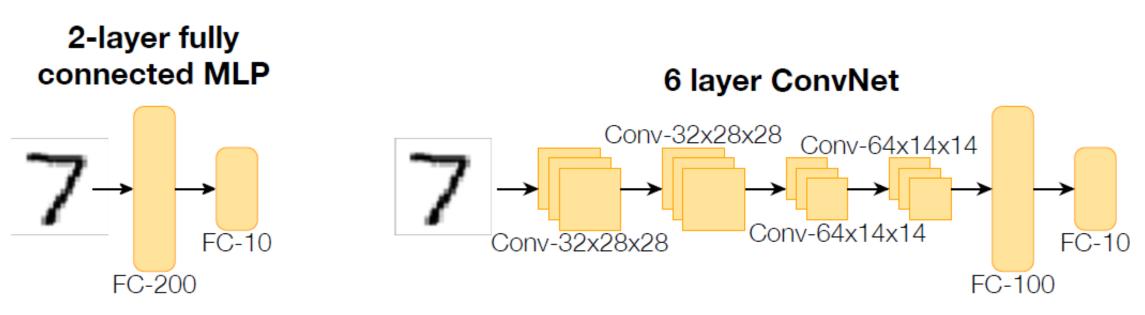
To be more concrete, take Δ to be the ℓ_{∞} ball, $\Delta = \{\delta : \|\delta\|_{\infty} \leq \epsilon\}$, so projection takes the form $P_{\Delta}(\delta) = \operatorname{Clip}(\delta, [-\epsilon, \epsilon])$

As $\alpha \to \infty$, we always reach "corner" of the box, called fast gradient sign method (FGSM) [Goodfellow et al., 2014] $\delta = \epsilon \cdot \operatorname{sign}(\nabla_{\delta} \operatorname{Loss}(x + \delta, y; \theta))$

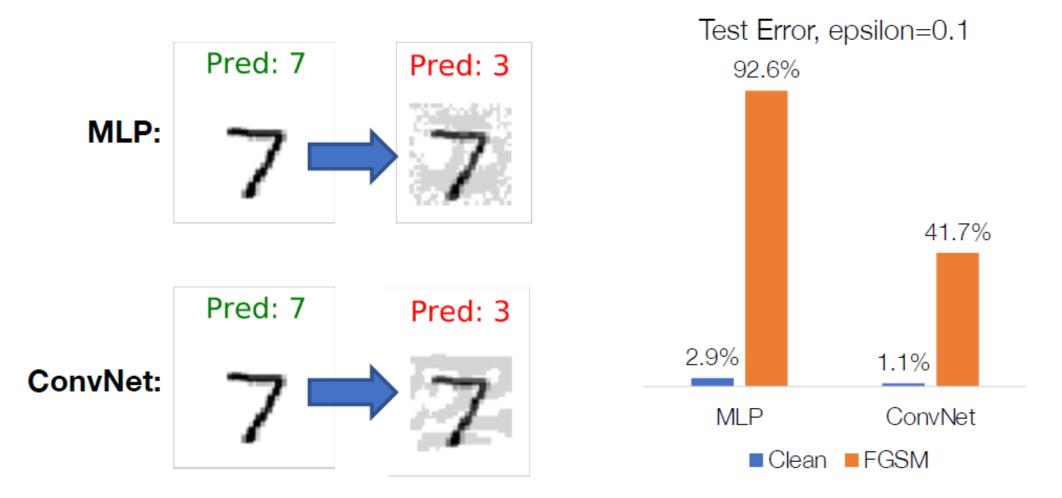


Empirical Evaluation

Will apologies to everyone, you are going to see MNIST examples in the tutorial ... it is the best dataset for demonstrating some of the more computationally intensive methods



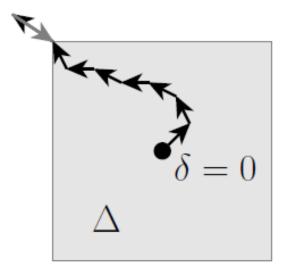
Evaluation of FGSM



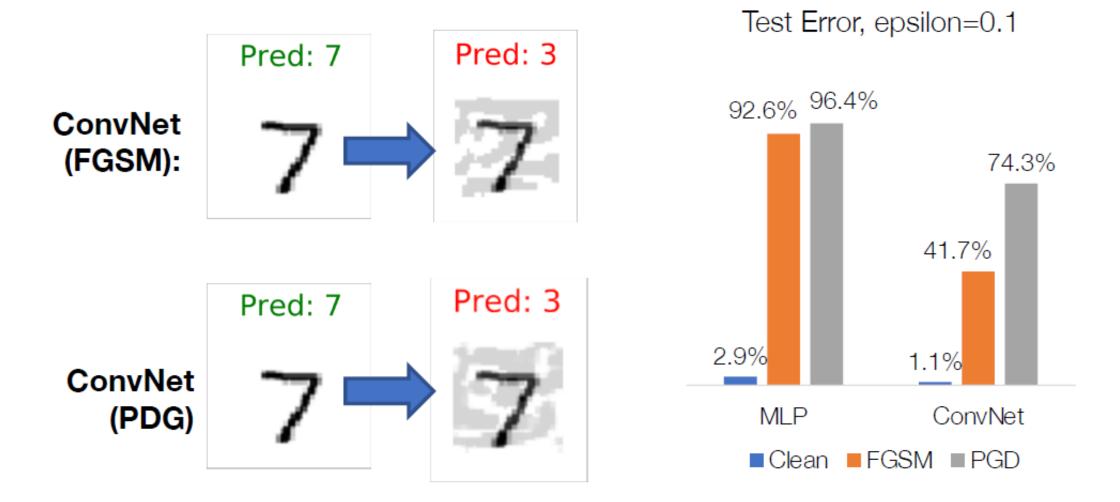
Projected Gradient Descent

 $\begin{array}{l} \text{Projected gradient descent applied} \\ \text{to } \ell_{\infty} \text{ ball, repeat:} \\ \delta \mathrel{\mathop:}= \operatorname{Clip}_{\epsilon}[\delta + \alpha \nabla_{\delta} J(\delta)] \end{array}$

Slower than FGSM (requires multiple iterations), but typically able to find better optima



PGD Evaluation



Targeted Attack

Also possible to explicitly try to change label to a *particular* class $\max_{\delta \in \Delta} \left(\text{Loss}(x + \delta, y; \theta) - \text{Loss}(x + \delta, y_{\text{targ}}; \theta) \right)$

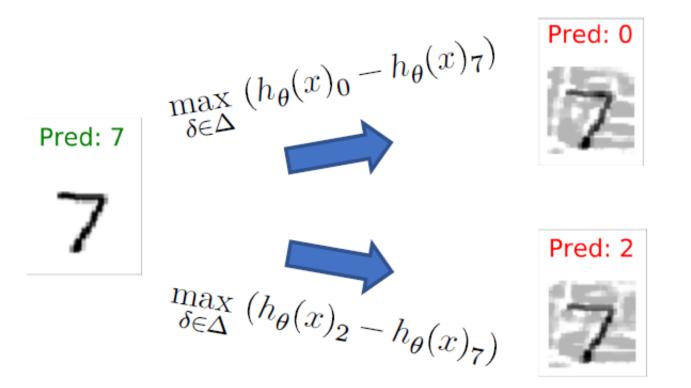
Consider multi-class cross entropy loss

$$\operatorname{Loss}(x+\delta,y;\theta) = \log \sum_{i} \exp h_{\theta}(x+\delta)_{i} - h_{\theta}(x)_{y}$$

Then note that above problem simplifies to

$$\max_{\delta \in \Delta} \left(h_{\theta}(x)_{y_{\text{targ}}} - h_{\theta}(x)_{y} \right)$$

Targeted Attack Example



Note: A targeted attack can succeed in "fooling" the classifier, but change to a different label than target

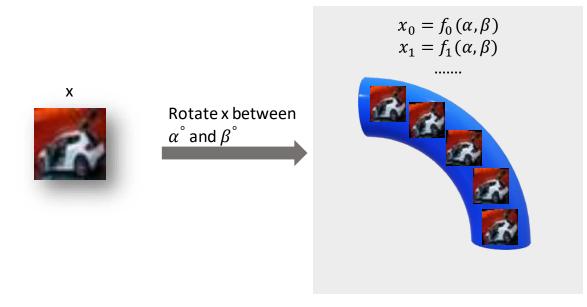
Alternative ways to solve the optimization problem

- Goal: Solve max $_{\delta < \Delta}$ Loss(x+ δ , y; θ)
- Another approach: encode the problem using constraints and use specialized and optimized constraint solver such as ReluPLEX
- Another approach: Use convex relaxation for approximate solving
- We will revisit when we discuss verification/certification for robustness

Beyond adding noise to images

- Adversarial patches: Given a "patch" p find an optimal position within given image x so as to maximize the loss on the augmented image
- Text substitution: Given a set of allowed substitutions (e.g. words by their synonyms) find the modified sentence to maximize the loss

Geometric Transformations



 $perturbation \, set \, lpha = -10^{\circ} \, {
m and} \, eta = 10^{\circ}$

Intriguing Properties of Neural Networks

- Adversarial examples can be computed efficiently using Fast Gradient Sign Method
- On image classification benchmarks, adversarial examples are so close to original examples that the difference is imperceptible to human eye
- Same adversarial example is often misclassified by alternative classifiers with different architectures or trained using different data set !

Agenda

- Today: Adversarial Examples
- Next class: Defense: Adversarial training and randomized smoothing
- Feb 12: Guest lecture by Alex Robey on robustness for LLMs
- Feb 14, 19 (and maybe 21): Formal methods for verified robustness
- Homework 1 on adversarial robustness