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Deep Neural Networks
   are “mostly” accurate, yet brittle

“car” “truck”
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Deep Neural Networks
   are “mostly” accurate, yet brittle

Prediction: 
Stop sign  

Prediction: 
Speed Limit 45  

3



Prediction: 
Panda (58%)  

Noise  Prediction: 
Gibbon (99%)  

Deep Neural Networks
   are “mostly” accurate, yet brittle
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robustness: similar images ⇒ same label
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Historical Context: Robust Control

Desired robustness property of the controller:

   When sensor measurements change slightly, control inputs should not change drastically

Controller

Plant

Measurements Control inputs
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robustness: 𝑥 − 𝑥′
∞ ≤ 𝜖 ⇒ same label
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𝐵(𝑥, 𝜖)

𝑥

𝜖-robust at 𝑥
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𝐵(𝑥, 𝜖)

𝑥

not 𝜖-robust at 𝑥

“bug”!
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Research Directions

▪ How to make neural networks robust?

▪ Can we “fool” neural networks to misclassify?

▪ Can we design learning algorithms to get robustness guarantees?

▪ Can we verify that a given model is robust?

▪ What about LLMs?
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Agenda

▪ Today: Attack: Adversarial Examples

▪ Feb 7: Defense: Adversarial training and randomized smoothing

▪ Feb 12: Guest lecture by Alex Robey on robustness for LLMs

▪ Feb 14, 19 (and maybe 21): Formal methods for verified robustness

▪ Homework 1 on adversarial robustness
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Today: Adversarial Examples

▪ Key publications:

o Intriguing properties of neural networks; Szegedy et al, 2014

o Explaining and harnessing adversarial examples; Goodfellow et al, 2015

▪ Acknowledgement for slides:

oOsbert’s lecture in CIS 5190

o Eric Wong’s lectures in “Debugging Data and Models”

o Tutorial: Adversarial robustness: Theory and practice; Kolter and Madry
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Szegedy et al., Intriguing Properties of Neural Networks, 2014

A Legendary Adversarial Example
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Is there a simple fix using data augmentation ?
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𝐵(𝑥, 𝜖)

𝑥

• Sample multiple points close to x
• Assign them same label as x
• Add them to training data set and retrain
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Doesn’t work to ensure robustness!
In theory as well as practice!!



Szegedy et al (2014) discovery

A surprisingly robust strategy for finding adversarial examples
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Adversarial examples everywhere … 

Duck  
Hermit Crab  

+  =  
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Patch attack 

Brown et al, 2017 “Adversarial Patch”
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Sentences and language models 

Hsieh et al. 2019 “Natural Adversarial Sentence Generation with Gradient based Perturbation”
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Speech recognition 

Carlini, Wagner, 2018
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Adversarial Perturbations can be dangerous …

• Task:
• Photo ID verification

• Goal is to check whether uploaded 
photo matches a photo ID

• Attack: 
• User perturbs their image to match 

the photo in the ID

• Challenge for machine learning in 
online identity verification!

(Valid photo ID from Papesh 2018)
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Finding Adversarial Examples

Szegedy et al, 2014
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Supervised Learning

▪ Given a model f parameterized by 

▪ Loss(x, y; ) denotes the error of f on input x with respect to desired output y

▪ Learning as optimization:

 Given a training set of labeled input/output pairs (x, y),

 find   to minimize the average training loss
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Adversarial Example Computation

▪ Given a (trained) model f with parameters 

▪ Fix input x and corresponding output y = f (x)

▪ Loss(x+, y; ) denotes the “change” in output with respect to −perturbation in input

▪ How can we formalize searching for adversarial example as optimization?

 Given a bound  on input perturbation,

 find 0 <  <  to maximize Loss(x+, y; ) 
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Challenge: Complexity of model / loss function
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max     Loss(x+, y; ) 



Solution: Local Search using Gradient Descent
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∆

δ= 0

max     Loss(x+, y; ) 



How to implement desired gradient descent ?

▪ Key step in learning:

 Computing the gradient ∇ Loss(x, y; ) using backpropagation

▪ Question: How will you compute ∇ Loss(x+, y; ) ?

▪ Question: To find the (locally) optimal value, is it ok to repeatedly update x to 

 x +  ∇ Loss(x+, y; ), where  is the learning rate ?

▪ No! We want  < , so this is an instance of “constrained optimization” 
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Projected gradient descent 
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Source: Tutorial on Adversarial robustness by Kolter and Madry



Fast Gradient Sign Method (FGSM) 
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Source: Tutorial on Adversarial robustness by Kolter and Madry



Empirical Evaluation 

30Source: Tutorial on Adversarial robustness by Kolter and Madry



Evaluation of FGSM 

31Source: Tutorial on Adversarial robustness by Kolter and Madry



Projected Gradient Descent 

32Source: Tutorial on Adversarial robustness by Kolter and Madry



PGD Evaluation 

33Source: Tutorial on Adversarial robustness by Kolter and Madry



Targeted Attack 

34Source: Tutorial on Adversarial robustness by Kolter and Madry



Targeted Attack Example 

35Source: Tutorial on Adversarial robustness by Kolter and Madry



Alternative ways to solve the optimization problem

▪ Goal: Solve max     Loss(x+, y; ) 

▪ Another approach: encode the problem using constraints and use specialized and 
optimized constraint solver such as ReluPLEX

▪ Another approach: Use convex relaxation for approximate solving

▪ We will revisit when we discuss verification/certification for robustness 
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Beyond adding noise to images

▪ Adversarial patches: Given a “patch” p find an optimal position within given image x so 
as to maximize the loss on the augmented image

▪ Text substitution: Given a set of allowed substitutions (e.g. words by their synonyms) 
find the modified sentence to maximize the loss
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Geometric Transformations
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Rotate x between 

𝛼° and 𝛽°

x

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 𝛼 = −10° and 𝛽 = 10°

𝑥0 = 𝑓0 (𝛼, 𝛽)
𝑥1 = 𝑓1(𝛼, 𝛽)

…….



Intriguing Properties of Neural Networks

▪ Adversarial examples can be computed efficiently using Fast Gradient Sign Method

▪ On image classification benchmarks, adversarial examples are so close to original 
examples that the difference is imperceptible to human eye

▪ Same adversarial example is often misclassified by alternative classifiers with different 
architectures or trained using different data set !
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Agenda

▪ Today: Adversarial Examples

▪ Next class: Defense: Adversarial training and randomized smoothing

▪ Feb 12: Guest lecture by Alex Robey on robustness for LLMs

▪ Feb 14, 19 (and maybe 21): Formal methods for verified robustness

▪ Homework 1 on adversarial robustness
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