Lecture 6: Robust Training

Trustworthy Machine Learning
Spring 2024



robustness: |[|x — x'||, < € = same label



Agenda

" Feb 3: Adversarial Examples
* Today: Defense: Adversarial training and randomized smoothing
" Feb 12: Guest lecture by Alex Robey on robustness for LLMs

" Feb 14, 19 (and maybe 21): Formal methods for verified robustness

= Homework 1 on adversarial robustness



Today: Training to ensure robustness

= Key publications:

o Intriguing properties of neural networks; Szegedy et al, 2014
o Explaining and harnessing adversarial examples; Goodfellow et al, 2015
o Certified adversarial robustness via randomized smoothing; Cohen at al, 2019

= Acknowledgement for slides:

o Tutorial: Adversarial robustness: Theory and practice; Kolter and Madry
o Lectures on Robustness in machine learning; Hongyang Zhang (Waterloo)
o Notes by Eric Wong for “Debugging Data and Models”



Supervised Learning

" Given a model f parameterized by 0
" Loss(x, y; 0) denotes the error of f; on input x with respect to desired outputy
= Learning as optimization:

Given a training set S of labeled input/output pairs (X, y),

find O to minimize the average training loss



Adversarial Example Computation

" Given a (trained) model f with parameters 0
" Fix input x and corresponding outputy = f, (x)
" Loss(x+0, y; 0) denotes the “change” in output with respect to 0—perturbation in input
= Search for adversarial example:
Given a bound A on input perturbation,

find 0 < 8 < A to maximize Loss(x+9, y; 0)



Adversarial Training

" Given a model f parameterized by 0
" Loss(x, y; 0) denotes the error of f; on input x with respect to desired outputy
= Given training set S of labeled input/output examples (x,y)

* Goal: Account for adversarial examples during learning (update of parameters 0)
= Adversarial training as optimization:

min E max Loss (x + d.1y:;0)
) ., 0eA
T,YeS



MinMax Optimization

min E max Loss (x + §,y:0)
0 , 0EA |
T, Yc.S

How to obtain optimal © by modifying gradient descent?



Danskin’s Theorem for solving MinMax problems

A fundamental result in optimization:

Vi max Loss (x + 6§,y:;0) = VyLoss(x + 6%,y 0)
.

where 0* = max Loss (x + 0, y: 0)
deA

Caveat: Result assumes that we are computing 0* exactly, but we are not ...



Adversarial Training Algorithm

Repeat:
1. Select a minibatch B
2. For each (x,y) in B, compute the adversarial example 0*(x)
Recall FGSM method of steepest descent to compute adversarial examples

0 = e - sign(VsLoss(z + 0,y: 0))
3. Update parameters

0 —e—|— Y VyLoss(x+ 0% (), y:0)
T, yebB

Note: in practice, one can mix standard updates and adversarial updates
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Empirical Evaluation of Robust Training

Test Error, epsilon=0.1

74.4%
41.7%
2.6% .
1.1% 0.9% 2:8%
ConvNet Robust ConvNet

B Clean mFGSM mPGD
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Beyond Empirical Defenses

= Adversarial training improves robustness empirically
" But adversarial example is only one type of attack, new attacks need new defenses
= Certified robustness: Can we get mathematical guarantees of robustness ?

= Certified Robustness via randomized smoothing [Cohen et al; 2019]
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Smoothing of a given classifier, informally

 Sample multiple perturbations x” of x
 Computethe label f(x’) for each variant
* Set g(x) to the majority vote
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Creating Random Perturbations

" Given an input x, consider inputs x+ 1, where 1 is noise sampled from Gaussian
distribution with mean 0 and variance ¢?, thatis, n~N'(0,02I)
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Examples of noisy images from CIFAR-10 with varying levels of Gaussian noise N (0, 5%1)
fromo=0tooc=1
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Examples of noisy images from ImageNet with varying levels of
Toma =010 =1

Gaussian noise N (0, 0?1

o = 0.00 o = (.25 o — 0.50 o — 1.00
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Smoothed classifier

" Given a base classifier f, its smoothed version g maps an input x to the
majority prediction of f on many Gaussian-perturbed images x+ 1

Q(JC) — argmax[@n []C(;‘C +U) =y]
Y
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Estimation by Monte Carlo Sampling

To design a smoothed classifier g at the input sample x requires to identify the most likely class ¢4
returned by the base classifier f on noisy images

- Step 1: create n versions of x corrupted with Gaussian noise n~N'(0, 621)
- Step 2: evaluate the predictions by base classifier for all corrupted images, f(x + n)
- Step 3: identify the top two classes ¢4 and ¢z with the highest number of predictions on f(x + n)

- Step 4: if ny, (number of predictions by f for the top class ¢,) is much greater than ng (number of
predictions for the second highest class ¢g), return ¢4 as the prediction by g(x)

+ Otherwise, if n, — ng < a, abstain from making a prediction
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Figure 1. Evaluating the smoothed classifier at an input x. Left:
the decision regions of the base classifier f are drawn in differ-
ent colors. The dotted lines are the level sets of the distribution
N (z,0°I). Right: the distribution (N (z,0%I)). As discussed
below, p4 1s a lower bound on the probability of the top class and
PE is an upper bound on the probability of each other class. Here,
g(x) is “blue.”
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Illustrating effect of smoothing

Randomly perturbe
data point x + 7

Output majority smoothing
vote: i
Test point x

to be certified Base Classifier Smoothed Classifier

F(x) g(x) = argmax P, [f(x +7n) =y]
y
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Randomized Smoothing

= Method works for an arbitrary f, including complex neural networks

*" The smoothed version g of a given classifier f turns out to be empirically robust

®" The bound A on adversarial robustness radius is related to the parameter ¢ in Gaussian noise
" Intuitively: large random noise can be used to drown out small adversarial perturbation

= Key question: can one establish this relationship provably?
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Randomized Smoothing Guarantee

Certified robust radius by [Cohen et al.’19]:

Confidence of majority vote

Given any input x € R?, let n be Gaussian noise V' (0,0%]) and p = max P,[f(x+n)=y].Then
y
g(x) = g(x + &) for any & such that ||5]], < @ *(p)a, where @ is CDF of standard Gaussian.

Computable certified
radius for x
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Proof sketch (binary classifier)

1. Suppose the top class has probability p4. so f classifies N'(z, 0*I) as A with probability > pa.

2. Consider a fixed perturbation 8. We want the probability that f classifies s N'(z + 3, 0°1 ) as

A. If this probability is greater than 1/2 then g(z + 0) = A.

3. We want a statement for all possible f, so consider the worst case f which classifies s N (z, 0°1)
with probability > p4, but minimizes the probability that N (z + 4, o?1 ) is A.
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Illustrating worst-case classifier in the proof

Among all classifiers f for which g(x) is blue with probability greater than a given
threshold, and g(x+0) is blue with minimal probability, the “worst-case” is linear
classifier normal to direction of 0 from x
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Proof sketch

1. Suppose the top class has probability p4. so f classifies N'(z, 0*I) as A with probability > pa.

2. Consider a fixed perturbation §. We want the probability that f classifies s N'(x + §,0°1I) as
A. If this probability is greater than 1/2 then g(z + 0) = A.

3. We want a statement for all possible f, so consider the worst case f which classifies s N (z, 0°1)
with probability > p4, but minimizes the probability that N (z + 4, o1 ) is A.

4. By a similar argument to the Neyman Pearson lemma, this worst-case classifier is the linear

Aif 6T(a' — z) < o]|8]]22Y(
classifier f(2') = { : (" —x) < o|d][2P(pa)

B otherwise

5. For this worst case classifier, f classifies N'(x+6,0°I) as A with probability @ ('JI’_I(PA} — ”ﬂ'z )

Solving this for 1/2 we get the condition ||d]|s < c®~1(p4).
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Randomized Smoothing Guarantee

Certified robust radius by [Cohen et al.”19]:

Confidence of majority vote

" . d " . - - -
Given any input x € R%, let n be Gaussian noise N'(0,0%l) and p = m}gx P,[f(x+n)=y].Then
g(x) = g(x + &) for any 6 such that ||5]], < @~ *(p)a, where ® is CDF of standard Gaussian.

Computable certified
radius for x

If we can estimate that the probability g(x)=A is at least p, and the probability that g(x)=B is
at most p,, where A is the most likely class and B is the “runner-up” class, then above bound
holds with ®(p) replaced by (®(p,) - ®(p,) )/2
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Implementing Certified Robustness

# certify the robustness of g around x

function CERTIFY(f, o, x, ng, n, a)
counts0 < SAMPLEUNDERNOISE(f, z,ng, o)
Ca 4 top index in counts0
counts <~ SAMPLEUNDERNOISE(f, z,n,0)
pa < LOWERCONFBOUND(counts|¢al,n, 1 — @)
if pg > % return prediction ¢, and radius o @~ (py4)
else return ABSTAIN

SampleUnderNoise(f,x,n, ) samples n values of noise from the distribution

evaluates f (x + n), and returns a vector of class counts

n~N(0,c%I)
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Implementing Certified Robustness

# certify the robustness of g around x

function CERTIFY(f, o, x, ng, n, a)
counts0 < SAMPLEUNDERNOISE(f, z,ng, o)
Ca 4 top index in counts0
counts <~ SAMPLEUNDERNOISE(f, z,n,0)
pa < LOWERCONFBOUND(counts|¢al,n, 1 — @)
if pg > % return prediction ¢, and radius o @~ (py4)
else return ABSTAIN

LowerConfBound(k, n, 1—a) returns one-sided (1-a) lower interval for the Binomial
parameter p given the sample k ~ Binomial(n,p)
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Implementing Certified Robustness

# certify the robustness of g around x

function CERTIFY(f, o, x, ng, n, a)
counts0 + SAMPLEUNDERNOISE( f, 2, ng, o)
Ca 4 top index in counts0
counts + SAMPLEUNDERNOISE(f,z,n, o)
pa < LOWERCONFBOUND(counts|¢al,n, 1 — @)
if pg > % return prediction ¢, and radius o @~ (py4)
else return ABSTAIN

Proposition 2. With probability at least 1 — « over the
randomness in CERTIFY, if CERTIFY returns a class ¢
and a radius R (i.e. does not abstain), then g predicts ¢4
within radius R around x: g(x + ) = c¢a V ||d]|2 < R.
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Certified Robustness via Randomized Smoothing

" First method to give mathematical guarantees of robustness

= Robustness radius R depends on noise parameter ¢ and separation between top two classes
in prediction of x

= There is accuracy — robustness trade-off

* Follow-up work studies theoretical limits of robustness guarantees
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Noise vs Resolution

Clean 56x56 image

Clean 224x224 image

Noisy 56x56 image
(o0 = 0.5)

Noisy 224 x224 image
(0 = 0.5)

31



Certified Robustness: Empirical Evaluation

Plot of the certified top-1 accuracy by ResNet50 on ImageNet by the randomized smoothing
As the radius R increases, the certified accuracy decreases

The noise level o controls the tradeoff between accuracy and robustness

When ¢ is small (e.g., o = 0.25), perturbations with small radius R (e.g. R = 0.5) can b
certified with high accuracy

However, for small o (e.g., 0 = 0.25), perturbations with R > 1.0 cannot be certified

Increasing o (e.g., 0 = 1.0) will enable robustness to larger perturbations (R > 3.0 and
higher), but will result in decreased certified accuracy

1.0

— 0=0.25
— 0=0.50
o=1.00
----- undefended

e
o

o
(3]

certified accuracy
=
I

o
ha

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0
radius



Agenda

" Feb 3: Adversarial Examples
* Today: Defense: Adversarial training and randomized smoothing
" Feb 12: Guest lecture by Alex Robey on robustness for LLMs

" Feb 14, 19 (and maybe 21): Formal methods for verified robustness

= Homework 1 on adversarial robustness
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