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Spring 2024
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robustness: 𝑥 − 𝑥′ ∞ ≤ 𝜖 ⇒ same label
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Agenda

▪ Feb 3: Adversarial Examples

▪ Today: Defense: Adversarial training and randomized smoothing

▪ Feb 12: Guest lecture by Alex Robey on robustness for LLMs

▪ Feb 14, 19 (and maybe 21): Formal methods for verified robustness

▪ Homework 1 on adversarial robustness
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Today: Training to ensure robustness

▪ Key publications:

o Intriguing properties of neural networks; Szegedy et al, 2014

o Explaining and harnessing adversarial examples; Goodfellow et al, 2015

oCertified adversarial robustness via randomized smoothing; Cohen at al, 2019

▪ Acknowledgement for slides:

o Tutorial: Adversarial robustness: Theory and practice; Kolter and Madry

o Lectures on Robustness in machine learning; Hongyang Zhang (Waterloo)

oNotes by Eric Wong for “Debugging Data and Models”
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Supervised Learning

▪ Given a model f parameterized by 

▪ Loss(x, y; ) denotes the error of f on input x with respect to desired output y

▪ Learning as optimization:

 Given a training set S of labeled input/output pairs (x, y),

 find   to minimize the average training loss
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Adversarial Example Computation

▪ Given a (trained) model f with parameters 

▪ Fix input x and corresponding output y = f (x)

▪ Loss(x+, y; ) denotes the “change” in output with respect to −perturbation in input

▪ Search for adversarial example:

 Given a bound  on input perturbation,

 find 0 <  <  to maximize Loss(x+, y; ) 
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Adversarial Training

▪ Given a model f parameterized by 

▪ Loss(x, y; ) denotes the error of f on input x with respect to desired output y

▪ Given training set S of labeled input/output examples (x,y)

▪ Goal: Account for adversarial examples during learning (update of parameters )

▪ Adversarial training as optimization:
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MinMax Optimization

How to obtain optimal  by modifying gradient descent?
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Danskin’s Theorem for solving MinMax problems

Caveat: Result assumes that we are computing * exactly, but we are not …
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Adversarial Training Algorithm

Repeat:

       1. Select a minibatch B

       2. For each (x,y) in B, compute the adversarial example *(x)

 Recall FGSM method of steepest descent to compute adversarial examples

 

       

      3. Update parameters

Note: in practice, one can mix standard updates and adversarial updates 
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Empirical Evaluation of Robust Training
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Beyond Empirical Defenses

▪ Adversarial training improves robustness empirically

▪ But adversarial example is only one type of attack, new attacks need new defenses

▪ Certified robustness: Can we get mathematical guarantees of robustness ?

▪ Certified Robustness via randomized smoothing [Cohen et al; 2019]
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𝑥

• Sample multiple perturbations x’ of x
• Compute the label f(x’) for each variant
• Set g(x) to the majority vote
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Smoothing of a given classifier, informally



Creating Random Perturbations

▪ Given an input x, consider inputs x+ , where  is noise sampled from Gaussian 
distribution with mean 0 and variance 2, that is,
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Smoothed classifier

▪ Given a base classifier f, its smoothed version g maps an input x to the 
majority prediction of f on many Gaussian-perturbed images x+ 
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Estimation by Monte Carlo Sampling
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Illustrating effect of smoothing
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Randomized Smoothing

▪ Method works for an arbitrary f, including complex neural networks

▪ The smoothed version g of a given classifier f turns out to be empirically robust 

▪ The bound  on adversarial robustness radius is related to the parameter  in Gaussian noise

▪ Intuitively: large random noise can be used to drown out small adversarial perturbation

▪ Key question: can one establish this relationship provably? 
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Randomized Smoothing Guarantee
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Proof sketch (binary classifier)
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Illustrating worst-case classifier in the proof
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Among all classifiers f for which g(x) is blue with probability greater than a given 
threshold, and g(x+) is blue with minimal probability, the “worst-case” is linear 
classifier normal to direction of  from x



Proof sketch
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Randomized Smoothing Guarantee
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If we can estimate that the probability g(x)=A is at least p1 and the probability that g(x)=B is 
at most p2, where A is the most likely class and B is the “runner-up” class, then above bound 
holds with -1(p) replaced by (-1(p1) - -1(p2) )/2 



Implementing Certified Robustness
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SampleUnderNoise(f,x,n, ) samples n values of noise from the distribution

evaluates f (x + ), and returns a vector of class counts



Implementing Certified Robustness
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LowerConfBound(k, n, −) returns one-sided (1-) lower interval for the Binomial 
parameter p given the sample k ~ Binomial(n,p)



Implementing Certified Robustness
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Certified Robustness via Randomized Smoothing

▪ First method to give mathematical guarantees of robustness

▪ Robustness radius R depends on noise parameter  and separation between top two classes 
in prediction of x

▪ There is accuracy – robustness trade-off

▪ Follow-up work studies theoretical limits of robustness guarantees
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Noise vs Resolution
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Certified Robustness: Empirical Evaluation
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Agenda

▪ Feb 3: Adversarial Examples

▪ Today: Defense: Adversarial training and randomized smoothing

▪ Feb 12: Guest lecture by Alex Robey on robustness for LLMs

▪ Feb 14, 19 (and maybe 21): Formal methods for verified robustness

▪ Homework 1 on adversarial robustness
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