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Adversarial Robustness

▪ So far: 
o Adversarial Examples

o Adversarial training

o Certified robustness via randomized smoothing

o Sample of current research on robustness for LLMs

▪ Next: Formal methods for verified robustness

o Formalizing program verification: Pre/post conditions

oVerification as constraint solving 

oRobustness checking as program verification

o Specialized constraint solver ReluPlex for neural network verification

oVerifying robustness by abstract interpretation (box and zonotopes)
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Robustness Verification

▪ Key publications:

oReluplex: An efficient SMT solver for verifying deep neural networks; Katz et al; 
CAV 2017

oAn abstract domain for certifying neural networks; Singh et al; POPL 2019

▪ Acknowledgement for slides:

oCIS 6730 (Computer Aided Verification) Lectures

o Formal methods in AI: Gagandeep Singh and Madhu Parthasarathy (UIUC)
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A Brief Introduction to
Program Verification and

Constraint Solving
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Verified Programming

In this paper an attempt is made to explore the logical foundations of computer 

programming by use of techniques which were first applied in the study of geometry 

and have later been extended to other branches of mathematics. This involves the 

elucidation of sets of axioms and rules of inference which can be used in proofs of the 

properties of computer programs. Examples are given of such axioms and rules, and a 

formal proof of a simple theorem is displayed. Finally, it is argued that important 

advantage, both theoretical and practical, may follow from a pursuance of these topics.

An axiomatic basis for computer programming
 Tony Hoare; CACM 1969
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Formal Specifications

Architects draw detailed plans before a brick is laid or a nail is hammered. 
But few programmers write even a rough sketch of what their programs 
will do before they start coding. We can learn from architects. A blueprint 
for a program is called a specification. An architect's blueprint is a useful 
metaphor for a software specification.

The need for specifications follows from two observations. The first is 
that it is a good idea to think about what we are going to do before doing 
it, and as the cartoonist Guindon wrote: "Writing is nature's way of letting 
you know how sloppy your thinking is.” The second observation is that to 
write a good program, we need to think above the code level.

The main reason for writing a formal spec is to apply tools to check it. 
Tools cannot find design errors in informal specifications. 

Who builds a house without drawing blueprints ?
 Leslie Lamport; CACM 2015
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Specifications for programs

Input:  int x, int y
Output: int r

 z := x + y;
 z’ := x – y;
 r := z * z’

Post-condition / assertion / “ensures” (in Dafny):    r = x2 – y2   

Cannot define correctness without specifications (logical constraints)
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Verification Conditions

Input:  int x, int y
Output: int r

 z := x + y;
 z’ := x – y;
 r := z * z’

Ensures    r = x2 – y2   

Verifying correctness means checking validity of the following logical 
formula, called VC (Verification Condition):

( z = x+y && z’ = x-y && r = z*z’ ) ➔ r = x2 – y2 
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From VC to Constraint Satisfaction

Verification problem: check validity of

( z = x+y && z’ = x-y && r = z*z’ ) ➔ r = x2 – y2 

The answer is NO if the following set of constraints over integer 
variables are satisfiable:

{ z = x+y;  z’ = x-y;   r = z*z’; r != x2 – y2 }

Satisfying solution to these constraints is a “counterexample” or a bug 
that shows why the program is incorrect

9



Example Constraint Satisfaction Problem

x, y, z : Boolean variables 
Find values such that all the following constraints are satisfied

 x | ~y | ~z
 ~x | y | ~z
 ~x | ~y | z
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Example Constraint Satisfaction Problem

x, y, z : real-valued variables
Find values such that all the following constraints are satisfied

 2x + 3y – 5z ≤ 7
 -5x + 2y ≤ 106
 9x - 4y + 29z ≤ -1

What if we change the type to “integer” variables
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Example Constraint Satisfaction Problem

x, y, z : real-valued variables
Find values such that all the following constraints are satisfied

 2x + 3y – 5z ≤ 7 |  3x - 4z ≤ 9
 -5x + 2y ≤ 106 | 6y - 78z ≤ 567
 9x - 4y + 29z ≤ -1  | 5x – 7y + z ≤ 98

Mixture of Boolean and linear constraints
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Solving Sudoku As Constraint Satisfaction
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Solving Sudoku As Constraint Satisfaction

Variables: x(i,j), for i=1..9 and j=1..9, of integer value between 1 and 9
Find values such that all the following constraints are satisfied

 Some values are known:
  x(3,3)=1, x(2,6)=3, …
 Every value appears in each row:
  for each k=1, .., 9:
      for each i=1, .. 9:
   x(i,1)=k | x(i,2)=k | … | x(i,9) =k
 Every value appears in each column: similar constraints
 Every value appears in each square:
  for each k = 1,… 9,
     x(1,1)=k | x(1,2)= k | x(1,3)=k | …. | x(3,2)=k |x(3,3)=k
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A Verification Example

Input:  int[32] x,  y  /* fixed precision 32 bit integers (as in C) */
Output: int[32] r
 int[32] z := x + y; /*what’s the precise semantics of addition?? */
 r := z / 2
Ensures  (x + y = 2r)  /* r is average of x and y */

Verification condition: Validity over int[32] variables  
   z = x + y && r = z/2 ➔ (x + y = 2r)

Constraint satisfaction problem :
 { z = x + y; r = z/2; x + y != 2r }

Satisfying solution: x=y=232 - 1; r=z=0

Types matter!
Need to capture precise semantics of language constructs! 15



Logic for Specifications

Specification is a logical formula constructed from expressions over 
program variables using logical operators  AND &&, OR |, NOT ~
Different choices based on:
❑ Allowed types of variables:

▪ Boolean (bool), integer (int), natural numbers (nat), real numbers (real)
▪ Enumerated types
▪ Bit-vectors (fixed precision integers): int[32], int[64]
▪ Arrays and matrices

❑ Operators allowed in expressions, e.g. for integers, three classes:
▪ Difference constraints:  x - y ≤ 5
▪ Linear constraints: 2x + 3y – 5z ≤ 7 
▪ Full arithmetic: r = x2 – y2 

❑ Whether quantifiers over variables are allowed

The more restricted the specification logic, easier it is for a tool to solve 
the resulting constraint satisfaction problem
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Verifying Programs with Loops

Input:  int x1, x2
Output: int y1, y2

Requires (0 ≤ x1 && x2 > 0)     /* Assumption on inputs; also called pre-condition */
 y1 := 0; 
 y2 := x1;
 while (x2 ≤ y2) {
    y1 := y1+1;
 y2 := y2 – x2
 };
Ensures  ( y1 = x1 div x2 && y2 = x1 rem x2 )
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Division Example

Current verification tools require the programmer also to specify “loop invariants”
 Condition over program variables that is satisfied at the beginning of each iteration  

Requires (0 ≤ x1 && x2 > 0)
 y1 := 0; 
 y2 := x1;
 while (x2 ≤ y2) { 
  Invariant   (x1 = y1*x2 + y2 && 0 ≤ x1 && x2 > 0)
    y1 := y1+1;
 y2 := y2 – x2
 };
Ensures  ( y1 = x1 div x2 && y2 = x1 rem x2 )
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Division Example

Requires (0 ≤ x1 && x2 > 0)
 y1 := 0; 
 y2 := x1;
 while (x2 ≤ y2) { Invariant   (x1 = y1*x2 + y2 && 0 ≤ x1 && x2 > 0)
    y1 := y1+1;
 y2 := y2 – x2
 };
Ensures  ( y1 = x1 div x2 && y2 = x1 rem x2 )

Verification conditions:
1. Initialization ensures that invariant holds on first iteration
  (0 ≤ x1 && x2 > 0) ➔ [y1/0; y2/x1] 
2. Execution of the loops preserves loop invariant
 (x2 ≤ y2) &&  ➔ [y1/y1+1; y2/y2-x2]
3. Post-condition holds upon termination of loop
 ~(x2 ≤ y2) &&  ➔ ( y1 = x1 div x2 && y2 = x1 rem x2 )
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SAT Solvers

2001

Chaff

10k var

1986

BDDs

 100 var

1992

GSAT

 300 var

1996

Stålmarck

 1000 var

1996

GRASP

1k var

1960

DP

10 var

1988

SOCRATES

 3k var

1994

Hannibal

 3k var

1962

DLL

 10 var

1952

Quine

 10 var
1996

SATO

1k var

2002

Berkmin

10k var

Propositional Satisfiability: Given a formula over Boolean variables, is there an 
assignment of 0/1’s to variables which makes the formula true

▪ Canonical NP-hard problem (Cook 1973)

▪ Enormous progress in tools that can solve instances with thousands of variables 
and millions of clauses

▪ Also at the core of SMT solvers (extensions to richer classes of constraints)
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SMT: Satisfiability Modulo Theories

❑ Computational problem: Find a satisfying assignment to a formula
▪ Boolean + Int types, logical connectives, arithmetic operators
▪ Bit-vectors + bit-manipulation operations in C
▪ Boolean + Int types, logical/arithmetic ops + Uninterpreted functions

❑ “Modulo Theory”: Interpretation for symbols is fixed
▪ Can use specialized algorithms (e.g. for arithmetic constraints)

❑ Progress in improved SMT solvers

Little Engines of Proof

 SAT; Linear arithmetic; Congruence closure
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SMT Solvers

SMT-LIB Standardized Interchange Format (smt-lib.org)
 Problem classification + Benchmark repositories
 LIA, LIA_UF, LRA, QF_LIA, …
 
+ Annual Competition (smt-competition.org)

Z3 Yices CVC4 MathSAT5

CBMC SAGE Dafny Spec#

Ever-growing scalability and use in different applications
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Summary of Program Verification

❑ Proving correctness of programs requires programmer to write logical specifications
▪ Pre/Post conditions for each function
▪ Invariants for loops 

❑ Proving correctness can then be translated automatically to constraint solving
▪ Scalable SAT solvers for constraints over Boolean variable
▪ Specialized scalable SMT solvers for more general classes of constraints / variable types

❑ Useful references

o Satisfiability modulo theories: introduction and applications; de Moura and Bjorner; CACM 2011
o The dogged pursuit of bug-free C programs: The Frama-C software analysis platform; Baudin 

et al; CACM, 2021
o Dafny programming and verification language: https://dafny.org/
o Talk by Byron Cook of Automated Reasoning Group at Amazong Web Services: An AWS 

Approach to Higher Standards of Assurance w/ Provable Security
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Program Verification in the age of LLMs

❑ Use of LLMs to assist program verification
o Synthesis of candidate pre/post conditions and loop invariants

❑ Use program verification tools to ensure correctness of code generated by LLMs

❑ Active research area in programming systems / software engineering
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Formal Verification of
Neural Networks
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What is a deep neural network?
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Each layer is a function

𝑥1 𝑥3

𝑥2 𝑥4

𝑤13

𝑤24

𝑤23

𝑤14

𝑏3

𝑏4

𝑥3 𝑥5

𝑥4 𝑥6

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

𝑥3 , 𝑥4 ← 𝑓1 𝑥1 , 𝑥2  where
𝑥3 = 𝑤13 ⋅ 𝑥1 + 𝑤23 ⋅ 𝑥2 + 𝑏3

𝑥4 = 𝑤14 ⋅ 𝑥1 + 𝑤24 ⋅ 𝑥2 + 𝑏4

𝑥5 , 𝑥6 ← 𝑓2 𝑥3 ,𝑥4  where
𝑥5 = 𝑅𝑒𝐿𝑈 𝑥3 = max(0, 𝑥3)
𝑥6 = 𝑅𝑒𝐿𝑈 𝑥4 = max(0, 𝑥4)
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DNN is composition of layerwise functions

𝑥1 𝑥3 𝑥5

𝑥2 𝑥4 𝑥6

𝑤13 𝑅𝑒𝐿𝑈 𝑤57

𝑤24 𝑤68𝑅𝑒𝐿𝑈

𝑤23
𝑤67

𝑤14 𝑤58

𝑏3 𝑏7

𝑏4 𝑏8

𝑥7

𝑥8

(𝑥7, 𝑥8) ← 𝑓 𝑥1, 𝑥2 = 𝑓3 ∘ 𝑓2 ∘ 𝑓1(𝑥1, 𝑥2) where 𝑓3  is the function computed by the third layer
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DNNs and Programs

• DNNs can be seen as straight-line programs (programs without loops)

𝑥1 𝑥3 𝑥5

𝑥2 𝑥4 𝑥6

𝑤13 𝑅𝑒𝐿𝑈 𝑤57

𝑤24 𝑤68𝑅𝑒𝐿𝑈

𝑤23
𝑤67

𝑤14 𝑤58

𝑏3 𝑏7

𝑏4 𝑏8

𝑥7

𝑥8

Type equation here.

𝐝𝐞𝐟 𝑓 𝑥1, 𝑥2 :
 𝑥3= 𝑤13 ⋅ 𝑥1 + 𝑤23 ⋅ 𝑥2 + 𝑏3

 𝑥4 = 𝑤14 ⋅ 𝑥1 + 𝑤24 ⋅ 𝑥2 + 𝑏4

    𝑥5 = max 0, 𝑥3

    𝑥6 = max 0, 𝑥4

 𝑥7 = 𝑤57 ⋅ 𝑥5 + 𝑤67 ⋅ 𝑥6 + 𝑏7

 𝑥8 = 𝑤56 ⋅ 𝑥5 + 𝑤68 ⋅ 𝑥6 + 𝑏8

    return 𝑥7 ,𝑥8
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Specifications over DNNs

Type equation here.

𝐝𝐞𝐟 𝑓 𝑥1, 𝑥2 :
 𝑥3= 𝑤13 ⋅ 𝑥1 + 𝑤23 ⋅ 𝑥2 + 𝑏3

 𝑥4 = 𝑤14 ⋅ 𝑥1 + 𝑤24 ⋅ 𝑥2 + 𝑏4

    𝑥5 = max 0, 𝑥3

    𝑥6 = max 0, 𝑥4

 𝑥7 = 𝑤57 ⋅ 𝑥5 + 𝑤67 ⋅ 𝑥6 + 𝑏7

 𝑥8 = 𝑤56 ⋅ 𝑥5 + 𝑤68 ⋅ 𝑥6 + 𝑏8

    return 𝑥7 ,𝑥8

∀𝑥1 ,𝑥2 . 𝑙1 ≤ 𝑥1 ≤ 𝑢1 , 𝑙2 ≤ 𝑥2 ≤ 𝑢2
Precondition

DNN f

𝑥7 > 𝑥8Postcondition

Either prove that the network output satisfies the postcondition for all inputs in the pre-condition or find a counterexample
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Neural network certification: problem statement

Precondition over 
network inputs 𝜙

𝑓(𝜙)

Network 𝑓 Postcondition over 
network outputs 𝜓
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𝑓(𝜙)

Network 𝑓 Prove 𝑓 𝜙 ⊆ 𝜓

𝑓(𝜙)

Precondition over 
network inputs 𝜙

Neural network certification: problem statement
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𝑓(𝜙)

Network 𝑓 𝑓 𝜙 ⊈ 𝜓

𝑓 𝑖  does not satisfy 𝜓
Find a counter example 𝑖 ∈ 𝜙

𝑓(𝜙)

Precondition over 
network inputs 𝜙

Neural network certification: problem statement
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Robustness against adversarial perturbations 

Network correctly classifies 𝐼0 as “car” 

𝐿∞-ball around
 𝐼0  of radius 𝜖 

𝜙 with 𝜖 = 8/255

𝐼0

𝜓: network classifies image as “car”

0.6 ≤ 𝑥0 ≤ 0.65
0.55 ≤ 𝑥1 ≤ 0.6

…….
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Program
(neural net)

Property 
(e.g., robustness)

Automated 
Verifier

The general problem is computationally intractable, therefore we may need to provide an approximate answer

Proved

Counterexample
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Sound Complete Guarantees

Yes Yes If the specification holds on the 
network, then the verifier proves it. 
The verifier does not prove any 
specification that does not hold

Yes No If the specification does not hold on 
the network, then the verifier does 
not prove it. Whenever the verifier 
proves a specification, it holds on the 
network 

No Yes If the specification holds on the 
network, then the verifier proves it. 
The verifier may say that the 
specification holds even if it does not

No No Random Guessing

Desirable properties for certification:

• Soundness

• Scalability

• Precision: ``as complete as possible’’

Soundness  and Completeness for Certification
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Certification of Neural Networks

Incomplete Abstract interpretation: Box, Zonotope, DeepPoly

Complete Mixed Integer Linear Programming (MILP)
SMT solvers (Reluplex)
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Active area of research with annual competition: VNNComp
Current winner: alpha-beta crown



Recap

▪  Today : Robustness verification from a formal methods lens

o Formalizing program verification: Pre/post conditions

o Verification as constraint solving 

o Robustness checking as program verification

▪Next: Verification techniques for neural networks

o Specialized constraint solver ReluPlex for neural network verification

oVerifying robustness by abstract interpretation (box and zonotopes)
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