
Lecture 8: Verifying Robustness

Trustworthy Machine Learning

Spring 2024

1

Adversarial Robustness

▪ So far:
o Adversarial Examples

o Adversarial training

o Certified robustness via randomized smoothing

o Sample of current research on robustness for LLMs

▪ Next: Formal methods for verified robustness

o Formalizing program verification: Pre/post conditions

oVerification as constraint solving

oRobustness checking as program verification

o Specialized constraint solver ReluPlex for neural network verification

oVerifying robustness by abstract interpretation (box and zonotopes)

2

Robustness Verification

▪ Key publications:

oReluplex: An efficient SMT solver for verifying deep neural networks; Katz et al;
CAV 2017

oAn abstract domain for certifying neural networks; Singh et al; POPL 2019

▪ Acknowledgement for slides:

oCIS 6730 (Computer Aided Verification) Lectures

o Formal methods in AI: Gagandeep Singh and Madhu Parthasarathy (UIUC)

3

A Brief Introduction to
Program Verification and

Constraint Solving

4

Verified Programming

In this paper an attempt is made to explore the logical foundations of computer

programming by use of techniques which were first applied in the study of geometry

and have later been extended to other branches of mathematics. This involves the

elucidation of sets of axioms and rules of inference which can be used in proofs of the

properties of computer programs. Examples are given of such axioms and rules, and a

formal proof of a simple theorem is displayed. Finally, it is argued that important

advantage, both theoretical and practical, may follow from a pursuance of these topics.

An axiomatic basis for computer programming
 Tony Hoare; CACM 1969

5

Formal Specifications

Architects draw detailed plans before a brick is laid or a nail is hammered.
But few programmers write even a rough sketch of what their programs
will do before they start coding. We can learn from architects. A blueprint
for a program is called a specification. An architect's blueprint is a useful
metaphor for a software specification.

The need for specifications follows from two observations. The first is
that it is a good idea to think about what we are going to do before doing
it, and as the cartoonist Guindon wrote: "Writing is nature's way of letting
you know how sloppy your thinking is.” The second observation is that to
write a good program, we need to think above the code level.

The main reason for writing a formal spec is to apply tools to check it.
Tools cannot find design errors in informal specifications.

Who builds a house without drawing blueprints ?
 Leslie Lamport; CACM 2015

6

Specifications for programs

Input: int x, int y
Output: int r

 z := x + y;
 z’ := x – y;
 r := z * z’

Post-condition / assertion / “ensures” (in Dafny): r = x2 – y2

Cannot define correctness without specifications (logical constraints)

7

Verification Conditions

Input: int x, int y
Output: int r

 z := x + y;
 z’ := x – y;
 r := z * z’

Ensures r = x2 – y2

Verifying correctness means checking validity of the following logical
formula, called VC (Verification Condition):

(z = x+y && z’ = x-y && r = z*z’) ➔ r = x2 – y2

8

From VC to Constraint Satisfaction

Verification problem: check validity of

(z = x+y && z’ = x-y && r = z*z’) ➔ r = x2 – y2

The answer is NO if the following set of constraints over integer
variables are satisfiable:

{ z = x+y; z’ = x-y; r = z*z’; r != x2 – y2 }

Satisfying solution to these constraints is a “counterexample” or a bug
that shows why the program is incorrect

9

Example Constraint Satisfaction Problem

x, y, z : Boolean variables
Find values such that all the following constraints are satisfied

 x | ~y | ~z
 ~x | y | ~z
 ~x | ~y | z

10

Example Constraint Satisfaction Problem

x, y, z : real-valued variables
Find values such that all the following constraints are satisfied

 2x + 3y – 5z ≤ 7
 -5x + 2y ≤ 106
 9x - 4y + 29z ≤ -1

What if we change the type to “integer” variables

11

Example Constraint Satisfaction Problem

x, y, z : real-valued variables
Find values such that all the following constraints are satisfied

 2x + 3y – 5z ≤ 7 | 3x - 4z ≤ 9
 -5x + 2y ≤ 106 | 6y - 78z ≤ 567
 9x - 4y + 29z ≤ -1 | 5x – 7y + z ≤ 98

Mixture of Boolean and linear constraints

12

Solving Sudoku As Constraint Satisfaction

13

Solving Sudoku As Constraint Satisfaction

Variables: x(i,j), for i=1..9 and j=1..9, of integer value between 1 and 9
Find values such that all the following constraints are satisfied

 Some values are known:
 x(3,3)=1, x(2,6)=3, …
 Every value appears in each row:
 for each k=1, .., 9:
 for each i=1, .. 9:
 x(i,1)=k | x(i,2)=k | … | x(i,9) =k
 Every value appears in each column: similar constraints
 Every value appears in each square:
 for each k = 1,… 9,
 x(1,1)=k | x(1,2)= k | x(1,3)=k | …. | x(3,2)=k |x(3,3)=k

14

A Verification Example

Input: int[32] x, y /* fixed precision 32 bit integers (as in C) */
Output: int[32] r
 int[32] z := x + y; /*what’s the precise semantics of addition?? */
 r := z / 2
Ensures (x + y = 2r) /* r is average of x and y */

Verification condition: Validity over int[32] variables
 z = x + y && r = z/2 ➔ (x + y = 2r)

Constraint satisfaction problem :
 { z = x + y; r = z/2; x + y != 2r }

Satisfying solution: x=y=232 - 1; r=z=0

Types matter!
Need to capture precise semantics of language constructs! 15

Logic for Specifications

Specification is a logical formula constructed from expressions over
program variables using logical operators AND &&, OR |, NOT ~
Different choices based on:
❑ Allowed types of variables:

▪ Boolean (bool), integer (int), natural numbers (nat), real numbers (real)
▪ Enumerated types
▪ Bit-vectors (fixed precision integers): int[32], int[64]
▪ Arrays and matrices

❑ Operators allowed in expressions, e.g. for integers, three classes:
▪ Difference constraints: x - y ≤ 5
▪ Linear constraints: 2x + 3y – 5z ≤ 7
▪ Full arithmetic: r = x2 – y2

❑ Whether quantifiers over variables are allowed

The more restricted the specification logic, easier it is for a tool to solve
the resulting constraint satisfaction problem

16

Verifying Programs with Loops

Input: int x1, x2
Output: int y1, y2

Requires (0 ≤ x1 && x2 > 0) /* Assumption on inputs; also called pre-condition */
 y1 := 0;
 y2 := x1;
 while (x2 ≤ y2) {
 y1 := y1+1;
 y2 := y2 – x2
 };
Ensures (y1 = x1 div x2 && y2 = x1 rem x2)

17

Division Example

Current verification tools require the programmer also to specify “loop invariants”
 Condition over program variables that is satisfied at the beginning of each iteration

Requires (0 ≤ x1 && x2 > 0)
 y1 := 0;
 y2 := x1;
 while (x2 ≤ y2) {
 Invariant   (x1 = y1*x2 + y2 && 0 ≤ x1 && x2 > 0)
 y1 := y1+1;
 y2 := y2 – x2
 };
Ensures (y1 = x1 div x2 && y2 = x1 rem x2)

18

Division Example

Requires (0 ≤ x1 && x2 > 0)
 y1 := 0;
 y2 := x1;
 while (x2 ≤ y2) { Invariant   (x1 = y1*x2 + y2 && 0 ≤ x1 && x2 > 0)
 y1 := y1+1;
 y2 := y2 – x2
 };
Ensures (y1 = x1 div x2 && y2 = x1 rem x2)

Verification conditions:
1. Initialization ensures that invariant holds on first iteration
 (0 ≤ x1 && x2 > 0) ➔ [y1/0; y2/x1]
2. Execution of the loops preserves loop invariant
 (x2 ≤ y2) &&  ➔ [y1/y1+1; y2/y2-x2]
3. Post-condition holds upon termination of loop
 ~(x2 ≤ y2) &&  ➔ (y1 = x1 div x2 && y2 = x1 rem x2)

19

SAT Solvers

2001

Chaff

10k var

1986

BDDs

 100 var

1992

GSAT

 300 var

1996

Stålmarck

 1000 var

1996

GRASP

1k var

1960

DP

10 var

1988

SOCRATES

 3k var

1994

Hannibal

 3k var

1962

DLL

 10 var

1952

Quine

 10 var
1996

SATO

1k var

2002

Berkmin

10k var

Propositional Satisfiability: Given a formula over Boolean variables, is there an
assignment of 0/1’s to variables which makes the formula true

▪ Canonical NP-hard problem (Cook 1973)

▪ Enormous progress in tools that can solve instances with thousands of variables
and millions of clauses

▪ Also at the core of SMT solvers (extensions to richer classes of constraints)

20

SMT: Satisfiability Modulo Theories

❑ Computational problem: Find a satisfying assignment to a formula
▪ Boolean + Int types, logical connectives, arithmetic operators
▪ Bit-vectors + bit-manipulation operations in C
▪ Boolean + Int types, logical/arithmetic ops + Uninterpreted functions

❑ “Modulo Theory”: Interpretation for symbols is fixed
▪ Can use specialized algorithms (e.g. for arithmetic constraints)

❑ Progress in improved SMT solvers

Little Engines of Proof

 SAT; Linear arithmetic; Congruence closure

21

SMT Solvers

SMT-LIB Standardized Interchange Format (smt-lib.org)
 Problem classification + Benchmark repositories
 LIA, LIA_UF, LRA, QF_LIA, …

+ Annual Competition (smt-competition.org)

Z3 Yices CVC4 MathSAT5

CBMC SAGE Dafny Spec#

Ever-growing scalability and use in different applications

22

Summary of Program Verification

❑ Proving correctness of programs requires programmer to write logical specifications
▪ Pre/Post conditions for each function
▪ Invariants for loops

❑ Proving correctness can then be translated automatically to constraint solving
▪ Scalable SAT solvers for constraints over Boolean variable
▪ Specialized scalable SMT solvers for more general classes of constraints / variable types

❑ Useful references

o Satisfiability modulo theories: introduction and applications; de Moura and Bjorner; CACM 2011
o The dogged pursuit of bug-free C programs: The Frama-C software analysis platform; Baudin

et al; CACM, 2021
o Dafny programming and verification language: https://dafny.org/
o Talk by Byron Cook of Automated Reasoning Group at Amazong Web Services: An AWS

Approach to Higher Standards of Assurance w/ Provable Security

23

https://www.youtube.com/watch?v=UKqVY0SSbus
https://www.youtube.com/watch?v=UKqVY0SSbus

Program Verification in the age of LLMs

❑ Use of LLMs to assist program verification
o Synthesis of candidate pre/post conditions and loop invariants

❑ Use program verification tools to ensure correctness of code generated by LLMs

❑ Active research area in programming systems / software engineering

24

Formal Verification of
Neural Networks

25

What is a deep neural network?

26

Each layer is a function

𝑥1 𝑥3

𝑥2 𝑥4

𝑤13

𝑤24

𝑤23

𝑤14

𝑏3

𝑏4

𝑥3 𝑥5

𝑥4 𝑥6

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

𝑥3 , 𝑥4 ← 𝑓1 𝑥1 , 𝑥2 where
𝑥3 = 𝑤13 ⋅ 𝑥1 + 𝑤23 ⋅ 𝑥2 + 𝑏3

𝑥4 = 𝑤14 ⋅ 𝑥1 + 𝑤24 ⋅ 𝑥2 + 𝑏4

𝑥5 , 𝑥6 ← 𝑓2 𝑥3 ,𝑥4 where
𝑥5 = 𝑅𝑒𝐿𝑈 𝑥3 = max(0, 𝑥3)
𝑥6 = 𝑅𝑒𝐿𝑈 𝑥4 = max(0, 𝑥4)

27

DNN is composition of layerwise functions

𝑥1 𝑥3 𝑥5

𝑥2 𝑥4 𝑥6

𝑤13 𝑅𝑒𝐿𝑈 𝑤57

𝑤24 𝑤68𝑅𝑒𝐿𝑈

𝑤23
𝑤67

𝑤14 𝑤58

𝑏3 𝑏7

𝑏4 𝑏8

𝑥7

𝑥8

(𝑥7, 𝑥8) ← 𝑓 𝑥1, 𝑥2 = 𝑓3 ∘ 𝑓2 ∘ 𝑓1(𝑥1, 𝑥2) where 𝑓3 is the function computed by the third layer

28

DNNs and Programs

• DNNs can be seen as straight-line programs (programs without loops)

𝑥1 𝑥3 𝑥5

𝑥2 𝑥4 𝑥6

𝑤13 𝑅𝑒𝐿𝑈 𝑤57

𝑤24 𝑤68𝑅𝑒𝐿𝑈

𝑤23
𝑤67

𝑤14 𝑤58

𝑏3 𝑏7

𝑏4 𝑏8

𝑥7

𝑥8

Type equation here.

𝐝𝐞𝐟 𝑓 𝑥1, 𝑥2 :
 𝑥3= 𝑤13 ⋅ 𝑥1 + 𝑤23 ⋅ 𝑥2 + 𝑏3

 𝑥4 = 𝑤14 ⋅ 𝑥1 + 𝑤24 ⋅ 𝑥2 + 𝑏4

 𝑥5 = max 0, 𝑥3

 𝑥6 = max 0, 𝑥4

 𝑥7 = 𝑤57 ⋅ 𝑥5 + 𝑤67 ⋅ 𝑥6 + 𝑏7

 𝑥8 = 𝑤56 ⋅ 𝑥5 + 𝑤68 ⋅ 𝑥6 + 𝑏8

 return 𝑥7 ,𝑥8

29

Specifications over DNNs

Type equation here.

𝐝𝐞𝐟 𝑓 𝑥1, 𝑥2 :
 𝑥3= 𝑤13 ⋅ 𝑥1 + 𝑤23 ⋅ 𝑥2 + 𝑏3

 𝑥4 = 𝑤14 ⋅ 𝑥1 + 𝑤24 ⋅ 𝑥2 + 𝑏4

 𝑥5 = max 0, 𝑥3

 𝑥6 = max 0, 𝑥4

 𝑥7 = 𝑤57 ⋅ 𝑥5 + 𝑤67 ⋅ 𝑥6 + 𝑏7

 𝑥8 = 𝑤56 ⋅ 𝑥5 + 𝑤68 ⋅ 𝑥6 + 𝑏8

 return 𝑥7 ,𝑥8

∀𝑥1 ,𝑥2 . 𝑙1 ≤ 𝑥1 ≤ 𝑢1 , 𝑙2 ≤ 𝑥2 ≤ 𝑢2
Precondition

DNN f

𝑥7 > 𝑥8Postcondition

Either prove that the network output satisfies the postcondition for all inputs in the pre-condition or find a counterexample

30

Neural network certification: problem statement

Precondition over
network inputs 𝜙

𝑓(𝜙)

Network 𝑓 Postcondition over
network outputs 𝜓

31

𝑓(𝜙)

Network 𝑓 Prove 𝑓 𝜙 ⊆ 𝜓

𝑓(𝜙)

Precondition over
network inputs 𝜙

Neural network certification: problem statement

32

𝑓(𝜙)

Network 𝑓 𝑓 𝜙 ⊈ 𝜓

𝑓 𝑖 does not satisfy 𝜓
Find a counter example 𝑖 ∈ 𝜙

𝑓(𝜙)

Precondition over
network inputs 𝜙

Neural network certification: problem statement

33

Robustness against adversarial perturbations

Network correctly classifies 𝐼0 as “car”

𝐿∞-ball around
 𝐼0 of radius 𝜖

𝜙 with 𝜖 = 8/255

𝐼0

𝜓: network classifies image as “car”

0.6 ≤ 𝑥0 ≤ 0.65
0.55 ≤ 𝑥1 ≤ 0.6

…….

34

Program
(neural net)

Property
(e.g., robustness)

Automated
Verifier

The general problem is computationally intractable, therefore we may need to provide an approximate answer

Proved

Counterexample

35

Sound Complete Guarantees

Yes Yes If the specification holds on the
network, then the verifier proves it.
The verifier does not prove any
specification that does not hold

Yes No If the specification does not hold on
the network, then the verifier does
not prove it. Whenever the verifier
proves a specification, it holds on the
network

No Yes If the specification holds on the
network, then the verifier proves it.
The verifier may say that the
specification holds even if it does not

No No Random Guessing

Desirable properties for certification:

• Soundness

• Scalability

• Precision: ``as complete as possible’’

Soundness and Completeness for Certification

36

Certification of Neural Networks

Incomplete Abstract interpretation: Box, Zonotope, DeepPoly

Complete Mixed Integer Linear Programming (MILP)
SMT solvers (Reluplex)

37

Active area of research with annual competition: VNNComp
Current winner: alpha-beta crown

Recap

▪ Today : Robustness verification from a formal methods lens

o Formalizing program verification: Pre/post conditions

o Verification as constraint solving

o Robustness checking as program verification

▪Next: Verification techniques for neural networks

o Specialized constraint solver ReluPlex for neural network verification

oVerifying robustness by abstract interpretation (box and zonotopes)

38

	Slide 1: Lecture 8: Verifying Robustness
	Slide 2: Adversarial Robustness
	Slide 3: Robustness Verification
	Slide 4
	Slide 5: Verified Programming
	Slide 6: Formal Specifications
	Slide 7: Specifications for programs
	Slide 8: Verification Conditions
	Slide 9: From VC to Constraint Satisfaction
	Slide 10: Example Constraint Satisfaction Problem
	Slide 11: Example Constraint Satisfaction Problem
	Slide 12: Example Constraint Satisfaction Problem
	Slide 13: Solving Sudoku As Constraint Satisfaction
	Slide 14: Solving Sudoku As Constraint Satisfaction
	Slide 15: A Verification Example
	Slide 16: Logic for Specifications
	Slide 17: Verifying Programs with Loops
	Slide 18: Division Example
	Slide 19: Division Example
	Slide 20: SAT Solvers
	Slide 21: SMT: Satisfiability Modulo Theories
	Slide 22: SMT Solvers
	Slide 23: Summary of Program Verification
	Slide 24: Program Verification in the age of LLMs
	Slide 25
	Slide 26: What is a deep neural network?
	Slide 27: Each layer is a function
	Slide 28: DNN is composition of layerwise functions
	Slide 29: DNNs and Programs
	Slide 30: Specifications over DNNs
	Slide 31: Neural network certification: problem statement
	Slide 32: Neural network certification: problem statement
	Slide 33: Neural network certification: problem statement
	Slide 34: Robustness against adversarial perturbations
	Slide 35
	Slide 36: Soundness and Completeness for Certification
	Slide 37: Certification of Neural Networks
	Slide 38: Recap

