
Lecture 9: Verifying Robustness

Trustworthy Machine Learning

Spring 2024

1

Formal Methods for Verified Robustness

▪ Last lecture:

o Formalizing program verification: Pre/post conditions
o Verification as constraint solving
o Robustness checking as program verification

▪ Today:

o Specialized constraint solver ReluPlex for neural network verification
oVerifying robustness by abstract interpretation (box domain)

Slides credit: Gagandeep Singh and Madhu Parthasarathy (UIUC)

2

Specifications over DNNs

Type equation here.

𝐝𝐞𝐟 𝑓 𝑥1, 𝑥2 :
𝑥3= 𝑤13 ⋅ 𝑥1 + 𝑤23 ⋅ 𝑥2 + 𝑏3
𝑥4 = 𝑤14 ⋅ 𝑥1 + 𝑤24 ⋅ 𝑥2 + 𝑏4
𝑥5 = max 0, 𝑥3
𝑥6 = max 0, 𝑥4
𝑥7 = 𝑤57 ⋅ 𝑥5 + 𝑤67 ⋅ 𝑥6 + 𝑏7
𝑥8 = 𝑤56 ⋅ 𝑥5 + 𝑤68 ⋅ 𝑥6 + 𝑏8
return 𝑥7, 𝑥8

∀𝑥1, 𝑥2. 𝑙1 ≤ 𝑥1 ≤ 𝑢1, 𝑙2 ≤ 𝑥2 ≤ 𝑢2Precondition

DNN f

𝑥7 > 𝑥8Postcondition

Either prove that the network output satisfies the postcondition for all inputs in the pre-condition or find a counterexample

3

Robustness against adversarial perturbations

Network correctly classifies 𝐼0 as “car”

𝐿∞-ball around
𝐼0 of radius 𝜖

𝜙 with 𝜖 = 8/255

𝐼0

𝜓: network classifies image as “car”

0.6 ≤ 𝑥0 ≤ 0.65
0.55 ≤ 𝑥1 ≤ 0.6

…….

4

Verification of Neural Networks

Incomplete Abstract interpretation: Box, Zonotope, DeepPoly

Complete Mixed Integer Linear Programming (MILP)
SMT solvers (Reluplex)

5

Active area of research with annual competition: VNNComp
Current winner: alpha-beta crown

Reluplex: An SMT based approach
Katz, Guy, et al. "Reluplex: An efficient SMT solver for verifying deep neural networks."

International Conference on Computer Aided Verification (CAV), 2017.

6

The Constraint Satisfaction Problem

Set of variables 𝑉
Atomic predicate:
• Linear inequality of the form 𝑝 = (σ𝑣𝑖∈𝑉

𝑎𝑖𝑣𝑖 ≤ 𝑐𝑖)

• ReLU equation of the form 𝑝 = (𝑣𝑖 = 𝑅𝑒𝐿𝑈 𝑣𝑗)

Given a conjunction of atomic predicates 𝜑 = 𝑝1 ∧ ⋯∧ 𝑝𝑡 decide if 𝜑 is satisfiable

• 𝜑𝑁 : conjunction of atomic predicates gives relation between input, output, and
hidden variables of 𝑁.

• Pre-condition is given by a conjunction of linear inequalities 𝐼 = 𝑥 𝑥 ⊨ 𝜑𝐼} and
post-condition is a disjunction of linear (strict) inequalities 𝐹 = 𝑧 𝑧 ⊨ 𝜑𝐹}

• Sufficient to check if 𝜑𝑁 ∧ 𝜑𝐼 ∧ ¬𝜑𝐹 is satisfiable!

7

The Simplex Algorithm

• Solves satisfiability of conjunction of linear inequalities

𝜑 = 𝑣1 + 𝑣2 ≤ −5 ٿ 𝑣1 − 𝑣2 ≥ 3

• Step 1: Construct an initial configuration

V = {𝑣1, 𝑣2, 𝑣3, 𝑣4}

• 𝑩 = {𝑣3, 𝑣4}
• 𝑻 : 𝑣3 = 𝑣1 + 𝑣2 and 𝑣4 = 𝑣1 − 𝑣2
• 𝒖(𝑣3) = −5 and 𝒍(𝑣4) = 3
• 𝜶 𝑣𝑖 = 0 forall 𝑣𝑖 ∈ 𝑉

Add one new variable for each
inequality

Set of basic variable 𝐵 ⊆ 𝑉
Initially it is all new variables

Tableau 𝑻 contains one equation
per basic variable; RHS only has

non-basic variables

𝑢: 𝑉 → ℝ ∪ {∞}
𝑙: 𝑉 → ℝ ∪ {−∞}
Upper and lower

bounds on
variable

Valuation
satisfies 𝑇

8

Goal of the algorithm: Update current values of non-basic variables to meet all lower/upper bounds

Derivations

Simplex provides rules of the following kind for modifying a configuration 𝐶 =
(𝑉, 𝐵, 𝑇, 𝑢, 𝑙, 𝛼)

Apply rules until a SAT or UNSAT is derived

𝐶0 𝐶1
𝑅1 𝑅2 . . . 𝑅ℎ 𝐶ℎ SAT or UNSAT

Some condition on 𝐶

SAT

Some condition on 𝐶

UNSAT

Some condition on 𝐶

Modified configuration 𝐶′

9

Slack Variables

10

Coefficient of vj in RHS defining vi

𝑠𝑙𝑎𝑐𝑘+ 𝑣𝑖 : Variables on RHS defining 𝑣𝑖 whose values can be changed to increase the value of 𝑣𝑖
e.g. variable 𝑣𝑗 has positive coefficient and its current value is less than its upper bound

𝑠𝑙𝑎𝑐𝑘− 𝑣𝑖 : Variables on RHS defining 𝑣𝑖 whose values can be changed to decrease the value of 𝑣𝑖

Slack Variables

V = {𝑣1, 𝑣2, 𝑣3, 𝑣4}

• 𝑩 = {𝑣3, 𝑣4}
• 𝑻 : 𝑣3 = 𝑣1 + 𝑣2 and 𝑣4 = 𝑣1 − 𝑣2
• 𝒖(𝑣3) = −5 and 𝒍(𝑣4) = 3
• 𝜶 𝑣𝑖 = 0 forall 𝑣𝑖 ∈ 𝑉

𝑠𝑙𝑎𝑐𝑘+ 𝑣3 = 𝑣1, 𝑣2

If we have 𝑢 𝑣1 = 0 then
𝑠𝑙𝑎𝑐𝑘+ 𝑣3 = 𝑣2

11

Simplex Rule: Successful Termination

∀ 𝑣𝑖 ∈ 𝑉, 𝑙 𝑣𝑖 ≤ 𝛼 𝑣𝑖 ≤ 𝑢(𝑣𝑖)

SAT
Success

12

Current valuation meets all lower/upper bounds: satisfying assignment found

Simplex Rule: Unsuccessful Termination

13

There is a basic variable for which current value must be increased/decreased to meet lower/upper bound constraint
but no such update of RHS vars is possible

Simplex Rule: Pivot

14

If: A basic variable’s value needs to be increased/decreased to meet lower/upper bound
and there is a possible variable on RHS whose value be changed for this purpose

Then make it non-basic by swapping their roles using pivot

Pivot Example

Pivot: Allows replacing basic variable with a non-basic variable

𝑣3 = 𝑣1 + 𝑣2
𝑣4 = 𝑣1 − 𝑣2

pivot(𝑇, 3,1) 𝑣1 = 𝑣3 − 𝑣2
𝑣4 = (𝑣3 − 𝑣2) − 𝑣2

𝑇 = = 𝑇′

15

Simplex Rule: Update

16

For a non-basic variable, if its current value is less/greater than lower/upper bound
then increase/decraese it to meet the bound

Update Example

Update: Allows updating value of a non-basic variable

𝑣1 = 𝑣3 − 𝑣2
𝑣4 = 𝑣3 − 2𝑣2

𝑣1 = 𝑣2 = 𝑣3 = 𝑣4
= 0

𝑣1 = 𝑣3 = 𝑣4 = −5
𝑣2 = 0

update(𝑣3, −5)
𝛼: : 𝛼′

𝑇 = 𝑇′

17

Simplex Algorithm in SMT Solver

▪Starting with initial configuration, keep applying pivot/update rules until the
termination condition holds

▪Multiple rules may be applicable in a given configuration
o Derivation tree captures all possible branches of rule applications

▪Key engineering details of implementation
o Which rule to choose in a given configuration

o Choice of rules affects time to termination but does not require backtracking

o How to apply rules efficiently (e.g. keeping track of slack variables)

18

Soundness and Completeness

SOUNDNESS: If there is a derivation to SAT (or UNSAT), 𝜑 is satisfiable (or not).

COMPLETENESS: There is always a derivation to either SAT or UNSAT.

19

Constraints in Neural network Verification

Type equation here.

𝐝𝐞𝐟 𝑓 𝑥1, 𝑥2 :
𝑥3= 𝑤13 ⋅ 𝑥1 + 𝑤23 ⋅ 𝑥2 + 𝑏3
𝑥4 = 𝑤14 ⋅ 𝑥1 + 𝑤24 ⋅ 𝑥2 + 𝑏4
𝑥5 = ReLU 𝑥3 = max 0, 𝑥3
𝑥6 = ReLU 𝑥4 = max 0, 𝑥4
𝑥7 = 𝑤57 ⋅ 𝑥5 + 𝑤67 ⋅ 𝑥6 + 𝑏7
𝑥8 = 𝑤56 ⋅ 𝑥5 + 𝑤68 ⋅ 𝑥6 + 𝑏8
return 𝑥7, 𝑥8

∀𝑥1, 𝑥2. 𝑙1 ≤ 𝑥1 ≤ 𝑢1, 𝑙2 ≤ 𝑥2 ≤ 𝑢2Precondition

DNN f

𝑥7 > 𝑥8Postcondition

20

Simplex to Reluplex

• Solves satisfiability of conjunction of linear inequalities and ReLU equations.

𝜑 = 𝑣1 + 𝑣2 ≤ −5 ∧ 𝑣1 − 𝑣2 ≥ 3 ∧ 𝑣1 = 𝑅𝑒𝐿𝑈(𝑣2)

• Step 1: Construct an initial configuration 𝐶 = (𝑉, 𝐵, 𝑇, 𝑢, 𝑙, 𝛼, 𝑹)

V = {𝑣1, 𝑣2, 𝑣3, 𝑣4}

• 𝑩 = {𝑣3, 𝑣4}
• 𝑻 : 𝑣3 = 𝑣1 + 𝑣2 and 𝑣4 = 𝑣1 − 𝑣2
• 𝒖(𝑣3) = −5 and 𝒍(𝑣4) = 3
• 𝜶 𝑣𝑖 = 0 forall 𝑣𝑖 ∈ 𝑉
• 𝑹 = {(𝑣1 = 𝑅𝑒𝐿𝑈(𝑣2))}

Set of ReLU constraints 𝑅

21

Modified Successful Termination Test

22

Current valuation meets all lower/upper bounds and all ReLU constraints

Additional Pivot Rule

23

If a basic variable vi is involved in a ReLU constraint,
Then swap it’s a role with a non-basic variable ve in its RHS with non-zero coefficient using pivot

Additional Update Rules

24

If a non-basic variable vi is involved in a ReLU constraint that’s violated by its current value,
Then update its value to satisfy the ReLU constraint

New Split Rule

25

For the constraint vj = ReLU(vi) = max (0, vi), when vi can be both positive and negative we have two cases:
Case 1: vi is positive (achieved by setting its lower bound to 0)
Case 2: vi is negative (achieved by setting its upper bound to 0)

The two cases create two branches in the derivation tree
A priori we don’t know which one will lead to success (so may require backtracking in proof search)

Case split is due to non-linearity of ReLU and crux of computational difficulty

ReluPLEX Algorithm in SMT Solver

▪Starting with initial configuration, keep applying rules until SAT leaf found or all
branches caused by split lead to UNSAT

▪Multiple rules may be applicable in a given configuration
o Derivation tree captures all possible branches of rule applications

o Key difference with Simplex: Backtracking (exploring different branches) may be required!

o Key benefit of Reluplex: Case split is demand driven and happens only when necessary

▪Key engineering details of implementation
o Which rule to choose in a given configuration

o Choice of rules affects backtracking and time to termination

o How to apply rules efficiently and how to backtrack efficiently

26

Soundness and Completeness

SOUNDNESS: If there is a derivation tree with at least one SAT leaf, 𝜑 is satisfiable.
If there is a derivation tree with all UNSAT leaves, 𝜑 is not satisfiable.

COMPLETENESS: There is always a derivation tree in which every leaf is either SAT
or UNSAT.

27

Comparison with existing SMT solvers

• Can encode 𝑣1 = 𝑅𝑒𝐿𝑈(𝑣2) as 𝑣2 ≥ 0 ∧ 𝑣1 = 𝑣2 ∨ 𝑣2 ≤ 0 ∧ 𝑣1 = 0 .
• Existing SMT solvers perform many case splits.
• Reluplex can avoid/reduce splitting by using new pivot and update rules first.

Time to termination in seconds with 4 hour timeout

28

Properties are from case study of neural-network-based controller for collision avoidance
protocol ACAS (see ReluPlex paper; Katz et al; CAV 2017)

Experiments

SAT : Not Robust
UNSAT : Robust

Neural Network: Fully connected, 8 layers, 300 neurons

29

Abstract Interpretation using Boxes
Singh, et al. “Fast and effective robustness certification" NeurIPS, 2018.

30

Incomplete methods

We will investigate a specific type of incomplete method, based on bound propagation through the neural

network. Starting with the initial pre-condition 𝜙 , we will ``pass’’ 𝜙 through the network, computing a

convex over-approximation of the effect of each layer on 𝜙. Next, lets look at the “recipe” for certification

with bound propagation

31

...
C

er
ti

fi
ca

ti
o

n

𝑔(𝜙)

𝑜0 = 0
𝑜1 = 2.60 + 0.015𝜂0 + 0.023𝜂1 + 5.181𝜂2 +⋯
𝑜2 = 4.63 − 0.005𝜂0 − 0.006𝜂1 + 0.023𝜂2 +⋯
…
𝑜9 = 0.12 − 0.125𝜂0 + 0.102𝜂1 + 3.012𝜂2 +⋯
∀𝑖. 𝜂𝑖 ∈ [0,1]

𝜙:
𝑥0 = [0.588,0.65]
𝑥1 = [0.545,0.608]
𝑥2 = [0.533,0.596]
…
𝑥3071 =[0.4,0.463]

All possible outputs

Step1: compute convex 𝑔(𝜙) by propagating 𝜙

𝜙 Over-approximations of the layer outputs 𝑔(𝜙)

32

...
C

er
ti

fi
ca

ti
o

n

𝑔(𝜙)

𝑜0 = 0
𝑜1 = 2.60 + 0.015𝜂0 + 0.023𝜂1 + 5.181𝜂2 +⋯
𝑜2 = 4.63 − 0.005𝜂0 − 0.006𝜂1 + 0.023𝜂2 +⋯
…
𝑜9 = 0.12 − 0.125𝜂0 + 0.102𝜂1 + 3.012𝜂2 +⋯
∀𝑖. 𝜂𝑖 ∈ [0,1]

Step2: verify 𝜓

𝜙 Over-approximations of the layer outputs 𝑔(𝜙)

𝝍: every point in 𝜙 classifies as car

𝝍: ∀𝑙 ≠ 𝑐𝑎𝑟. 𝑜𝑐𝑎𝑟 > 𝑜𝑙

𝑔(𝜙) is an over-approximation, hence if we fail to prove 𝜓 , it could be the property is actually violated or there was
over-approximation introduced during propagation which prohibits provability.

33

Key challenge: how to produce convex shapes?

To instantiate incomplete methods which use bound propagation, we need two parts:

1. What is the convex approximation ? E.g., Box, Zonotope, Polyhedra

2. How are these convex approximations produced? That is, what is the effect of the layer

on a given approximation ? This effect is often called an abstract transformer as it

transforms abstract shapes.

...
C

er
ti

fi
ca

ti
o

n

𝜙 Over-approximations of the layer outputs 𝑔(𝜙)

34

Popular convex shapes

Box: 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖

Zonotope: ො𝑥𝑖 = 𝛼0 + σ𝑖 𝛼𝑖𝜖𝑖 , 𝜖𝑖 ∈ [−1,1] Polyhedra: σ𝑖 𝑎𝑖𝑥𝑖 ≤ 𝑐

Octagon: 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , ±𝑥𝑖 ± 𝑥𝑗 ≤ 𝑐𝑖𝑗

𝑥2

𝑥1 𝑥1

𝑥1 𝑥1

𝑥2

𝑥2 𝑥2

35

Speed vs. precision tradeoff

A trade-off between approximation and speed exists:

transformers for Box are fast, but imprecise,

while Polyhedra is more precise but has exponential complexity.

36

Box Abstract Transformer: Addition

𝒂, 𝒃 +# [𝒄, 𝒅] = [𝒂 + 𝒄, 𝒃 + 𝒅] Addition transformer

• Here, 𝒂, 𝒃 ∈ 𝑹𝒎 where ∀𝒊. 𝒂𝒊 ≤ 𝒃𝒊

•
#

denotes the abstract effect of the operation on the box

37

1, 3 +# [5, 8] = [6, 11]Example in 1-dim (interval addition)

Box Abstract Transformers for ReLU Networks

𝒂, 𝒃 +# [𝒄, 𝒅] = [𝒂 + 𝒄, 𝒃 + 𝒅] Addition transformer

−#[𝒂, 𝒃] = [−𝒃,−𝒂] Negation transformer

𝑹𝒆𝑳𝑼#[𝒂, 𝒃] = [𝑹𝒆𝑳𝑼 𝒂 , 𝑹𝒆𝑳𝑼(𝒃)] ReLU transformer

𝝀#[𝒂, 𝒃] = [𝝀 ∗ 𝒂, 𝝀 ∗ 𝒃] Multiplication by a constant 𝝀 > 𝟎

• Here, 𝒂, 𝒃 ∈ 𝑹𝒎 where ∀𝒊. 𝒂𝒊 ≤ 𝒃𝒊

• 𝑹𝒆𝑳𝑼 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙)

•
#

denotes the abstract effect of the operation on the box

𝒂, 𝒃 ># 𝒄, 𝒅 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 > 𝒅 Comparison transformer

38

Computation with Box transformer

𝑥1 𝑥3

𝑥2 𝑥4

1

−1

1

1

[0,0.3]

[0.1,0.4]

0

0

[0,0.3]

[0.1,0.4]

[0.1,0.7]

[−0.4,0.2]

We have 2 pixels (𝑥1, 𝑥2) as input ranging over [0, 0.3] and [0.1, 0.4]

0.1 ≤ 𝑥3 ≤ 0.7

−0.4 ≤ 𝑥4 ≤ 0.2

Bounds using Box:

Exact bounds would be:

𝑥3 = 𝑥1 + 𝑥2
𝑥4 = 𝑥1 − 𝑥2
0 ≤ 𝑥1 ≤ 0.3
0.1 ≤ 𝑥2 ≤ 0.4

𝐝𝐞𝐟 𝑓1 𝑥1, 𝑥2 :
𝑥3= 𝑥1 + 𝑥2
𝑥4 = 𝑥1 − 𝑥2

return 𝑥3, 𝑥4

39

Optimal Box transformer is not exact!

𝑥3

𝑥4

Exact

Box approximation
contains extra points

(0.4,0.2)

(0.4,-0.4)

(0.7,-0.1)(0.1,-0.1)

40

Even though the Box abstract transformer for the affine

computation is optimal for the Box relaxation, it may not be

complete (exact)! Nonetheless, even if not exact, it may be

enough to verify the property of interest.

Key Point

41

Box succeeds in verifying robustness

𝑥1 𝑥3 𝑥5

𝑥2 𝑥4 𝑥6

1 max(0, 𝑥3) 1

−1 −1max(0, 𝑥4)

1 1

1 2

[0,0.3]

[0.1,0.4]

0 0.5

0 −1

[0,0.3]

[0.1,0.4]

[0.1,0.7]

[−0.4,0.2]

[0.1,0.7]

[0,0.2]

[0.6,1.4]

[−1,0.4]

Using Box, we succeed in proving the network classifies any input in the range as 0.
This is because [0.6,1.4] > [-1, 0.4], provably so.

𝑜0

𝑜1

We have 2 pixels (𝑥1, 𝑥2) as input ranging over [0, 0.3] and [0.1, 0.4], we want to prove that 𝑜0 > 𝑜1 holds for all inputs

𝐝𝐞𝐟 𝑓 𝑥1, 𝑥2 :
𝑥3= 𝑥1 + 𝑥2
𝑥4= 𝑥1 − 𝑥2
𝑥5 = max 0, 𝑥3
𝑥6 = max 0, 𝑥4
𝑜0 = 𝑥5 + 𝑥6 + 0.5
𝑜1 = 2 ⋅ 𝑥5 − 𝑥6 − 1
return 𝑜0, 𝑜1

42

Box fails in verifying robustness

Using Box, we failed to prove the network classifies any input in the range as 0, even
though property actually holds. This is because [0.6,2.3] is not > [-1.3, 1.6], provably so.

Let us slightly increase the range of the input pixels to [0, 0.6] and [0.1, 0.7]

𝑥1 𝑥3 𝑥5

𝑥2 𝑥4 𝑥6

1 max(0, 𝑥3) 1

−1 −1max(0, 𝑥4)

1 1

1 2

[0,0.6]

[0.1,0.7]

0 0.5

0 −1

[0,0.6]

[0.1,0.7]

[0.1,1.3]

[−0.7,0.5]

[0.1,1.3]

[0,0.5]

[0.6,2.3]

[−1.3,1.6]

𝑜0

𝑜1

𝐝𝐞𝐟 𝑓 𝑥1, 𝑥2 :
𝑥3= 𝑥1 + 𝑥2
𝑥4= 𝑥1 − 𝑥2
𝑥5 = max 0, 𝑥3
𝑥6 = max 0, 𝑥4
𝑜0 = 𝑥5 + 𝑥6 + 0.5
𝑜1 = 2 ⋅ 𝑥5 − 𝑥6 − 1
return 𝑜0, 𝑜1

43

Robustness Certification

▪ Instead of Box domain, one can use Zonotopes to get reasonably scalable and
more precise approximations

▪ Constraint solving and abstract domains can be combined in different ways

▪ Robustness verification can be integrated into training
o Parameters are updated not only to minimize loss but also to ensure that a

verification procedure (e.g. based on Box abstract domain) gives robustness
guarantee

44

Adversarial Robustness Recap

▪ Adversarial Examples

▪ Adversarial training

▪ Certified robustness via randomized smoothing

▪ Sample of current research on robustness for LLMs

▪ Formal methods for verified robustness

o Specialized constraint solver ReluPlex for neural network verification

o Verifying robustness by abstract interpretation (box domain)

45

