Controlling groups of autonomous systems

Claire Tomlin and Shankar Sastry

Department of Electrical Engineering and Computer Sciences
UC Berkeley
Planning operations for teams of aircraft

Local objectives:
- Safety and efficiency with respect to vehicle’s dynamics and actuation

Global objectives:
- Region coverage, collision avoidance

Constraints:
- Communication – private information
- Computation performed on each vehicle
Collision Avoidance
Collision Avoidance

Normal
OwnShipSpd=30.7 m/s, OwnShipSpd=31.0 m/s
OwnShipHdg=-73.2 deg, OthShipHdg=-39.0 deg
time=265.0 s
Region Surveillance

Problems:
Information gathering, fast decomposition of team commands into actions for each vehicle

(Source: Prof. Robin Murphy, Univ. South Florida, Katrina Search and Rescue)
Mobile Sensor Network

Control Objectives:
• Automatic information gathering
• Safe interaction

Constraints:
• Power budget
• Communication bandwidth
• Computational resources
• Secure interaction
Quadrotor testbed: control and software architecture

- Autonomous UAVs
 - Onboard computation & sensors
 - State and environment estimation
 - Attitude, altitude, position and trajectory control
 - 4 flightworthy vehicles
 - More are being made

- Testbed goals
 - Quadrotor UAV design
 - Cooperative multi-agent control
 - Mobile sensor networks
Quadrotor System

- Self Sufficient UAVs
 - Onboard computation
 - Onboard sensing
- Real Time Execution
 - Estimation
 - Control

[Diagram with labels: Wifi, Ground GPS, Ground Station Computer]
Vehicle Design

High Level Control
Gumstix PXA270, or ADL PC104

Low Level Control
Robostix Atmega128

Electronics Interface

Sensorless Brushless DC Motors
Axi 2208/26

Elect. Speed Cont.
Castle Creations Phoenix-25

Battery
Lithium Polymer

Landing Gear

Inertial Meas. Unit
Microstrain 3DM-GX1

Ultrasonic Ranger
Senscomp Mini-AE

GPS
Novatel Superstar II

Carbon Fiber Tubing

Fiberglass Honeycomb

Tube Straps

Electro Speed Cont.

Carbon Fiber Tubing

Fiberglass Honeycomb

Tube Straps

GPS
Novatel Superstar II

Ultrasonic Ranger
Senscomp Mini-AE

Inertial Meas. Unit
Microstrain 3DM-GX1

Landing Gear

Battery
Lithium Polymer
System Cost Metric

- **Efficient solution**
 - Standard of comparison
 - Marginal cost
 \[J_e = \sum_{j \in \mathcal{J}} J_j \]

- **Nash Bargaining solution (NBS)**
 \[J_{NBS} = - \prod_{j \in \mathcal{J}} (d_j - J_j) \]
 - Standard of comparison
 - Percentage change in marginal cost
Decentralized Optimization Program

Vehicle 1

- Penalty Weight Update
- Receive Solutions
- Local Optimization #1
- Local Optimization #n

Broadcast to Neighborhood

Select Preferred Solution

[Waslander, Inalhan, Tomlin, 2003]
Proposition [Convergence to Nash Bargaining solution]:

The penalty method formulation of the decentralized optimization problem converges to a solution that satisfies the necessary conditions for optimality of the Nash Bargaining solution to the centralized optimization problem.

[Waslander, Inalhan, Tomlin, 2003]
Decentralized Optimization Program

\[
\begin{aligned}
\text{minimize} \quad & -I^{(i)}(x^{(i)}_t, u^{(i)}_t, \theta^{(i)}_t | x^{(-i)}_t, u^{(-i)}_t) \\
\text{subject to} \quad & x^{(i)}_{t+1} = f^{(i)}_t(x^{(i)}_t, u^{(i)}_t) \\
& z^{(i)}_{t+1} = h^{(i)}_t(x^{(i)}_{t+1}, \theta^{(i)}_t, \eta^{(i)}_t)
\end{aligned}
\]

Ihalhan, Stipanovic, Tomlin, CDC, 2002
Four Vehicle Scenario
Four Vehicle Scenario
In flight
Embedded Humans

Combine Bayesian models of human interaction with automation, and hybrid system models of automated system.

- Continuously evolving dynamics: spatial, temporal properties
- Mode switches: coupled, independent, search, cue, track…
- New methods to learn such models from data (games, training)
Cooperative Collision Avoidance

- System Requirements
 - Scalability
 - Safety
- Method for Acceleration Constrained Vehicles
 - Each agent broadcasts its state
 - Agents compute pairwise “keep-out” regions
 - Collision avoidance control inputs mandated when violations occur
Cooperative Collision Avoidance

- **System Requirements**
 - Scalability
 - Safety

- **Method for Acceleration Constrained Vehicles**
 - Each agent broadcasts its state
 - Agents compute pairwise “keep-out” regions
 - Collision avoidance control inputs mandated when violations occur
STARMAC history
STARMAC history

STARMAC
Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control

System Development
Pursuit Evasion Games with 4 UGVs and 1 UAV
ARO: Integrated Approach to Intelligent Systems
(Spring’ 01)
Pursuit Evasion Games with 4UGVs and 1 UAV
ARO: Integrated Approach to Intelligent Systems
(Spring’ 01)
Pursuit-Evasion Game Experiment Details

PEG with four UGVs
- Global-Max pursuit policy
- Simulated camera view (radius 7.5m with 50degree conic view)
- Pursuer=0.3m/s Evader=0.5m/s MAX
Pursuit-Evasion Game Experiment Details

PEG with four UGVs

- Global-Max pursuit policy
- Simulated camera view
 (radius 7.5m with 50degree conic view)
- Pursuer=0.3m/s Evader=0.5m/s MAX
Pursuit-Evasion Game Experiment Details

PEG with four UGVs

- Global-Max pursuit policy
- Simulated camera view
 (radius 7.5m with 50 degree conic view)
- Pursuer=0.3m/s Evader=0.5m/s MAX
• Max 20 min. games:
 – Evader goal: get to final waypoint or avoid evader
 – Pursuer goal: ‘target’ evader

• Pursuer and evader restricted to same performance limits – *reliant on F-15 pilot’s cooperation*

• Planes on the same logical plane, but separated by 6000ft altitude at all times
 – After first PEG, F-15 pilot request this be reduced to a 2000ft altitude separation

• Two scenarios:
 – UAV as evader
 – UAV can become pursuer
UCB PEG Test Plan: UAV as Evader and Pursuer

• UAV attempts to cross Scenario Area (SA) from East to West without being targeted by the F15, however, UAV will attempt to target F15 if suitable conditions arise

• UAV “wins” by:
 – Reaching the END ZONE
 – Not being targeted for 20 minutes
 – Targeting the F15

• F15 “wins” by targeting the UAV

Note: F15 performance is restricted
Flight Test: Results
Flight Test: Results
NEST Demo Movie
Closing the Loop in Sensor Networks: Multi-Target Tracking and Pursuit Evasion Games

NEST Final Experiment
August 30, 2005

EECS, UC Berkeley
Hunt Research Plans

• What is missing to date
 – Multi-person, multi-objective games
 – Biological inspiration drawn from hunting patterns
 – Group/Team behavior modeling

• Research Strategy on HUNT
 – Solution Concepts for Partially Observable Games with Partial Information
 – Existence of Solutions: heuristics drawn from predator prey interactions in the wild: team behaviors

• New S&T to be developed on HUNT
 – Traditional solutions to games are “causal”: that is to say plans depend on observations: this excludes the kind of predictive team behavior that characterizes hunting. New “predictive” solution concepts are needed.
 – Learning of Utility Functions of Predator-Prey from engagement to engagement. Traditional learning has focused on updates of strategy rather than learning of utility functions of the adversary