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How do modulations of the CoP trajectory contribute to 
the control of the CoM during the double support phase?

Exoskeletons have a very slow walking speed.

Slow walking increases duration of the double support 
phase (DSP).

Crucial to control balance when both feet are on the ground.

The centre of pressure (CoP) describes the control of the 
centre of mass (CoM) movement [1].
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Figure 2: Parameterised CoP trajectories, based on spline.

Simple inverted pendulum model [3]:
 Input:   Generated CoP trajectories
 Output:  CoM position and velocity
Δ CoM velocity = end - begin velocity of the DSP
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A simple inverted pendulum model is able to model representative CoM trajectories 
during the DSP, from a generated input CoP trajectory using only three CoP parameters.

Subjects used all the CoP parameters, the duration, amplitude and midpoint, to control 
the CoM velocity after a perturbation.

Earlier or later loading the leading leg helped in controlling the CoM velocity, and was 
even more effective than changing the duration or amplitude.

Figure 3: Top) Experimental CoP and CoM trajectories for different perturbation magnitudes. Bottom) 
Generated CoP trajectories based on values from experimental data and modelled CoM trajectories. 

Minimal difference between the end CoM position of the experimental 
and modelled data: 0.1 – 0.4 mm

Systematically lower Δ CoM velocities for modelled data: 0.1 – 95 mm/s

Linear relationships between 
the Δ CoM velocity and all CoP 
parameters.

Figure 4: Relationships between CoP parameters and Δ CoM velocity for experimental (triangles 
with ellipses [mean ± std] and LLSQ fit [black line and R² value]) and modelled data (green line).

Experimental data Modelled data

Directions of relationships correspond 
with experimental data.

Systematically lower Δ CoM velocity 
compared to experimental data.

Figure 1: Experimental setup. [2]
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All data is presented 

in the sagittal plane.


