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Abstract—Quantifying gait variability typically requires long
simulations. This abstract introduces a novel method of directly
calculating gait variability that yields similar results.

I. INTRODUCTION

Gait parameters correlate with human falls [1], but require
hundreds of steps to accurately calculate [2]. While brute force
methods of calculating parameters by simulating hundreds of
steps are easy to implements, they can be computationally
expensive and must be repeated for every condition. We
introduce a novel method to directly calculate gait parameters
using a Markov chain; we demonstrate with mean and standard
deviation (SD), but other measures may be calculated.

II. METHODS

Bipedal gait can be analyzed as a Markov chain by generat-
ing a deterministic state-transition matrix T d [3]. T d describes
a chain of steps (the gait) from the nominal step to the
failure state given known perturbations at each step. Each state
p ∈ T d includes the positions and velocities at heelstrike, and
the trajectory for each transition was recorded. A threshold
determined if a state was already in T d, so a small range of
discrete perturbations resulted in the same state transition. For
these ranges, the trajectory from the median perturbation was
used. Once a distribution of random perturbations is defined,
a Markov chain T s describing the perturbed gait is created
from T d:

T s =

(
Q R
0 1

)
, (1)

where 0 is a zero vector, Q ∈ Rt×t, and R ∈ R1×t [4].
The first t rows and columns, i.e. states in the Markov chain,
are transient and the last state is absorbing (i.e. once reached,
the biped cannot recover). We then calculate N = (I−Q)

−1,
where nij ∈ N is the expected number of times that the biped
will be in state pj if it starts in state pi before reaching the
absorbing state. Because the trajectory of each transition was
recorded, step parameters for every transition are known. With
this, we determine the parameters of the gait starting at the
nominal step p1. First, we calculate weighted parameters for
step pi where the weights are the elements sij ∈ T s. Then, the
overall weighted parameters for the gait is calculated using the
first column n1i ∈ N as the frequency weights. The overall
SD is

σ2 =

∑t
i=1 n1i

(
σ2
i + (µi − µ)2

)
∑t

i=1 n1i
, (2)

This work was supported by the NSF under award 1727540.

0 200 400 600 800 1000

Number of Steps

0

0.02

0.04

SD
of

Sp
ee

d
(m

/s
)

0.96

0.97

0.98

M
ea

n
Sp

ee
d

(m
/s

)

Direct Brute Force (µ± 1SD)

Fig. 1. Change in speed parameters with number of steps. The perturbation
distribution was normal (µ = 0, σ = 0.033 m/s).

where µi is the mean and σi is the SD with starting state pi.

III. RESULTS

For testing, a planar six link biped (leg length 1.16m, mass
84.7kg) was simulated. The set of perturbations for T d was
[−0.2, 0.2]m/s with 0.002m/s spacing. T s was found using
zero-mean normal distributions with SD of 0.0167, 0.033,
and 0.067m/s. The mean and SD of speed was calculated
using the direct method. To compare, the biped was simulated
for 1000 steps 10 times for each perturbation distribution,
and the parameters were calculated up to each step. The
methods closely match once hundreds of steps are used with
the brute force method (Fig. 1). The difference in means
between methods were < 0.5%. The difference in SD were
12%−0.80%, with larger perturbations resulting in less error.
This may be because the sets of SD used to calculate the
overall SD are not statistically independent, and Eq. 2 assumes
statistical independence. Despite this, the values are similar,
and the direct method offers more flexibility because T d only
needs to be found once for a given gait and a T s can be found
for every perturbation distribution.
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