Identifying Templates for Stepping Regulation

Jonathan B. Dingwell
Department of Kinesiology
Penn State University
University Park, PA USA
dingwell@psu.edu

Joseph P. Cusumano
Department of Engineering Science & Mechanics
Penn State University
University Park, PA USA
jpc3@psu.edu

Abstract — Biological systems must contend with intrinsic redundancy and noise. Biomechanical templates and optimality criteria can define desired mean behaviors. But these systems must also perform tasks with extrinsic task-level redundancy. Here, we describe simple models to define regulation templates for how humans adjust stepping movements from each step to the next.

Keywords — Goal-Directed Walking, Variability, Redundancy

I. BIOMECHANICAL TEMPLATES FOR WALKING

Biomechanical templates (e.g., Fig 1A), are central to dynamic walking. They are the simplest models (e.g., fewest variables & parameters) of locomotor dynamics that capture the essential behaviors many species exhibit for different gaits [1]. Together with optimality principles, such templates have been widely used to identify average (preferred) gaits (e.g., Fig. 1C) and thus target behaviors for control [1].

II. STOCHASTICITY AND TASK-LEVEL REDUNDANCY

Biological systems are structurally redundant and innately stochastic [1], and walking is always variable [2-3]. However, most tasks they perform are also themselves redundant. Indeed, at every step, we have infinite choices of where to step next [4].

Humans rarely walk more than a few consecutive steps [5], in complex environments [2] with fixed and moving obstacles [3] (Fig. 1B). They must therefore adapt at every step, not just on average. Here, we present an analytical framework [6-8] that reconciles issues of optimality, stochasticity, and redundancy.

III. REGULATION TEMPLATES FOR STEPPING BEHAVIOR

We consider any biped (human, robot, model, etc.) walking in a context. We assume some within-step process generates each step, but our regulation templates are intentionally agnostic to those details [6,8]. We seek instead to identify how any such within-step processes are adjusted from step to step to achieve some particular goal-directed walking task (e.g., as in [2,3]).

We define goal functions to yield empirically-testable hypotheses on task strategies. Equifinality yields all perfect task solutions as a goal equivalent manifold or GEM [6] (e.g., Fig. 1D). We define task goals relative to the environment (e.g., “stay in your path”). We model walking dynamics as discrete step-to-step maps with motor and sensory noise [6]. Stochastic optimal control, minimizing task-level error, is used to identify the most parsimonious (i.e., fewest variables & parameters) step-to-step regulation strategies that capture both the sagittal [6-7] and lateral [8] stepping dynamics exhibited by humans.

IV. DISCUSSION / CONCLUSIONS

Directly analogous to mechanical templates [1]; Fig. 1A), our regulation templates [6-8] act as simplified, empirically-grounded models to describe how the dynamics of a mechanical template should be adjusted at each consecutive step if it is to mimic human behavior. Our regulation templates thus directly compliment mechanical templates: they are the simplest models of the biological perception-action process underlying goal-directed walking [3], which is vital to understanding how humans (or any biped) walk in any physical environment [2,5].

Just as mechanical templates can be “anchored” [1] within more elaborate, higher-dimensional mechanical models, our regulation templates can be anchored hierarchically within more elaborate neuro-physiological control models. Thus, these templates both “reveal basic principles” and “yield empirically refutable hypotheses” [1] about step-to-step regulation.

REFERENCES

Work funded by NIH Grants 1-R21-AG053470 and 1-R01-AG049735.