

Viability and Global Stability of a Task-Regulated Compass Walker

Navendu S. Patil^{1,2,*}, Jonathan B. Dingwell¹, Joseph P. Cusumano²

¹Department of Kinesiology ²Department of Engineering Science & Mechanics *nsp129@psu.edu **The Pennsylvania State University, University Park, PA 16802, USA**

Overview

Fall risk \Leftrightarrow **dynamic stability** of walking.

<u>Hierarchical schema</u> for biological movement: **Control** to remain **viable** (avoid failure). **Regulation** to achieve **task-level goals**.

Humans exploit **task-level redundancies** [1, 2]; perhaps to minimize their fall risk?

Humans regulate speed while treadmill walking [1, 2]

We study the effect of regulation strategies on **global stability** of the simplest dynamic walker in its **viable region**.

Powered compass walker [3] hip "switch" legs stance phase $\theta_k^ \phi_{k+1}^+$ ϕ_k d_{k+1}^{+} $d_k^$ d_k^+ \overline{v} stance leg swing leg treadmill (a)(b) (\mathbf{c}) Hybrid Poincaré map: $\mathbf{x}_{k+1} = \mathbf{F}(\mathbf{x}_k; \mathbf{P}_k)$. Step speed: $V_k = L_k/T_k$ Absolute position: $d_k^- = d_k^+ + L_k - \bar{v}T_k$ Task-level regulation: $\mathcal{O} \in \{V, d^-\}$

Viability [4]: fall avoidance via control invariance

$$P_k^{\mathsf{opt}} := \underset{0 \leq P \leq P_{\mathsf{max}}}{\operatorname{argmin}} \left[\mathcal{O}_{k+1}(\mathbf{x}_k; P) - \mathcal{O}^* \right]^2$$

Open-loop:
$$P_k = P^*$$
; **Regulated**: $P_k = P_k^{opt}$.

References

[1] Dingwell et al. (2010). *PLoS Comput Biol*, **6**: e1000856.
[2] Dingwell JB and Cusumano JP. (2015). *PLoS One*, **10**: e0124879.
[3] Kuo AD. (2001). *ASME J Biomech Eng*, **124**: 113–120.
[4] Zaytsev et al. (2018). *IEEE Trans Robot*, **34**(2): 336–352.

Acknowledgments: NIH grant #R01-AG049735