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I. INTRODUCTION  
The robustness of human motor control to uncertain 

perturbations is remarkable but often neglected in biomechanical 
simulations, where open-loop control is typically assumed. 
Open-loop control prompts deterministic trajectory optimization 
with direct collocation as the method of choice to efficiently deal 
with the non-linear and stiff dynamics. The resulting control 
laws are generally not robust to even the smallest of 
perturbations. Existing approaches to movement simulation that 
generate control laws that are robust to modelled noise lack 
flexibility in the design of the control law and computational 
efficiency and have therefore only been applied to a small class 
of problems. 

We therefore extended our optimal control framework for 
trajectory optimization to a generally applicable robust optimal 
control framework. Here, we show the potential of this method 
by predicting postural sway for healthy controls and vestibular 
loss subjects when perturbed by platform rotations in the 
presence of motor, proprioceptive and vestibular noise. 

II. METHODS 

A. Robust optimal control method 
Consider a system with dynamics 𝒙̇𝒙 = 𝑓𝑓(𝒙𝒙,𝒖𝒖,𝒘𝒘), with 𝒙𝒙 

the states, 𝒖𝒖 the controls and 𝒘𝒘 a set of zero mean Gaussian 
disturbances (noise). To account for uncertainty, we augment 
the state-space by adding the state co-variance matrix P. We 
describe the propagation of the co-variance matrix by the 
continuous Lyaponuv equation [1]: 𝑃̇𝑃 = 𝐴𝐴𝐴𝐴 + 𝑃𝑃𝐴𝐴𝑇𝑇 + 𝐶𝐶Σ𝑤𝑤𝐶𝐶𝑇𝑇   , 
with 𝐴𝐴 = 𝜕𝜕𝜕𝜕(𝒙𝒙,𝒖𝒖, 0)/𝜕𝜕𝒙𝒙, and 𝐶𝐶Σ𝑤𝑤𝐶𝐶𝑇𝑇  the effect of noise with 
𝐶𝐶 = 𝜕𝜕𝜕𝜕(𝒙𝒙,𝒖𝒖,𝒘𝒘)/𝜕𝜕𝒘𝒘 and Σ𝑤𝑤 the noise co-variance matrix.  In 
our robust optimal control framework, we solve for controls that 
minimize a task-related cost including state uncertainty 
(described by P) using a direct collocation approach. 

B. Postural control during plaform rotations 
Using optimal feedback control simulations with a 

musculoskeletal model that takes into account sensory and motor 
noise we simulated postural sway due to unpredictable platform 
rotations as applied by by Peterka et al. [2]. Peterka identified 
sensory reweighting as a strategy used by healthy controls to 
minimize body sway with increasing rotations. As perturbation 
magnitude increased, healthy subjects relied more on vestibular 
and less on proprioceptive information to limit sway amplitude. 
Vestibular loss patients could not use this strategy resulting in 
increasing sway magnitude. We modeled this task using an 
inverted pendulum (ankle joint) driven by a Hill-type dorsi- and 
plantarflexor controlled by delayed (100ms) linear position and 
velocity feedback from the ankle and absolute angle to represent 
respectively proprioceptive and vestibular sensory information  
in addition to a baseline excitation. Gaussian noise is added to 
the muscle forces to model motor noise and to the vestibular and 
proprioceptive information to model sensory noise. We solved 
for feedback laws that minimized a trade-off between root mean 
square (RMS) sway amplitude and effort minimization for 
platform rotations with increasing magnitude. We evaluated the 
effect of platform amplitude and different trade-offs on sensory 
gains, sway and muscle co-contraction.  

III. RESULTS 

Just as in experiments with healthy control subjects, the robust 
optimal control simulations predict sensory reweighting with 
increasing importance of the vestibular information with 
increasing platform disturbance (Fig. 1B). Robust optimal 
control simulations predict the same relation between RMS 
sway and disturbance magnitude for controls and vestibular loss 
subjects as observed in experiments (Fig. 1C). Simulated co-
contraction index (Fig. 1C, CCI) increased when prioritizing 
stability over effort and increased with increasing platform 
disturbance but did hardly affect RMS sway. CCI was higher in 
vestibilar loss subjects than in controls.  

 
Figure 1 – (A) Model. (B) Sensory reweighting. Different shades of 
green and orange for the different relative gains (two muscles, two 
sensory inputs: angle and angular velocity). (C) Sway and muscle co-
contraction. (Experimental data is adapted from [2] and [3]). 

IV. DISCUSSION 
The proposed method yields control laws for non-linear 

musculoskeletal systems that are robust to modelled noise. 
Thereby, it allows addressing questions related to the influence 
of uncertainty on motor behavior and movement stability. The 
main advantages over existing methods are the compatibility 
with direct collocation formulations, which have greatly 
increased efficiency in movement simulation, and high 
flexibility in the design of the control law. 

We demonstrate the method by simulating postural sway in 
healthy subjects and vestibular loss patients. We are currently 
using this method in combination with more complex 
musculoskeletal models to study how uncertainty influences 
movements such as gait. 
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