Foundation

- SLIP-model [1,2,3]: dynamics of legged
locomotion

- Rotational hip spring [4]: dynamically
model the swing phase

- Embedded SLIP dynamics [5]: Robotic leg
with decoupled polar task dynamics

—> constraints on link parameters

How do we choose leg properties:
e Mass, COM, length, stiffness?

This research is targeted to be used in future generations of
the robotic quadruped DLR bert
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The geometric model of the three-segmented pantograph leg with its

physical properties (adapted from [5]).

Goal

Design physical robotic legs

SLIP-like dynamics

Biologically plausible dimensions

Method

- Solve optimization problem (CMA-ES)

- ldea: demand swing frequency [4,6]
foswing = 1.38 HZ

Cost function

cost=0% * (f

- 2
a,swing fmodel)

Decision Variables

Ratio |_ /.., € [0.6,0.98]
Ratio |5 / |, € [0.1,0.9]

Ratioc, /|, € [0.15,0.5]
Ratioc, /|, € [0.15,0.5]
Ratioc; /|5 € [0.15,0.5]

Shank Inertia 1, € ]0,0.0004]
1°; € ]0,0.0004]

B €[0.2,1.9]

Foot Inertia

Pulley Ratio

Qs = B(Q[ ql)

The 2-DoF leg joint variables q = [q,,q,]. The knee and ankle angles q; and
q, depend on g and the pulley ratio B. In blue the analogous SLIP model
is given with the polar task coordinates z = [a,l].

Constraints on link parameters
- Linear joint-to-task transformation
L =1;- 1
- Leg COM on radial axis
m; = ((c,-l;)m, - c;m,)/(c5-15)
- Task stiffness matrix decoupling
ko = B/(2-B) * k,
- Task inertia matrix decoupling in stance
and swing phase
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Constraints on leg parameters

- Scale effects [6,7] between body weight
and limb design of mammals

- Biologically plausible

Robot mass m,.. = 4 kg

Leg mass m,., = 0.363 kg
Leg COM Cieg = 0.068 M
Passive leg length |, =0.253 m

Leg stiffness Kieg = 1.81 kN/m

Frequency Matching: Optimizing Bio-Inspired Robotic Legs with SLIP-like Dynamics

Results
- cost=0.01

fodel = 1.53 Hz
Trunk mass m, = 0.637 kg
Thigh mass m, = 0.225 kg
Shank mass m, = 0.05 kg
Foot mass m; = 0.088 kg
Passive length l,=0.253 m
Thigh length |, =0.052 m
Shank length l,=0.129 m
Foot length l;=0.077 m
Thigh COM c, =0.008 m
Shank COM c,=0.019m
Foot COM c;=0.038m
Thigh Inertia ¢, =9.44*10* kg m?

Shank Inertia I°, = 4.00*10* kg m?

Foot Inertia 15, =0.71*10% kg m?
Stiffness 1 k, = 0.48 kN/m
Stiffness 2 k, = 0.05 kN/m
Pulley Ratio B=0.2
Discussion

- cost is acceptable
- m, goes to zero

ky, k, very small

Further Work

Implement these legs in the quadrupedal
robot DLR bert
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