Asymmetric Gait Training with a Tied-Belt Treadmill

Michael G. Browne1,3, Purnima Padmanabhan1,2, and Ryan T. Roemmich1,3

1Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD 21205
2Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
3Dept of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Question

Can tied-belt (i.e. single belt) treadmill training elicit between-leg differences in walking mechanics?

Results

- **Peak Propulsive Force (% Body Weight)**
 - Dynamic Treadmill
 - 0.75 m/s: Left 21.6\% ± 5.0\%, Right 22.2\% ± 5.5\%
 - 1.00 m/s: Left 21.6\% ± 5.0\%, Right 22.2\% ± 5.5\%
 - 1.25 m/s: Left 21.6\% ± 5.0\%, Right 22.2\% ± 5.5\%
 - 1.50 m/s: Left 21.6\% ± 5.0\%, Right 22.2\% ± 5.5\%

- **Stance Time (s)**
 - Dynamic Treadmill
 - 0.75 m/s: Left 0.78 ± 0.03 s, Right 0.78 ± 0.03 s
 - 1.00 m/s: Left 0.78 ± 0.03 s, Right 0.78 ± 0.03 s
 - 1.25 m/s: Left 0.78 ± 0.03 s, Right 0.78 ± 0.03 s
 - 1.50 m/s: Left 0.78 ± 0.03 s, Right 0.78 ± 0.03 s

- **Step Length (m)**
 - Dynamic Treadmill
 - 0.75 m/s: Left 0.43 ± 0.06 m, Right 0.43 ± 0.06 m
 - 1.00 m/s: Left 0.43 ± 0.06 m, Right 0.43 ± 0.06 m
 - 1.25 m/s: Left 0.43 ± 0.06 m, Right 0.43 ± 0.06 m
 - 1.50 m/s: Left 0.43 ± 0.06 m, Right 0.43 ± 0.06 m

- **Leading Limb Angle (degrees)**
 - Dynamic Treadmill
 - 0.75 m/s: Left 1.4° ± 0.5°, Right 1.4° ± 0.5°
 - 1.00 m/s: Left 1.4° ± 0.5°, Right 1.4° ± 0.5°
 - 1.25 m/s: Left 1.4° ± 0.5°, Right 1.4° ± 0.5°
 - 1.50 m/s: Left 1.4° ± 0.5°, Right 1.4° ± 0.5°

- **Trailing Limb Angle (degrees)**
 - Dynamic Treadmill
 - 0.75 m/s: Left 3.6° ± 1.2°, Right 3.6° ± 1.2°
 - 1.00 m/s: Left 3.6° ± 1.2°, Right 3.6° ± 1.2°
 - 1.25 m/s: Left 3.6° ± 1.2°, Right 3.6° ± 1.2°
 - 1.50 m/s: Left 3.6° ± 1.2°, Right 3.6° ± 1.2°

Discussion

- Contrary to predictions, push-off was increased in the left (slow) leg compared to the right (fast)
- Treadmill (de)acceleration seemingly increased (alleviated) the need for a large push-off due to an induced redirection of the center of mass

Future Directions

- Modulate onset and duration of speed increase
- Analyze impact on metabolic energy expenditure
- Open loop treadmill controller with feedback
- Customized stroke rehabilitation to restore paretic push-off magnitude and timing
- Model predictions to minimize metabolic and/or mechanical power

A tied-belt treadmill can independently modulate push-off magnitude, limb orientation, and stance timing simply with within-stride changes in belt speed.