

HOW HUMANS ADAPT LATERAL STEPPING REGULATION

Anna C. Render¹; Joseph P. Cusumano²; Jonathan B. Dingwell¹ Departments of (1) Kinesiology and (2) Engineering Science & Mechanics; Pennsylvania State University * E-Mail: <u>acr313@psu.edu</u> / Web: <u>http://www.biomechanics.psu.edu/</u>

INTRODUCTION

- Humans are more unstable laterally when walking ^[1,2]] and sideways falls can be detrimental^[3].
- If humans regulate foot placement over consecutive steps to achieve task goals while walking ^[4,5], and our day-to-day environment is complex^[6]—walking requires flexibility in how we regulate stepping.
- How do humans alter their lateral stepping regulation given different task goals?

THEORY **Lateral Stepping Regulation**

There are *infinite* choices for each successive step. What might we regulate?

METHODS

Participants

- 12 Male / 12 Female
- 23 ± 3 years old **Treadmill Walking Trials**
- Virtual reality environment

 2 /5 σ

RESULTS

REFERENCES 1. Kuo AD. Int. J Robotics Res 18, 917-30, 1999 2. McAndrew PM, et al. J Biomech 43, 1470-75, 2010. 3. Kannus P et al., *The Lancet*, 366(9500): 1885-1893, 2005. 4. Dingwell JB, et al. PLoS Comput. Biol. 15(3), 2019 5. Dingwell JB, et al. PLoS Comput. Biol. 6(7), 2010. 6. JS Matthis et al, Curr. Biol., 28, 1224-33, 2018 ACKNOWLEDGEMENTS NAL INST NIH NIH Grants R01-AG049735 & R21-AG05347 National Institu on Aging

DISCUSSION **POS**: decreased variability of z_B , tighter step-to-step regulation of z_B , and weaker step-to-step regulation of w.

WID: decreased variability of *w*, continued tight step-to-step regulation of w, and weaker step-to-step regulation of z_B .

between

w and z_B

tradeoffs

task-specific

People modified stepping consistent with model predictions.

Humans tradeoff regulation between w and z_B to adapt lateral foot placement dependent on task goals.