Head and leg adjustments help insects and legged robots traverse cluttered, large obstacles

Yaqing Wang, Ratan Othayoth, Chen Li

Department of Mechanical Engineering, Johns Hopkins University

1. Background & Motivation

Physical interaction (energy landscape) plays a major role during obstacle traversal

Model system → Locomotor transition pathways → Potential energy landscape

Othayoth et al. (in press), PNAS

Animals integrate active sensory feedback and passive mechanical feedback to control locomotion

Hypothesis: Cockroaches actively adjust body and appendages to overcome barrier and make transition

Awareness of landscape helps find a lower barrier

2. Experimental Observations

Beam obstacle traversal can be divided into three phases

<table>
<thead>
<tr>
<th>Run</th>
<th>Push</th>
<th>Roll</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cockroaches actively adjust their head and legs to make locomotor transition

3-D kinematics tracking setup

Leg sprawl, Differential leg use, Frequent head flexion

3. Energy Landscape Modeling

Energy landscape approach to understand physics of locomotor transitions

![Image](image4.png)

Proper head adjustment reduces energy barrier on landscape

Energy barrier comparison

Barrier is smaller with head bending than without (mean change < 0)

(P < 0.05, ANOVA)

4. Robophysical Model & Future Work

Legged robot to systematically control and vary active adjustment of head and legs

Legged robot, Leg sprawl, Differential leg use, Head flexion

Preliminary result: all the three adjustments help the robot roll into the gap

Next steps

Robot with force sensors → Embedded sensors at the neck → Low cost 3-axis force sensor (designed by J. Krakauer's group)

Force measurements to understand:
- Relationship between contact forces and potential energy landscape (slope?)
- Transitions on landscape emerging from local force sensing

Acknowledgements:
- Yunpeng Han and Qiyuan Fu for discussion; Yuanfeng Han and Qiyuan Fu for help with imaging setup; Yunpeng Han and Qiyuan Fu for discussions; Xiao Yu for help with animal care.