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I. INTRODUCTION  

EMG-driven musculoskeletal modeling uses optimization 
to calibrate musculotendon model parameter values to subject 
movement and EMG data. The objective function inimizes the 
sum of squares of errors between inverse dynamic joint 
moments and the joint moments estimated by the EMG-driven 
model. While necessary, this objective function is not 
sufficient to produce unique model parameter values. 
Consequently, unrealistic solutions sometimes occur where a 
muscle generates unreasonably large passive force, even when 
published passive joint moments for sagittal plane joints are 
also tracked in the cost function [1]. Previous research has 
shown that to avoid injury during walking, muscles likely 
operate primarily on the ascending or early descending region 
of their active force-length curves, thereby producing 
relatively low passive forces [2,3]. To address over-estimation 
of passive muscle force, this study investigated whether 
EMG-driven model calibration can provide reasonable 
estimates of musculotendon parameter values through the 
addition of passive muscle force minimization to the 
optimization cost function. 

II. METHODOLOGY 

Previously published gait data collected from the non-
paretic leg of a subject post-stroke performing treadmill 
walking were used to scale a generic OpenSim model [1] and 
calibrate lower body joint positions and orientations [1]. The 
OpenSim model possessed 𝑁𝑚 = 35 muscles controlling 𝑁𝐽 = 

5 degrees of freedom (DOFs) (2 hip DOFs, 1 knee DOF, and 
2 ankle DOFs), where muscles were treated as Hill-type 
models with a rigid tendon. EMG-driven model calibration 
was performed using 10 gait cycles collected at the subject’s 
self-selected and fastest speeds (5 gait cycles for each speed) 
by optimizing activation dynamics and Hill-type model 
parameter values (P). The optimization cost function was 
formulated as:   

 𝐽𝑇𝑟𝑎𝑐𝑘𝑀𝑜𝑚  minimizes for errors in matching joint 
moments from inverse dynamics, 𝐽𝑃𝑎𝑠𝑠𝑖𝑣𝑒𝐹  minimizes total 
normalized passive force cost, and 𝜇 is a weighting factor that 
defines the relative importance of each sub-objective. The 
sensitivity of the solution to 𝜇 was investigated when 𝜇 was 
increased incrementally from 0 to 0.9.  

 

      𝑀𝑖
𝑚𝑜𝑑and 𝑀𝑖

𝑒𝑥𝑝
represent calculated and experimental joint 

moments around joint i respectively.  𝐹𝑗
𝑃𝑎𝑠𝑠𝑖𝑣𝑒 defines model-

predicted passive force of muscle j, which was normalized to 
maximal isometric muscle force (𝐹𝑗

𝑚𝑜). For each solution, the 

resulting joint passive moments for the three sagittal joints 
were also compared with the passive joint moment 
measurements reported in the literature [1,4].  

III. RESULTS  

A Pareto front (Fig.1 (A)) showed the trade-off between 
joint moment tracking error and passive force cost, where 
increasing the weight factor 𝜇 led to decreased passive force 
magnitude and increased joint moment tracking error (Fig.1 
(B)). Furthermore, passive moment difference relative to 
published passive joint moments for different values of 𝜇 
followed a v-shaped curve with a minimum near 𝜇  = 0.5 
(Fig.1 (C)), which was close to the elbow of Pareto front. 
Passive force minimization reduced passive force cost and 
joint moment tracking errors simultaneously relative to a 
solution that tracked published sagittal plane passive joint 
moments in the cost function (see ‘Tracking’ in Fig.1 (B)).  

EMG-driven model calibration was influenced by passive 
muscle force minimization, which tended to increase optimal 
muscle fiber lengths while decreasing joint moment tracking 
errors. Matching published average passive joint moments 
during model calibration may hinder EMG-driven model 
calibration [1, 4]. The proposed approach may reduce the 
occurrence of unrealistically high passive muscle forces while 
simultaneously producing passive joint moments that exhibit 
trends consistent with published data (Fig.1 (D)).    
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Fig.1 (A) Pareto front comparing joint moment tracking errors and passive force cost as a function of 𝜇. (B) The influence of 𝜇 on joint moment tracking 

errors (blue) and passive force cost (red). (C) Passive joint moment matching differences relative to published data as a function of 𝜇. (D) Predicted and 

experimental passive moments for 𝜇 = 0.5. ‘Tracking’ indicates results when passive moment tracking for 3 sagittal plane joints is included in cost function. 
. 


