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I. INTRODUCTION

Dynamic programming (DP) is often applied to solve con-
trol problems in robotics. For complex robotic systems with
many degrees of freedom, only approximate DP methods are
computationally tractable. Several such approximations have
been proposed, relying on either local search or state-space
reductions [1–3]. However, these strategies do not yield an
associated measure to gauge the suboptimality of the resulting
control. We instead propose and explore policy decomposition,
an alternative approximation strategy that includes such a
measure. The measure indicates the similarity of the resulting
closed-loop behavior to the one of the optimal control solution.

II. POLICY DECOMPOSITION

We propose to generate control policies for complex systems
based on cascaded, lower dimensional problems whose order
is identified algorithmically and maximizes the similarity of
the resulting control policy to the one that would be obtained
if the complex system was computationally tractable.

Consider, for example, designing a control policy to swing-
up a pole on a cart while moving the cart to a goal (Fig. 1).
This system has two degrees of freedom (pole angle θ and cart
position x) and two inputs (pole torque τ and cart force F ).
Although the example is simple and its control optimization
tractable, imagine it were not. To approximate the optimization
problem, we could first design an inner policy τπ(θ, θ̇) for τ
to swing up the pole assuming the cart is arrested and then
design an outer policy Fπ(θ, θ̇, x, ẋ, τπ) for F to move the
cart with the torque control of the pole frozen to τπ . As an
alternative to this cascade, we could treat the cart and pole as
separate subsystems and design control policies τπ(θ, θ̇) and
Fπ(x, ẋ) independently. Both policy decompositions (and the
four other possible ones, Fig. 1) reduce the dimensionality of
the problem and make it computationally much more tractable.
But the quality of the resulting control for the entire cart-pole
differs considerably among them (examples shown in Fig. 1).

To measure and predict how closely a possible policy
decomposition will approximate the optimal control of a
complex nonlinear system ẋ = f(x,u), we consider its
corresponding linear system. The linear system approximates
the dynamics of the original one around the goal state x0,
ẋ = ∂f

∂x (x−x0)+
∂f
∂u (u−u0). Assuming quadratic costs, we

design analogous policy decompositions for this linear system
and readily compute their optimal control policies and value
functions. We then use the difference between these analogous
value functions and the optimal value function of the entire

θ,	τ

x,	F

decomposition compute time (s) value error measure
1: F -cart, τ -both 581 0.5 1.26× 10−2

2: τ -pole, F -both 565 0.15 1.1× 10−2

3: τ -cart, F -both 543 470.1 0.53
4: F -pole, τ -both 589 1.6 0.14
5: F -cart, τ -pole 9 1.1 2.8× 10−2

6: τ -cart, F -pole 16 994.4 ∞
entire cart-pole 8487 0 0

Fig. 1. Suboptimality of cart-pole control from different policy decom-
positions. (Top) Example trajectories for best (2, blue traces) and worst
decomposition (6, green), and optimal control (red). (Bottom) Compute times,
true value function error, and measure of error from analogous linear system.

linear system as a measure to gauge the suboptimality of the
controls obtainable from the corresponding policy decompo-
sitions of the original, nonlinear system.

III. INITIAL RESULTS AND FUTURE WORK

Our approach works well for the cart-pole example (Fig. 1).
All policy decompositions largely reduce the compute time,
but the resulting closed-loop behavior differs significantly.
The example trajectories visualize the difference (top panel)
and the mean deviations from the true optimal value func-
tion quantify it (bottom, column 3). The predictive measure
correlates well with this error, although the two do not map
proportionally (column 4). Thus, the measure could help to
not only decide on suitable policy decompositions but also
gauge the best ones similarity to the true optimal control. We
currently study how well these findings generalize from the
cart-pole to more complex systems, including legged systems.
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