
 Existing push recovery controllers for the DARwIn-OP humanoid robot 
 Gyro feedback controller (default controller for DARwIn-OP) [2]
 Hip and ankle strategy-based controller [3]

 Implemented hip, knee, and ankle strategy-based controller
 Additional P control of the knee angle bias based on extremized joint 

profiles from optimization results

PUSH RECOVERY CONTROL

STATES OF BALANCE – DEFINITIONS
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BACKGROUND AND OBJECTIVES

 BALANCED vs. UNBALANCED states are defined relative to a specified
contact configuration [1]:

BALANCED state: There exists a (controlled) trajectory starting from a given 
legged system’s state such that the system does not ever alter its contacts

UNBALANCED state: All (controlled) trajectories starting from a given legged 
system’s state will lead to an inevitable change in the system’s contacts

[1] Mummolo et al., ASME JMR, vol. 10, no. 2, pp.021009-1–13, 2018.
[2] Ha et al., IEEE/RSJ Int. Conf. Intel. Rob. & Sys., pp. 3207–3212, 2011.
[3] Yi et al., IEEE ICRA, pp. 1649–1655, 2013.

RESULTS AND DISCUSSION

Figure 1: Example of balanced and unbalanced states relative to a single support (SS) 
contact configuration. These definitions hold for any generic multi-contact configuration.

Figure 2: Schematic of implemented hip, knee, and ankle strategy-based controller
National Robotics Initiative

Figure 3: COM trajectories in response to perturbations of 110 N (left) and 115 N (right) with a 
duration of 16 ms. The balanced region (shaded) corresponds to a double support contact 
configuration with a step length of 0.057 m. The system remains balanced in all cases except 
when the 115 N perturbation is applied to the gyro feedback controller.

 Empirical data-driven approaches are used for parameter tuning in balancing 
controllers for biped robots

 The controller-specific stability region obtained for a robot may not reflect the 
full balance capability of the system

 In this work, a non-controller-specific stability region is computed and applied 
to push recovery without stepping
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 Addition of knee strategy to existing hip and ankle strategy-based controller:
 Reduced balancing time from 1.66 s to 0.96 s
 Reduced maximum stance foot tilt angle from 13.98 to 0.000024 degrees

 Stability regions are general balance criteria that include all possible 
controller-specific stability regions

 Use of stability region analysis was demonstrated for push recovery control

Gyro feedback controller 

Hip, Knee, and Ankle Strategy-based Controller

Hip and Ankle Strategy-based Controller
110 N Perturbation 115 N Perturbation
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