

Applied Dynamics & Optimization Lab

Balanced Region-based Analysis of Push Recovery Control using Ankle and Hip Strategies

Hyunjong Song, William Z. Peng, and Joo H. Kim New York University, NY, USA

BACKGROUND AND OBJECTIVES

- Empirical data-driven approaches are used for parameter tuning in balancing controllers for biped robots
- □ The controller-specific stability region obtained for a robot may not reflect the full balance capability of the system
- □ In this work, a non-controller-specific stability region is computed and applied to push recovery without stepping

STATES OF BALANCE – DEFINITIONS

BALANCED vs. **UNBALANCED** states are defined <u>relative to</u> a <u>specified</u> <u>contact</u> configuration [1]:

RESULTS AND DISCUSSION

□ Addition of knee strategy to existing hip and ankle strategy-based controller:

- Reduced balancing time from 1.66 s to 0.96 s
- Reduced maximum stance foot tilt angle from 13.98 to 0.000024 degrees

Gyro feedback controller

Hip and Ankle Strategy-based Controller

Figure 1: Example of balanced and unbalanced states relative to a single support (SS) contact configuration. These definitions hold for any generic multi-contact configuration.

BALANCED state: There exists a (controlled) trajectory starting from a given legged system's state such that the system does not ever alter its contacts

UNBALANCED state: All (controlled) trajectories starting from a given legged system's state will lead to an inevitable change in the system's contacts

PUSH RECOVERY CONTROL

Existing push recovery controllers for the DARwIn-OP humanoid robot

- Gyro feedback controller (default controller for DARwIn-OP) [2]
- Hip and ankle strategy-based controller [3]

□ Implemented hip, knee, and ankle strategy-based controller

Additional P control of the knee angle bias based on extremized joint profiles from optimization results

Hip, Knee, and Ankle Strategy-based Controller

Figure 3: COM trajectories in response to perturbations of 110 N (left) and 115 N (right) with a duration of 16 ms. The balanced region (shaded) corresponds to a double support contact configuration with a step length of 0.057 m. The system remains balanced in all cases except

Figure 2: Schematic of implemented hip, knee, and ankle strategy-based controller

when the 115 N perturbation is applied to the gyro feedback controller.

CONCLUSIONS

- □ Stability regions are general balance criteria that include all possible controller-specific stability regions
- Use of stability region analysis was demonstrated for push recovery control

REFERENCES

ACKNOWLEDGEMENTS

National Science Foundation

WHERE DISCOVERIES BEGIN

National Robotics Initiative

Mummolo et al., ASME JMR, vol. 10, no. 2, pp.021009-1–13, 2018. Ha et al., IEEE/RSJ Int. Conf. Intel. Rob. & Sys., pp. 3207–3212, 2011. Yi et al., *IEEE ICRA*, pp. 1649–1655, 2013. [3]