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Motivation / Introduction

« High-performance actuators are crucial to enable mechanical
versatility of wearable robots, which are required to be lightweight,
highly backdrivable, and with high bandwidth.

« State-of-the-art actuators, e.g., series elastic actuators (SEAs), have to
compromise bandwidth to improve compliance (i.e., backdrivability).

« we create a lightweight bilateral hip exoskeleton to reduce joint
loadings during normal activities, including walking and squatting.
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Portable and Versatile Hip Exoskeleton

*Quasi-Direct Drive Portable and Versatile Hip Exoskeleton
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Portable System: high performance, versatile assistance in the field

Specification Table

Motor Torque 2Nm
Motor Speed 1500 RPM
Output Torque: 45 Nm
Output Speed: 19.2 rad/s
Range of Motion: 130 degree
Gear Ratio 8:1
Total Weight: 3 kg
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Human-Exoskeleton Coupled Dynamic Model

Human-exoskeleton coupled dynamic model
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*The bandwidth and backdrivability simulation result
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*Explicit Calculation of Predicted Heel Strike

Feature Extraction
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Experimental Result

Motor Nominal Current Evaluation

*Exoskeleton Backdrive Torque Evaluation
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(a) Stator temperature over time for different
current conditions; (b) Thermal image after 15
min of continuous 7.5 A current operation. The
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The backdrivability of the hip exoskeleton in
the unpowered mode. The maximum torque
of the mechanical resistance is approximately
0.4 Nm

actuator surface reached the maximum
temperature of 62.7 °C. *Torque Tracking for Walking and
_ _ Squatting Assistance
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Torque tracking performance of £20 Nm
assistance during walking and squatting
tests. 1.09 Nm root mean square tracking

Bode plot for 10 Nm, 15 Nm, and 20 Nm torque
control. The high bandwidth (highest value is
62.4 Hz) demonstrates the ability to handle
high-frequency movements of humans

error, 5.4% of the desired peak torque




