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Identifying dynamics of intervention response Identifying dynamics of COM control with Hybrid-SINDy'*!

e . ) .. . SINDy: Sparse identification of nonlinear dynamics'>!
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Control of center-of-mass (COM) motion is fundamental to leg hemiparesis

locomotion and may reflect the complex interactions of
altered physiological and neural mechanisms!23!.
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Q = ground reaction forces (proxy for COM acceleration)
q = COM position w.r.t. foot
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! Treadmill walking
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: q = COM velocity w.r.t. foot
i L = leg length _
! L = leg length velocity Thigh angle (deg)
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Quantifying inter-individual differences in the dynamics
describing COM control provides a step towards mechanism |
identification. - n Prediction ‘
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We identified subject-specific dynamic signatures: - Fitiaw Y g
lumped-parameter hybrid dynamics describing COM 0 ' ' |

control during walking. We expected dynamic Sel ImOdel'#I;I 4 o a Identifv sparse hvbrid dvnamicsid
signatures to differ between unimpaired individuals elect plausible dynamic signatures™ Ak I Y

_ Frequently-identified dynamics that are supported by For each cluster, fit multiple models of different complexity
and a stroke survivor. the relative Akaike Information Criterion (AAICc) Identify gait phases where each model is valid using held-out data
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" Unimpaired dynamics were consistent
with physics-based models of gait!é &
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Asymmetries in the stroke-survivor’s
plausible dynamics were consistent

with her impairment and with post-
Left double- stroke limb energetics!3!
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Variables reflecting leg angle did not

explain mediolateral dynamics across

participants!®

= Additional input variables may be needed
to determine if (e.g.) an ankle strategy
describes mediolateral COM control for
some individuals

Unimpaired plausible dynamics were symmetric and
predominantly elastic during single-support

Normalized model coefficient magnitudes

The stroke survivor exhibited asymmetric and viscous
dynamics during single-limb support
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Identifying nonlinear dynamic signatures may
inform experiments to validate potential
mechanisms of intervention responses

Plausible mediolateral dynamics during stance were
not well identified for all participants (R?<0.53 + 0.22) q; qRIL
L %
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