Generating a Dynamic Controller for a Flamingo Inspired Robot
using Deep Reinforcement Learning

Edward Lu, Nathan J. Kong, J. Joseph Payne, and Aaron M. Johnson
Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
Email: e1u2@andrew.cmu.edu

SUMMARY

As the designs of robotic systems become more complicated
over time, it becomes increasingly difficult to generate con-
trollers that efficiently and effectively take advantage of the
systems’ capabilities. We would like to have a systematic way
to improve and adjust aspects of our robot’s control and design
in order to choose optimal parameters for construction. Here,
we explore our process of using deep reinforcement learning
(DRL) to generate a dynamic controller for a simulated model
of a robot, enabling us to swap out different design parameters
(e.g. motor models) in simulation. We chose to use DRL over
other methods of generating robot controllers because it is
easier to implement in a robot-agnostic manner and requires
less expert knowledge as an input. Additionally, the iterative
nature of reinforcement learning allows us to adjust parameters
of the robot’s actuators without dramatically changing the
model or the algorithm. Here, we discuss how we generated
our controller and the effects it had on our design choices.

1. MOTIVATION

In prior work, we created a passively stable bipedal robot
based off the skeletal structure of a flamingo [1]]. This pro-
totype was designed to minimize energy usage by relying on
its mechanical structure to stand. Though stable when idle,
the robot is quite unstable when moving and is unable to
perform a dynamic walking gait. In order to address these
issues, we decided to use DRL, which allows us to maximize
the efficiency and develop a walk cycle without taking into
account the robot’s full dynamics, which are complex, arduous,
and time consuming to optimize. DRL has also seen some
success in generating bipedal locomotion in recent years [2].
Additionally, the system can be used to experiment with
various motor parameters, such as gearing, torque limits,
maximum velocities, etc., to determine which type of motor
would be optimal for the next iteration of the robot.

II. METHODS

We started by creating an approximate model of the robot
in MuJoCo (see Fig. [I) and ported it to OpenAl's Gym
toolkit [3]]. For the learning algorithm, we use Proximal Policy
Optimization (PPO) with a generalized advantage estimation
[4]] because it is easier to implement and its hyperparameters
are simpler to tune compared to other DRL methods. Our
implementation uses two neural networks, one for the value
function and one for the policy, each with three hidden layers.
It is trained on an eight-core processor for 50,000 episodes.
Training takes approximately 7-9 hours.

Fig. 1: Left: Real life prototype of the flamingo robot. Right:
Robot model simulated in MuJoCo simulation environment.

The reward function used is:
R=7V,+wo—wi Y@ —woAf.+ws Y AG (1)

where R is the reward the model receives for each simulation
step, d is a vector representing an action that the model took,
V is a vector of the velocity of the center of mass, f is the
position of the robot’s foot from the ground, and w is a vector
of weights.

III. RESULTS AND DISCUSSION

The reinforcement learning policy is able to get the simu-
lated robot model to consistently walk dynamically for a long
period of time. The DRL workflow also allows us to easily
swap motor parameters and adjust the walking gait. We are
able to find several brushless motors that fit the parameters of
the best walk cycle.

In the future, we plan to make our models and policies
more robust under unpredictable situations. To do so, we will
implement dynamic randomization and add noise and delay
to our observations to account for real world unpredictability
and fluctuations. Though many of our policies are optimized
in a simulation environment, we also plan to train on a real
robot once we have an updated prototype.

REFERENCES

[1] J. J. Payne, N. J. Kong, and A. M. Johnson, “Flamingobot: a flamingo
inspired minimal energy standing biped robot,” in Dynamic Walking,
Canmore, Canada, June 2019, workshop abstract.

[2] Z. Xie, G. Berseth et al., “Feedback control for cassie with deep
reinforcement learning,” CoRR, vol. abs/1803.05580, 2018. [Online].
Available: http://arxiv.org/abs/1803.05580!

[3] G. Brockman, V. Cheung et al, “Openai
abs/1606.01540, 2016. [Online]. Available:
01540

[4] J. Schulman, F. Wolski et al., “Proximal policy optimization algorithms,”
CoRR, vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/
abs/1707.06347

gym,” CoRR, vol.
http://arxiv.org/abs/1606.


http://arxiv.org/abs/1803.05580
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

	Motivation
	Methods
	Results and Discussion
	References

