
Generating a Dynamic Controller for a Flamingo Inspired Robot Using Deep
Reinforcement Learning

Edward Lu, Nathan J. Kong, J. Joseph Payne, and Aaron M. Johnson
 Carnegie Mellon University, Department of Mechanical Engineering

Methods

Motivation

Overview Results

Future Work

This work explores the process of using deep
reinforcement learning (DRL) to generate a dynamic
walking controller for a simulated model of a flamingo-
inspired robot, enabling us to swap out different design
parameters (e.g. motor models) in simulation.

Figure 1: Real life prototype (left) and simulated
model in Mujoco simulator (right).

• In prior work, we created a passively stable bipedal
robot, called “FlamingoBot,” based off the skeletal
structure of a flamingo (see Figure 1).

• The prototype is quite unstable when moving, making
it difficult to perform a dynamic walking gait.

• DRL allows us to generate an efficient walk cycle
without taking into account the robot's full dynamics,
which are complex and time-consuming to optimize.

Figure 2: Neural network architecture for policy
and value function in DRL framework. Inputs are
body and joint positions and velocities. Outputs
are torques for joints to apply.

• Created robot models in Mujoco (see Figure 3).
• Ported Mujoco models to OpenAI's Gym toolkit.
• For DRL algorithm, we used an implementation of

Proximal Policy Optimization (PPO) with a generalized
advantage estimation.

• Walking controller is saved as a neural network,
representing the learned policy (see Figure 2 for
network architecture).

Figure 3: Two versions of simulated robot in
Mujoco. Version 1 (left) is based off the original
prototype. Version 2 (right) is an updated model
with an extra degree of freedom at the foot.

• Models were trained on an eight-core processor with
GPU acceleration for about 30,000-50,000 episodes.
Training takes approximately 5-10 hours.

• Reward function is as follows:

• R is reward at each simulation step.
• is the velocity at the C.O.M.
• is a vector of weights.
• is the action that the model took.
• is the position of the model’s foot.

• Different motor models were swapped during every
new set of training episodes. The outputted torques
and velocities of these motors were logged in order
to select optimal hardware for a future prototype.

R = ⃗vx + w0 − w1 ∑ (⃗τ)2 − w2Δ ⃗fz − w3 ∑ (Δ ⃗τ)2

⃗v
w
⃗τ
⃗f

• Robot model was able to walk consistently during
training for a maximum of about 7 minutes before
falling.

• The DRL workflow allows us to easily swap motor
parameters and adjust the walking gait. We are able
to find several brushless motors that fit the
parameters of the best walk cycle.

Figure 4: FlamingoBot model Version 2 walking.

• After saving and restoring the DRL policy, the model
was able to walk for about 2000 simulation steps,
each 0.005 seconds long.

• We plan to make our models and policies more
robust by implementing dynamic randomization and
adding noise to observations in order to account for
real world unpredictability and fluctuations.

• We are in the process of generating a policy for
stopping after walking for a while.

• We will eventually train policies on a real-life robot
once we have an updated prototype.

Videos
• FlamingoBot V1 Walk
• FlamingoBot V2 Walk
• FlamingoBot V2 Standing After Walk

https://youtu.be/8T1VoSK_IbE
https://youtu.be/OsKhYW7BUNg
https://youtu.be/raiamvzfQTY

