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This work explores the process of using deep 
reinforcement learning (DRL) to generate a dynamic 
walking controller for a simulated model of a flamingo-
inspired robot, enabling us to swap out different design 
parameters (e.g. motor models) in simulation.

Figure 1: Real life prototype (left) and simulated 
model in Mujoco simulator (right).

• In prior work, we created a passively stable bipedal 
robot, called “FlamingoBot,” based off the skeletal 
structure of a flamingo (see Figure 1).  

• The prototype is quite unstable when moving, making 
it difficult to perform a dynamic walking gait.  

• DRL allows us to generate an efficient walk cycle 
without taking into account the robot's full dynamics, 
which are complex and time-consuming to optimize.

Figure 2: Neural network architecture for policy 
and value function in DRL framework. Inputs are 
body and joint positions and velocities. Outputs 
are torques for joints to apply.

• Created robot models in Mujoco (see Figure 3). 
• Ported Mujoco models to OpenAI's Gym toolkit. 
• For DRL algorithm, we used an implementation of 

Proximal Policy Optimization (PPO) with a generalized 
advantage estimation. 

• Walking controller is saved as a neural network, 
representing the learned policy (see Figure 2 for 
network architecture).

Figure 3: Two versions of simulated robot in 
Mujoco. Version 1 (left) is based off the original 
prototype. Version 2 (right) is an updated model 
with an extra degree of freedom at the foot.

• Models were trained on an eight-core processor with 
GPU acceleration for about 30,000-50,000 episodes. 
Training takes approximately 5-10 hours.  

• Reward function is as follows:

 

• R is reward at each simulation step. 
•  is the velocity at the C.O.M. 
•  is a vector of weights. 
•  is the action that the model took. 
•  is the position of the model’s foot. 

• Different motor models were swapped during every 
new set of training episodes. The outputted torques 
and velocities of these motors were logged in order 
to select optimal hardware for a future prototype.
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• Robot model was able to walk consistently during 
training for a maximum of about 7 minutes before 
falling. 

• The DRL workflow allows us to easily swap motor 
parameters and adjust the walking gait. We are able 
to find several brushless motors that fit the 
parameters of the best walk cycle.

Figure 4: FlamingoBot model Version 2 walking.

• After saving and restoring the DRL policy, the model 
was able to walk for about 2000 simulation steps, 
each 0.005 seconds long.

• We plan to make our models and policies more 
robust by implementing dynamic randomization and 
adding noise to observations in order to account for 
real world unpredictability and fluctuations.  

• We are in the process of generating a policy for 
stopping after walking for a while. 

• We will eventually train policies on a real-life robot 
once we have an updated prototype. 

Videos
• FlamingoBot V1 Walk 
• FlamingoBot V2 Walk 
• FlamingoBot V2 Standing After Walk 

https://youtu.be/8T1VoSK_IbE
https://youtu.be/OsKhYW7BUNg
https://youtu.be/raiamvzfQTY

