Responses to locomotion commotion caused by translation perturbations

Jennifer K. Leestma¹,², Gregory S. Sawicki¹,²,³, and Aaron J. Young¹,²
George W. Woodruff School of Mechanical Engineering, Institute for Robotics and Intelligent Machines, and School of Biological Sciences, Georgia Institute of Technology

Motivation

How do humans navigate non-steady-state environments?

An understanding of stability could aid in:
- Assessing and assisting impaired populations [1]
- Creating assistive and augmentative devices [2]
- Controlling legged robots in diverse environments

Perturbation recovery strategy is indicated by:
- Step length (SL)
- Step width (SW)
- Step time (ST)

Methods

- N = 1
- Walking speed: 1.25 m/s
- Perturb subject by translating walking platform (24 conditions)
 - Magnitudes: 5, 10, 15 cm
 - Directions: 45º increments
 - (24 conditions) x (12 repetitions) = 288 perturbations
- Collected kinematics
- Identified gait events using kinematic coordinate method [3]
- Calculated step length (SL), step width (SW), and step time (ST) for the perturbed step (S₀) and subsequent steps (S₁-S₅)

Results

Radial axis: magnitude of platform movement
Angular axis: direction of platform movement relative to stance foot, all data displayed as right foot perturbed

Columns: perturbed step (S₀) and subsequent steps (S₁-S₅)
Rows: change in SL, SW, and ST as a percent of steady-state (SS)

In general, platform movement in one direction will cause center of mass (CoM) movement in the opposite direction
Ex: lateral (L) perturbation causes CoM movement to the medial side of the perturbed stance foot

Discussion

Step length:
- Most affected on the S₁ step, trends last 1-2 steps
- Shorter steps with PL perturbations (up to -18%), longer steps with AM perturbations (up to +7%)

Step width:
- Most affected on the S₁ step, trends last 2-3 steps
- Narrower steps with M perturbations (up to -135%), wider steps with L perturbations (up to +129%)

Step time:
- Most affected on the S₂ step, trends last 3-4 steps
- Faster steps with AL perturbations (up to -7%), slower steps with P perturbations (up to 6%)

Humans modulate SL, SW, and ST in response to perturbations
Largest changes to SL, SW, and ST are not elicited by the same perturbation conditions

References

Acknowledgements

This work was funded by the NSF Research Traineeship: ARMS Award #1545287.