People explore gait dimensions, and reduce this exploration as they learn to walk with exoskeleton assistance

Sabrina Abram1, Katherine Poggensee2, Steve Collins2, Max Donelan1
1Locomotion Lab, Department of Biomedical Physiology and Kinesiology, Simon Fraser University
2Biomechatronics Lab, Department of Mechanical Engineering, Stanford University

Introduction

The success of assistive devices relies on users learning to take advantage of the assistance [1]. In both everyday tasks and novel conditions, the nervous system is faced with the trade-off between exploiting, perhaps erroneously, previously learned strategies and exploring new, unknown strategies [2]. The goal of this study was to test how people balance this trade-off when learning to walk with ankle exoskeleton assistance. To accomplish this, we performed a post-hoc analysis of data from our previous study [3].

We hypothesized that 1) people explore many candidate gait dimensions as they identify which dimensions can take advantage of assistance, and 2) people reduce this exploration with experience as they learn to exploit new strategies that lower metabolic cost.

Experimental setup

Figure 1. We randomly assigned 5 participants to a Static Group, and 5 to a Continued Optimization Group. Both experienced a predefined Generic Assistance (GA; blue) torque profile. Static repeatedly experienced it whereas Continued Optimization also experienced human-in-the-loop optimization (HILO; red). By design, both groups can influence the torque timing by varying their step frequency as well as the power and work applied to the ankle by varying their ankle kinematics. We are interested in how the nervous system learns to take advantage of this assistance.

1. Exploration first increases along many gait dimensions, and then decreases with increased experience.

2. Exploration converges on baseline levels of exploration for some gait dimensions with increased experience.

3. Exploration results in adaptation along some gait dimensions.

4. New strategies result in lower metabolic cost.

Conclusions

Here we find that the nervous system learns to reduce metabolic cost by first exploring along many gait dimensions, and then reducing this exploration with experience. However, this only results in adaptation along some dimensions, suggesting that the nervous system did not know a priori which dimensions to adapt.

References