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Abstract—Models of complex nonlinear systems are often
necessarily simplified for tractability. However, such idealizations
typically create discrepancies between experiment and simula-
tion. The missing physics are often unique to an individual and
cannot be easily represented by universal model corrections.
Perturbation theory uses exact linear solutions and perturbation
corrections to approximate nonlinear behavior. We use a sparse
regression algorithm to recover first-order perturbation solutions,
or discrepancy models, for a passive dynamic walking model.
Discrepancy models allow idealized models to be updated with
interpretable, system-specific corrections for more robust control
and dynamical stability.

Index Terms—discrepancy modeling, bipedal walking, sparse
regression

I. INTRODUCTION

Models of bipedal locomotion are often idealized represen-
tations of the governing physics and are unable to capture
the complete dynamics observed in experiment, i.e. simulation
does not match experiment. The inability to represent such
discrepancies can have significant impact on the stability of
the locomotion model. Discrepancies can arise from a variety
of factors that are often ignored in idealized models, including
nonlinear frictional forces, musculotendon elasticity, parameter
mismatches, and the complex dynamics of soft tissue mechan-
ics. These discrepancies are typically unique to an individual
or robotic system and must be learned and quantified as such.
Taking inspiration from perturbation theory, we develop a
mathematical architecture based upon sparse regression that
discovers interpretable discrepancy models to close the gap
between the leading order idealized model and experimental
observations, giving a more robust and quantitatively accurate
locomotion model for control and stable dynamics.

II. METHODS

The sparse identification of nonlinear dynamics (SINDy)
algorithm [2] uses sparse regression to discover a parsimonious
representation of nonlinear system dynamics from measure-
ment data. An important assumption about the model structure
is that there are only a few salient terms governing the
dynamics; this assumption holds for systems when represented
in an appropriate basis. As such, interpretability is promoted
and overfitting is avoided. Recently, this framework has been
used to identify discrepancy models between empirical data
and model outputs of a system [3]. Discrepancy models can
analogously be thought of as a first-order perturbation model.

Our solvable problem (A0) is an oscillatory 2-link pendulum
[1] with collision constraints, and the first-order perturbation
solution (Ã) includes small nonlinear contributions to the
equations of motion A ≈ A0 + Ã where Ã � 1.

Two models of simple dynamic walking were tested: passive
and active. Two conditions were tested for each model: ideal
(no noise) and noisy. Unit variance Gaussian noise was added
to the system measurements in varying increments. For all con-
ditions, a randomly generated polynomial discrepancy (max.
order 5) was added to one of the system states. Kinematics
were evaluated for stability (10+ steps) before using SINDy
to recover the discrepancy model.

III. RESULTS AND DISCUSSION

In the ideal condition, SINDy recovered “first-order
physics” for both the passive and active dynamic walking mod-
els with high fidelity. Adding noise to system measurements
made recovery more difficult, as numerical differentiation
amplifies noise.

Every system will have its own discrepancy model. Consider
the construction of a robot: if two robots are constructed
using the same build instructions, each will inevitably have
a unique discrepancy model. Part tolerances could be incon-
sistent between robots, or one robot’s joint could experience
more friction that the other robot. Similarly, human physiology
is subject-specific. For example, skeletal and musculotendon
parameters are unique, resulting in unique profiles of muscular
performance and production [5]. Humans also have heteroge-
neous quantities and distributions of soft tissue, often ignored
in musculoskeletal models and simulations.

While this initial investigation used a simple toy model
to investigate the use and accuracy of discrepancy modeling
for recovering locomotion dynamics, including system-specific
corrections to an idealized model can help close the gap
between experiment and simulation.
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