EMG-driven Neuromuscular Model for Hip Exoskeleton Control Can Adapt
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Motivation

How can we find optimal exoskeleton control
while avoiding “brute-force” methods?

= Do not know optimal assistance profiles across all modes
(gait, speed, slope, etc.)?

= Human-in-the-Loop optimizations can take up to
an hour per locomotion mode per control scheme

= Need a controller that adapts across modes

1

What is the best control scheme for each
locomotion mode?

= Biological moments, EMG, and kinematics change with
mechanical demands across modes?*

Hypotheses
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Experiment 1 (n = 1)

" Train model parameters to match biological moment at
level ground at 1.25 m/s

"= Vary mode (hip angle and EMGs) and measure model
torque without changing parameters

1. NMM with parameters optimized at level ground walking

will track biological torques across grades

2. Optimal Extension NMM will favor more myoelectric control
(motor-like assistance) with increasing incline while flexion

will be more passive/biological

Discussion

= NMM increased extension torques with increased grade like biological

trend

= Need to find optimization mode with best tracking across modes

= Optimal control schemes may differ between walking/running, and

extension/flexion
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Methods

Across Simulated Walking Modes
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Experiment 2
= Extension NMM was more motor- c
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Flexion NMM “s” for walking and
running modes was relatively
consistent
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Experiment 2 (n = 1)
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Train model parameters at all available walking and running
modes
Examine control parameters for motor-like or
passive/physiological properties

L 1 " Model optimized at
flat-ground adapts
to declines in with
similar accuracy

without re-tuning
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