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I. LEARNING AS OPTIMIZATION

We model learning as a continuous optimization process.
When agents learn over time, they seek decision variables
that incrementally improve their performance on a task. For
tasks with only one agent, strong guarantees on the learning
process can be provided: the stable steady-state outcome of
learning is guaranteed to be locally optimal. However, with
multiple agents where the objective of an agent depends on
the decision variables of others, similar guarantees do not hold.
The steady-state equilibria of learning processes with multiple
agents do not necessarily correspond to the optimal actions
for each agent individually [1].

The rich behavior of multi-agent interactions can result in
counter-intuitive outcomes that do not correspond to meaning-
ful equilibria of the original objectives. Agents can converge
to non-optimal suprious attractors or get stuck in endless
periodic orbits. We study this interaction theoretically, pre-
dict outcomes, and evaluate the predictions experimentally in
interactive and adaptive dynamics simulators.

II. ITERACTIONS AS GAMES

We present a theoretical model that captures the rich
dynamics of learning in multi-agent settings. The model
makes predictions about real-world interactions. We present
our model below, along with modifications to optimization
problems that enable agents to express different learning rules
while respecting their original objectives.

In an n−player continuous game defined by the objectives
(f1, . . . , fn), the agent indexed by i considers two objects:
an individual objective fi, which encodes its performance as
a scalar value, and a decision variable xi, which represents
its action taken from its feasible set Xi. An agent assesses
its performance at time t by evaluating its objective at the
current joint decision x(t) = (xi(t), x−i(t)) where x−i(t) is
all other agents’ decision variables in X−i. At time t, an agent
achieves the performance fi(xi(t), x−i(t)) ∈ R. The steady-
state equilibrium x∗ = (x∗i , x

∗
−i) and learning dynamics are

diagrammed in Figure 1(a),(c).
If an agent identifies a feasible decision with better per-

formance in the neighbourhood of the current joint decision,
then it will adjust its own decision in that direction. Mathe-
matically, the agents continuously update their decisions along
the steepest gradient of their objectives, represented by the
coupled differential equations ẋi(t) = Dxifi(xi(t), x−i(t))
for all maximizing agents i ∈ [1, n].
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(a) A two-player Nash equilibrium.
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(b) A two-player conjectural equilibrium.
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(c) The learning dynamics of agent i.

Fig. 1: The steady-state equilibria of (a) Nash play and (b)
conjectural play are the joint decision variables (x∗1, x

∗
2) that

satisfy each agent’s optimization problem while keeping the
other’s decsion variable fixed. The learning dynamics (c)
models an agent starting at a suboptimal decision xi(0) at
time t = 0 and ending with decision xi(t). Do the learning
dynamics lead to meaningful equilibria?

III. EXPERIMENTS WITH OPPONENT MODELS

The behavioral model we present is verified experimentally.
We also test various conjectural models, where agent i is
given the ability to anticipate the responses of others using
a conjecture λi : Xi → X−i, see Figure 1(b) and [2].
We demonstrate that conjectures consistent with the game
or estimated using data can stabilize the learning dynamics,
avoid spurious attractors and achieve better performance when
compared to Nash. Our results provide a promising step
towards a theory that can be used to ensure safe and robust
interactions amongst humans and machines.
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