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Abstract

SQOPT is a set of Fortran subroutines for minimizing a convex quadratic func-
tion subject to both equality and inequality constraints. (SQOPT may also be used
for linear programming and for finding a feasible point for a set of linear equalities
and inequalities.) The method of SQOPT is of the two-phase, active-set type, and is
related to the method used in the package QPOPT (Gill, Murray and Saunders [3]).
The method used is most efficient when many constraints or bounds are active at the
solution.

SQOPT is primarily intended for (but is not restricted to) large linear and quadratic
problems with sparse matrices—i.e., matrices with sufficiently many zero elements to
justify storing them implicitly.

SQOPT is part of the SNOPT package for large-scale nonlinearly constrained op-
timization. SQOPT uses stable numerical methods throughout and includes a reliable
basis package (for maintaining sparse LU factors of the basis matrix), a practical anti-
degeneracy procedure, and optional automatic scaling of the constraints.

The source code for SQOPT is suitable for any machine with a Fortran compiler.
SQOPT may be called from a driver program (typically in Fortran, C or MATLAB).
SQOPT can also be used as a stand-alone package, reading data in the MPS format
used by commercial mathematical programming systems.
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1. Introduction

SQOPT is a collection of Fortran 77 subroutines for solving the large-scale linear or quadratic
programming problem, which is assumed to be stated in following form:

LCQP minimize
x

q(x)

subject to l ≤

(
x

Ax

)
≤ u,

where l and u are constant lower and upper bounds, and A is a sparse matrix and q(x) is
a linear or quadratic function objective function that may be specified in a variety of ways,
depending upon the particular problem being solved. The optional parameter maximize
may be used to specify a problem in which q is maximized instead of minimized.

Upper and lower bounds are specified for all variables and constraints. This form allows
full generality in specifying various types of constraint. In particular, the jth constraint
may be defined as an equality by setting lj = uj . If certain bounds are not present, the
associated elements of l or u may be set to special values that are treated as −∞ or +∞.

The possible forms for the function q(x) are summarized in Table 1. The most general
form for q(x) is

q(x) = f +
n∑

j=1

cjxj + 1
2

n∑
i=1

n∑
j=1

xiHijxj = f + cT x + 1
2xT Hx,

where f is a constant, c is a constant n vector and H is a constant symmetric n× n matrix
with elements {Hij}. In this form, q is a quadratic function of x and Problem LCQP is
known as a quadratic program (QP). SQOPT is suitable for all convex quadratic programs.
The defining feature of a convex QP is that the matrix H must be positive semidefinite—i.e.,
it must satisfy xT Hx ≥ 0 for all x. If not, q(x) is nonconvex and SQOPT will terminate
with the error indicator inform = 4.

Table 1: Choices for the objective function q(x).

Problem type Objective function q Hessian matrix

Quadratic Programming (QP) f + cT x + 1
2xT Hx Symmetric positive semidefinite

Linear Programming (LP) f + cT x H = 0
Feasible Point (FP) Not Applicable f = 0, c = 0, H = 0

If H = 0, then q(x) = f + cT x and the problem is known as a linear program (LP).
In this case, rather than defining an H with zero elements, you can define H to have no
columns (see the parameter ncolH for subroutine sqopt).

If H = 0, f = 0, and c = 0, there is no objective function and the problem is a feasible
point problem (FP), which is equivalent to finding a point that satisfies the constraints on x.
In the situation where no feasible point exists, several options are available for finding a point
that minimizes the constraint violations (see the optional parameter Elastic option).

SQOPT is suitable for large LPs and QPs in which the matrix A is sparse—i.e., when
there are sufficiently many zero elements in A to justify storing them implicitly. The matrix
A is input to SQOPT by means of the parameters a(*), ha(*), and ka(*) (see §3). This
allows the user to specify the pattern of nonzero elements in A.
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SQOPT exploits structure or sparsity in H by requiring H to be defined implicitly in
a subroutine that computes the product Hx for any given vector x. In many cases, the
product Hx can be computed very efficiently for any given x—e.g., H may be a sparse
matrix, or a sum of matrices of rank-one. An example of such a subroutine is included with
the sample program for the SQOPT package.

There is considerable flexibility allowed in the definition of q(x) in Table 1. The vector c
defining the linear term cT x can be input in three ways: as a sparse row of A; as an explicit
dense vector c; or as both a sparse row and an explicit vector (in which case, cT x will be
the sum of two linear terms). When stored in A, c is the iObj-th row of A, which is known
as the objective row. The objective row must always be a free row of A in the sense that its
lower and upper bounds must be −∞ and +∞. Storing c as part of A is recommended if c is
a sparse vector. Storing c as an explicit vector is recommended for a sequence of problems,
each with a different objective (see parameters c and lenc of subroutine sqopt).

1.1. Subroutines

SQOPT is accessed via the following routines:

sqInit (§5.2) Must be called before any other SQOPT routines.

sqSpec (§5.3) May be called to input a SPECS file (a list of run-time options).

sqset, sqseti, sqsetr (§5.4) May be called to specify a single option.

sqgetc, sqgeti, sqgetr (§5.5) May be called to obtain an option’s current value.

qpHx (§4) Called by sqopt. Must be supplied by the user to define the matrix-vector
product Hx for given vectors x. For FP and LP, you can either provide your own
“empty” qpHx or use the dummy routine nullHx provided with the SQOPT distri-
bution.

sqopt (§3) The main solver.

sqMem (In distribution file sn12sqzz.f) Computes the size of the workspace arrays cw,
iw, rw required for given problem dimensions. Intended for Fortran 90 drivers that
reallocate workspace if necessary.

The user routine qpHx has a fixed parameter list but may have any convenient name. It is
passed to sqopt as a parameter.

The SQOPT routines are intended to be re-entrant (as long as the Fortran compiler
allocates local variables dynamically). Hence they may be used in a parallel or multi-thread
environment. They may also be called recursively.

1.2. Files

SQOPT reads or creates the following files:

SPECS file. A list of run-time options, input by sqSpec.

PRINT file. A detailed iteration log, error messages, and optionally the printed solution.

SUMMARY file. A brief iteration log, error messages, and the final solution status.
Intended for screen output in an interactive environment.

SOLUTION file. A separate copy of the printed solution.

BASIS files. To allow restarts.
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You must define unit numbers for the specs, print and summary files by specifying
appropriate parameters for sqInit and sqSpec. For a more detailed description of the files
that can be created by SQOPT, see §9.
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2. Brief description of the method

Here we briefly describe some features of the algorithm used in SQOPT and introduce some
terminology used in the description of the subroutine and its arguments. For further details,
see §8.

2.1. Formulation of the problem

The upper and lower bounds on the m components of Ax are said to define the general
constraints of the problem. Internally SQOPT converts the general constraints to equalities
by introducing a set of slack variables s, where s = (s1, s2, . . . , sm)T . For example, the
linear constraint 5 ≤ 2x1 + 3x2 ≤ +∞ is replaced by 2x1 + 3x2 − s1 = 0 together with the
bounded slack 5 ≤ s1 ≤ +∞. Problem LCQP can therefore be rewritten in the following
equivalent form

minimize
x,s

q(x) subject to Ax− s = 0, l ≤

(
x

s

)
≤ u.

Since the slack variables s are subject to the same upper and lower bounds as the components
of Ax, they allow us to think of the bounds on Ax and x as simply bounds on the combined
vector (x, s). (In order to indicate their special role in problem QP, the original variables
x are sometimes known as “column variables”, and the slack variables s are known as “row
variables”)

Each LP or QP is solved using an active-set method. This is an iterative procedure
with two phases: a phase 1 (sometimes called the feasibility phase), in which the sum of
infeasibilities is minimized to find a feasible point; and a phase 2 (or optimality phase), in
which q is minimized by constructing a sequence of iterations that lies within the feasible
region.

Phase 1 involves solving a linear program of the form

Phase 1 minimize
x,v,w

n+m∑
j=1

(vj + wj)

subject to Ax− s = 0, l ≤

(
x

s

)
− v + w ≤ u, v ≥ 0, w ≥ 0,

which is equivalent to minimizing the sum of the constraint violations. If the constraints
are feasible (i.e., at least one feasible point exists), eventually a point will be found at which
both v and w are zero. The associated value of (x, s) satisfies the original constraints and
is used as the starting point for the phase 2 iterations for minimizing q.

If the constraints are infeasible (i.e., v 6= 0 or w 6= 0 at the end of phase 1), no solution
exists for Problem LCQP and the user has the option of either terminating or continuing in
so-called elastic mode (see the discussion of the optional parameter Elastic option). In
elastic mode, a “relaxed” or “perturbed” problem is solved in which q(x) is minimized while
allowing some of the bounds to become “elastic”—i.e., to change from their specified values.
Variables subject to elastic bounds are known as elastic variables. An elastic variable is
free to violate one or both of its original upper or lower bounds. The user is able to assign
which bounds will become elastic if elastic mode is ever started—see the parameter helast
of subroutine sqopt.

To make the relaxed problem meaningful, SQOPT minimizes q while (in some sense)
finding the “smallest” violation of the elastic variables. In the situation where all the
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variables are elastic, the relaxed problem has the form

Phase2(γ) minimize
x,v,w

q(x) + γ
n+m∑
j=1

(vj + wj)

subject to Ax− s = 0, l ≤

(
x

s

)
− v + w ≤ u, v ≥ 0, w ≥ 0,

where γ is a nonnegative parameter known as the elastic weight, and q(x) + γ
∑

j(vj + wj)
is called the composite objective. In the more general situation where only a subset of the
bounds are elastic, the v’s and w’s for the non-elastic bounds are fixed at zero.

The elastic weight can be chosen to make the composite objective behave like either
the the original objective q(x) or the sum of infeasibilities. If γ = 0, SQOPT will attempt
to minimize q subject to the (true) upper and lower bounds on the nonelastic variables
(and declare the problem infeasible if the nonelastic variables cannot be made feasible).
At the other extreme, choosing γ sufficiently large, will have the effect of minimizing the
sum of the violations of the elastic variables subject to the original constraints on the
non-elastic variables. Choosing a large value of the elastic weight is useful for defining a
“least-infeasible” point for an infeasible problem.

In phase 1 and elastic mode, all calculations involving v and w are done implicitly in the
sense that an elastic variable xj is allowed to violate its lower bound (say) and an explicit
value of v can be recovered as vj = lj − xj .

2.2. The main iteration

A constraint is said to be active or binding at x if the associated component of either x or
Ax is equal to one of its upper or lower bounds. Since an active constraint in Ax has its
associated slack variable at a bound, we can neatly describe the status of both simple and
general upper and lower bounds in terms of the status of the variables (x, s). A variable is
said to be nonbasic if it is temporarily fixed at its upper or lower bound. It follows that
regarding a general constraint as being active is equivalent to thinking of its associated slack
as being nonbasic.

At each iteration of an active-set method, the constraints Ax− s = 0 are (conceptually)
partitioned into the form BxB + SxS + NxN = 0, where xN comprises the nonbasic compo-
nents of (x, s) and the basis matrix B is square and nonsingular. The elements of xB and xS

are called the basic and superbasic variables respectively; with xN they are a permutation
of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their bounds, while the nonbasic variables will be equal to one of their
upper or lower bounds. At each iteration, xS is regarded as a set of independent variables
that are free to move in any desired direction, namely one that will improve the value of the
QP objective (or sum of infeasibilities). The basis variables are then adjusted in order to
ensure that that (x, s) continues to satisfy Ax− s = 0. The number of superbasic variables
(nS say) therefore indicates the number of degrees of freedom remaining after the constraints
have been satisfied. In broad terms, nS is a measure of how nonlinear the problem is. In
particular, nS will always be zero for FP and LP problems.

If it appears that no improvement can be made with the current definition of B, S and
N , a nonbasic variable is selected to be added to S, and the process is repeated with the
value of nS increased by one. At all stages, if a basic or superbasic variables encounters one
of its bounds, the variable is made nonbasic and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax − s = 0 is a dual variable πi.
Similarly, each variable in (x, s) has an associated reduced gradient dj (also known as a
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reduced cost). The reduced gradients for the variables x are the quantities g −AT π, where
g is the gradient of the QP objective; and the reduced gradients for the slacks s are the
dual variables π. The QP subproblem is optimal if dj ≥ 0 for all nonbasic variables at their
lower bounds, dj ≤ 0 for all nonbasic variables at their upper bounds, and dj = 0 for all
superbasic variables. In practice, an approximate QP solution is found by slightly relaxing
these conditions on dj (see the Optimality tolerance described in §5.6).

The process of computing and comparing reduced gradients is known as pricing (a term
first introduced in the context of the simplex method for linear programming). To “price” a
nonbasic variable xj means that the reduced gradient dj associated with the relevant active
upper or lower bound on xj is computed via the formula dj = gj − aT

j π, where aj is the
jth column of ( A − I ). (The variable selected by the price, and its corresponding value of
dj (i.e., its reduced gradient) are printed in the columns marked +SBS and dj in the Print
file output.) If A has significantly more columns than rows (i.e., n � m), pricing can be
computationally expensive. In this case, a strategy known as partial pricing can be used to
compute and compare only a subset of the dj ’s.
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3. Specification of subroutine sqopt

Problem QP is solved by a call to subroutine sqopt, whose parameters are defined here.
Note that most machines use double precision declarations as shown, but some machines
use real. The same applies to the user routine qpHx.

subroutine sqopt ( start, qpHx, m,
$ n, lena, nName, lenc, ncolH,
$ iObj, ObjAdd, Prob,
$ a, ha, ka, bl, bu, c, Names,
$ helast, hs, xs, pi, rc,
$ inform, mincw, miniw, minrw,
$ nS, nInf, sInf, Obj,
$ cu, lencu, iu, leniu, ru, lenru,
$ cw, lencw, iw, leniw, rw, lenrw )

external qpHx
character*(*) start
character*8 Prob
character*8 Names(nName)
integer m, n, lena, nName, lenc, ncolH
integer iObj, nS, nInf
integer inform, mincw, miniw, minrw
integer ha(lena), helast(n+m), hs(n+m)
integer ka(n+1)
double precision ObjAdd, sInf, Obj
double precision a(lena), bl(n+m), bu(n+m), xs(n+m)
double precision c(*)
double precision pi(m), rc(n+m)

integer lencu, lencw, leniu, lenru, leniw, lenrw
character*8 cu(lencu), cw(lencw)
integer iu(leniu), iw(leniw)
double precision ru(lenru), rw(lenrw)

On entry:

start is a character string that specifies how a starting basis (and certain other items)
are to be obtained.

’Cold’ requests that the CRASH procedure be used to choose an initial
basis, unless a basis file is provided via OLD BASIS, INSERT or LOAD
in the Specs file.

’Basis file’ is the same as start = ’Cold’ but is more meaningful when a basis
file is given.

’Warm’ means that a basis is already defined in hs (probably from an earlier
call).

m is m, the number of general inequalities (m > 0). This is the number of rows in the
constraint matrix A.

Note that A must have at least one row. If your problem has no constraints, or only
upper and lower bounds on the variables, then you must include a dummy row with
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sufficiently wide upper and lower bounds. See the discussion of the parameters a,
ha and ka below.

n is the number of variables, excluding slacks (n > 0). This is the number of columns
in A.

lena is the number of nonzero entries in A (lena > 0).

nName is the number of column and row names provided in the character array Names. If
nName = 1, there are no names. Generic names will be used in the printed solution.
Otherwise, nName = n + m and all names must be provided.

lenc is the number of elements in the constant objective vector c (lenc ≥ 0).

ncolH is the number of leading nonzero columns of the QP Hessian (ncolH ≥ 0).

If ncolH = 0, there is no quadratic term, and the problem is an FP or LP problem.
In this case you must provide a dummy subroutine qpHx or use the subroutine
nullHx provided in the SQOPT distribution.

If ncolH > 0, you must provide your own version of qpHx to compute the matrix-
vector product Hx.

iObj says which row (if any) of A is a free row containing a linear objective vector c
(0 ≤ iObj ≤ m). If there is no such vector, iObj = 0.

ObjAdd is the constant f added to the objective for printing purposes. Typically ObjAdd =
0.0d+0.

Prob is an 8-character name for the problem. Prob is used in the printed solution and in
some routines that output BASIS files. A blank name may be used.

a(lena), ha(lena), ka(n+1) define the nonzero elements of the constraint matrix A. The
nonzeros are stored column-wise. A pair of values (a(k),ha(k)) contains a matrix
element and its corresponding row index, and the array ka(*) is a set of pointers
to the beginning of each column of A within a(*) and ha(*). Thus for j = 1 : n,
the entries of column j are held in a(k : l) and their corresponding row indices are
in ha(k : l), where k = ka(j) and l = ka(j + 1)− 1,

Note: every element of a(*) must be assigned a value in the calling program.

1. It is essential that ka(1) = 1 and ka(n + 1) = lena + 1.

2. The row indices ha(k) for a column may be in any order.

3. If lenc > 0, the first lenc columns of a and ha belong to variables correspond-
ing to the constant objective term c.

4. If the problem has a quadratic objective, the first ncolH columns of a and
ha belong to variables corresponding to the nonzero block of the QP Hessian.
Subroutine qpHx knows about these variables.

5. If your problem has no constraints, or just bounds on the variables, you may
include a dummy “free” row with a single (zero) element by setting a(1) = 0.0,
ha(1) = 1, ka(1) = 1, and ka(j) = 2 for j = 2 : n + 1. This row is made “free”
by setting its bounds to be bl(n + 1) = −bigbnd and bu(n + 1) = bigbnd,
where bigbnd is typically 1.0e+20 (see next paragraph).

bl(n+m) contains the lower bounds on the variables and slacks (x, s).

The first n entries of bl, bu, hs and xs refer to the variables x. The last m entries
refer to the slacks s.
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To specify a non-existent lower bound (lj = −∞), set bl(j) ≤ −BigBnd, where
BigBnd is the Infinite Bound, whose default value is 1020.

To fix the jth variable (say xj = β, where |β| < BigBnd), set bl(j) = bu(j) = β.

To make the jth constraint an equality constraint (say sj = β, where |β| < BigBnd),
set bl(n + j) = bu(n + j) = β.

bu(n+m) contains the upper bounds on (x, s). To specify a non-existent upper bound (uj =
∞), set bu(j) ≥ BigBnd. For the data to be meaningful, it is required that bl(j) ≤
bu(j) for all j.

c(lenc) contains the explicit objective vector (if any). If the problem is of type FP, or if
lenc = 0, then c is not referenced. (In that case, c may be dimensioned (1), or it
could be any convenient array.)

Names(nName) sometimes contains 8-character names for the variables and constraints. If
nName = 1, Names is not used. The printed solution will use generic names for the
columns and row. If nName = n+m, Names(j) should contain the 8-character name
of the jth variable (j = 1 : n + m). If j = n + i, the jth variable is the ith row.

helast(n+m) defines which variables are to be treated as being elastic in elastic mode.
The allowed values of helast are helast(j) = 0, 1, 2, 3, which have the following
meaning:

helast(j) Status in elastic mode
0 variable j is non-elastic and cannot be infeasible
1 variable j can violate its lower bound
2 variable j can violate its upper bound
3 variable j can violate either its lower or upper bound

helast need not be assigned if Elasticmode = 0.

hs(n+m) sometimes contains a set of initial states for each variable x, or for each variable
and slack (x, s). See the following discussion of xs.

xs(n+m) sometimes contains a set of initial values for x or (x, s).

1. If start = ′Cold′ or ’Basis file’, and a BASIS file of some sort is to be
input (an OLD BASIS file, INSERT file or LOAD file), then hs and xs need not
be set at all.

2. Otherwise, hs(1 : n) and xs(1 : n) must be defined for a Cold start. If nothing
special is known about the problem, or if there is no wish to provide special
information, you may set hs(j) = 0, xs(j) = 0.0 for all j = 1 : n. All variables
will be eligible for the initial basis.
Less trivially, to say that the optimal value of variable j will probably be
equal to one of its bounds, set hs(j) = 4 and xs(j) = bl(j) or hs(j) = 5 and
xs(j) = bu(j) as appropriate.

3. For Cold starts with no basis file, a CRASH procedure is used to select an
initial basis. The initial basis matrix will be triangular (ignoring certain small
entries in each column). The values hs(j) = 0, 1, 2, 3, 4, 5 have the following
meaning:

hs(j) State of variable j during CRASH

{0, 1, 3} Eligible for the basis. 3 is given preference
{2, 4, 5} Ignored
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After CRASH, columns for which hs(j) = 2 are made superbasic. Other
entries not selected for the basis are made nonbasic at the value xs(j) if
bl(j) ≤ xs(j) ≤ bu(j), or at the value bl(j) or bu(j) closest to xs(j). See the
description of hs below (on exit).

4. For Warm starts, all of hs(1 : n+m) must be 0, 1, 2 or 3 (probably from some
previous call) and all of xs(1 : n + m) must have values.

nS need not be specified for Cold starts, but should retain its value from a previous
call when a Warm start is used.

qpHx is the name of the subroutine that defines the product of H and a given vector
x when solving a quadratic program. A valid subroutine name must always be
provided. If you are solving a quadratic problem, your qpHx must multiply your
specific H by a given vector x. (This is the only way that SQOPT accesses the
matrix H in the objective function.) For a detailed description of qpHx, see §4.

For problems of type FP and LP, qpHx is never called by sqopt, and you can either
provide your own empty qpHx or use the dummy routine nullHx provided with the
SQOPT distribution.

cu(lencu), iu(leniu), ru(lenru) are 8-character, integer and real arrays of user work-
space. They may be used to pass data or workspace to your function routine qpHx
(which has the same parameters). They are not touched by sqopt.

If the function routine doesn’t reference these parameters, you may use any arrays
of the appropriate type, such as cw, iw, rw (see next paragraph). Alternatively, you
should use the latter arrays if qpHx needs to access sqopt’s workspace.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for sqopt.

lencw, leniw, lenrw must all be at least 500. In general, lencw = 500 is appropriate
but leniw and lenrw should be as large as possible because it is uncertain how much
storage will be needed for the basis factors. As an estimate, leniw should be about
10(m + n) or larger, and lenrw should be about 20(m + n) or larger.

Appropriate values may be obtained from a preliminary run with lencw = leniw =
lenrw = 500. If Print level is positive, the required amounts of workspace are
printed before sqopt terminates with inform = 42, 43 or 44. The values are
returned in mincw, miniw and minrw.

On exit:

hs gives the state of the final xs. The elements of hs have the following meaning:

hs(j) State of variable j Usual value of xs(j)
0 nonbasic bl(j)
1 nonbasic bu(j)
2 superbasic Between bl(j) and bu(j)
3 basic ditto

Basic and superbasic variables may be outside their bounds by as much as the value
of the optional parameter Feasibility tolerance. Note that if scaling is specified,
the Feasibility tolerance applies to the variables of the scaled problem. In this
case, the variables of the original problem may be as much as 0.1 outside their
bounds, but this is unlikely unless the problem is very badly scaled. Check the
“Primal infeasibility” printed after the EXIT message.
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Very occasionally some nonbasic variables may be outside their bounds by as much
as the Feasibility tolerance, and there may be some nonbasics for which xs(j)
lies strictly between its bounds.
If nInf > 0, some basic and superbasic variables may be outside their bounds by
an arbitrary amount (bounded by sInf if scaling was not used).

xs(n+m) is the final variables and slacks (x, s).

pi(m) contains the dual variables π (a set of Lagrange multipliers (shadow prices) for the
general constraints).

rc(n+m) is a vector of reduced costs, g−( A −I )T π, where g is the gradient of the objective
if xs is feasible (or the gradient of the Phase-1 objective otherwise). The last m
entries are π.

inform reports the result of the call to sqopt. Possible values are:

0 Optimal solution found. (The reduced gradients are optimal, and xs satisfies
the constraints to the accuracy requested.

1 The problem is infeasible.
2 The problem is unbounded (or badly scaled).
3 Too many iterations.
4 The QP Hessian H appears to be indefinite (the QP is non-convex).
5 The Superbasics limit is too small.
6 A weak solution has been found—i.e., the solution is not unique.

10 Numerical error in trying to satisfy the constraints Ax− s = 0. The basis is
very ill-conditioned.

20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to factorize it (and add slacks

where necessary).
30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.
42 Not enough 8-character workspace to solve the problem.
43 Not enough integer workspace to solve the problem.
44 Not enough real workspace to solve the problem.

mincw, miniw, minrw say how much character, integer and real storage is needed to solve
the problem. If SQOPT terminates because of insufficient storage (inform = 42, 43
or 44), these values may be used to define better values of lencw, leniw or lenrw.
If inform = 42, the work array cw(lencw) was too small. sqopt may be called again
with lencw suitably larger than mincw.
If inform = 43 or 44, the work arrays iw(leniw) or rw(lenrw) are too small. sqopt
may be called again with leniw or lenrw suitably larger than miniw or minrw. (The
bigger the better, since it is not certain how much storage the basis factors need.)

nS is the final number of superbasics.

nInf is the number of infeasibilities.

sInf is the sum of infeasibilities.

Obj is the value of the objective function. If nInf = 0, Obj includes the quadratic
objective if any. If nInf > 0, Obj is just the linear objective if any.
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4. User-Supplied Subroutines

For QP problems, you must provide a subroutine that defines products of the form Hx
for given vectors x. This is the only way in which SQOPT accesses the the matrix H
in the objective function. Your subroutine is input via the parameter qpHx (an external
subroutine).

(For FP and LP problems, qpHx is never called by SQOPT, and hence you can either
provide your own dummy qpHx or use the “empty” routine nullHx provided in the SQOPT

distribution.
Your version of qpHx should function as follows.

subroutine qpHx ( ncolH, x, Hx, nState,
& cu, lencu, iu, leniu, ru, lenru )

integer ncolH, nState
double precision x(ncolH), Hx(ncolH)

integer lencu, leniu, lenru
character*8 cu(lencu)
integer iu(leniu)
real ru(lenru)

On entry:

ncolH is the same as the input parameter of sqopt (0 ≤ ncolH ≤ n). ncolH must not be
altered within qpHx. Similarly for the parameters iu, leniu, ru and lenru.

If some of the variables enter the objective function linearly, then H will have zero
rows and columns. In this case, it is most efficient to order the variables so that the
nonlinear variables appear first. For example, if y contains the nonlinear variables
of x, and x = (y, z), then

Hx =

(
H1 0
0 0

)(
y

z

)
=

(
H1y

0

)
.

x contains a vector x such that the product Hx should be returned in Hx.

nState allows you to save computation time if certain data must be read or calculated only
once.

If nState = 0, there is nothing special about the current call to qpHx.

If nState = 1, SQOPT is calling your subroutine for the first time. Some data may
need to be input or computed and saved in local or common storage.

If nState ≥ 2, SQOPT is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution.

In general, the last call is made with nState = 2+ierror, where ierr indicates the
status of the final solution. In particular, if nState = 2, the current x is optimal ;
if nState = 3, the problem appears to be infeasible; if nState = 4, the problem
appears to be unbounded; and if nState = 5, the iterations limit was reached.

cu(lencu),iu(leniu), ru(lenru) are character, integer and real arrays that can be used
to pass user-defined auxiliary information into qpHx. The arrays cu, iu and ru are
not touched by sqopt and can be used to retain information between calls of qpHx.
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In certain applications, the objective may depend on the values of certain internal
SQOPT variables stored in the arrays cw, iw and rw. In this case, sqopt should be
called with cw, iw and rw as actual arguments for cu, iu and ru, thereby making
cw, iw and rw accessible to qpHx.

If you require user work space in this situation, elements 501:maxcw, 501:maxrw
and 501:maxiw of cw, rw and iw are set aside for this purpose. (See the definition of
the optional parameters User character workspace, User real workspace and
User integer workspace in §5.6.

If you do not require workspace to be passed into qpHx, the sqopt work arrays cw,
iw and rw can be used for cu, iu and ru.

On exit:

Hx should contain the product Hx for the vector stored in x.
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5. The SPECS file

The performance of SQOPT is controlled by a number of parameters or “options”. Each
option has a default value that should be appropriate for most problems. (The defaults are
given in the next section.) For special situations it is possible to specify non-standard values
for some or all of the options, using data in the following general form:

Begin SQOPT options
Iterations limit 500
Feasibility tolerance 1.0e-7
Scale all variables

End SQOPT options

We shall call such data a SPECS file, since it specifies various options. The file starts with
the keyword Begin and ends with End. The file is in free format. Each line specifies a single
option, using one or more items as follows:

1. A keyword (required for all options).

2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers
may be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated
by a space.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords
have synonyms, and certain abbreviations are allowed, as long as there is no ambiguity.
Blank lines and comments may be used to improve readability. A comment begins with an
asterisk (*), which may appear anywhere on a line. All subsequent characters on the line
are ignored.

Although most options take default values, some of them must be specified; for example,
the number of nonlinear variables if there are any.

It may be useful to include a comment on the first (Begin) line of the file. This line is
echoed to the SUMMARY file, and appears on the screen in an interactive environment.

Most of the options described in the next section should be left at their default values for
any given model. If experimentation is necessary, we recommend changing just one option
at a time.

5.1. SPECS File Checklist and Defaults

The following example SPECS file shows all valid keywords and their default values. The
keywords are grouped according to the function they perform.

Some of the default values depend on ε, the relative precision of the machine being used.
The values given here correspond to double-precision arithmetic on most current machines
(ε ≈ 2.22 × 10−16). Similar values would apply to any machine having about 15 decimal
digits of precision.
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BEGIN checklist of SPECS file parameters and their default values

* Printing

Print level 1 * 1-line iteration log
Print file 15 *

Summary file 6 * typically the screen
Print frequency 1 * iterations log on PRINT file
Summary frequency 1 * iterations log on SUMMARY file
Solution Yes * on the PRINT file

* Suppress options listing * default: options are listed

* Convergence Tolerances

Feasibility tolerance 1.0e-6 * for satisfying the simple bounds
Optimality tolerance 1.0e-6 * target value for reduced gradients

* Scaling

Scale option 2 * All constraints and variables
Scale tolerance 0.9 *

* Scale Print * default: scales are not printed

* Other Tolerances

Crash tolerance 0.1 *

LU factor tolerance 10.0 * limits size of multipliers in L
LU update tolerance 10.0 * the same during updates
LU singularity tolerance 2.0e-6 *

Pivot tolerance 3.7e-11 * ε
2
3

* LP/QP problems

Crash option 0 * all slack initial basis
Elastic weight 1.0 * used only during elastic mode
Iterations limit 10000 * or m if that is more
Minimize * (opposite of Maximize)
Partial price 1 * 10 for large LPs
Superbasics limit 500 * or n1 + 1 if that is less
Reduced Hessian dimension 500 * or Superbasics limit

Unbounded step size 1.0e+18 *

* Infeasible problems

Elastic weight 100 * used only during elastic mode
Elastic mode 1 * use elastic mode when infeasible
Elastic Objective 2 * infinite weight on the elastics

* Frequencies

Check frequency 60 * test row residuals ‖Ax− s‖
Expand frequency 10000 * for anti-cycling procedure
Factorization frequency 100 *

Save frequency 100 * save basis map

* BASIS files

OLD BASIS file 0 * input basis map
NEW BASIS file 0 * output basis map
BACKUP BASIS file 0 * output basis map
INSERT file 0 * input in industry format
PUNCH file 0 * output INSERT data
LOAD file 0 * input names and values
DUMP file 0 * output LOAD data
SOLUTION file 0 * different from printed solution
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* Partitions of cw, iw, rw

Total character workspace lencw *

Total integer workspace leniw *

Total real workspace lenrw *

User character workspace 500 *

User integer workspace 500 *

User real workspace 500 *

End of SPECS file checklist
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5.2. Subroutine sqInit

Subroutine sqInit must be called before any other SQOPT routines. It defines the PRINT

and SUMMARY files, prints a title on both files, and sets all user options to be undefined.
(sqopt will later check the options and set undefined ones to default values.)

subroutine sqInit( iPrint, iSumm,
$ cw, lencw, iw, leniw, rw, lenrw )

integer iPrint, iSumm
integer lencw, leniw, lenrw
character*8 cw(lencw)
integer iw(leniw)
double precision rw(lenrw)

On entry:

iPrint defines a unit number for the PRINT file. Typically iPrint = 9.

On some systems, the file may need to be opened before sqInit is called. If
iPrint ≤ 0, there will be no PRINT file output.

iSumm defines a unit number for the SUMMARY file. Typically iSumm = 6. (In an interac-
tive environment, this usually denotes the screen.)

On some systems, the file may need to be opened before sqInit is called. If iSumm ≤
0, there will be no SUMMARY file output.

cw(lencw), iw(leniw), rw(lenrw) must be the same arrays that are passed to sqopt
and other routines. They must all have length 500 or more.

On exit:

Some elements of cw, iw, rw are given values to indicate that most optional parameters are
undefined.
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5.3. Subroutine sqSpec

Subroutine sqSpec may be called to input a SPECS file (to specify options for a subsequent
call of sqopt).

subroutine sqSpec( iSpecs, inform,
$ cw, lencw, iw, leniw, rw, lenrw )

integer iSpecs, inform
integer lencw, leniw, lenrw
character*8 cw(lencw)
integer iw(leniw)
double precision rw(lenrw)

On entry:

iSpecs is a unit number for the SPECS file (iSpecs > 0). Typically iSpecs = 4.

On some systems, the file may need to be opened before sqSpec is called.

On exit:

cw(lencw), iw(leniw), rw(lenrw) contain the specified options.

inform is 0 if the SPECS file was successfully read. Otherwise, it returns the number of
errors encountered.
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5.4. Subroutines sqset, sqseti, sqsetr

These routines specify a single option that might otherwise be defined in one line of a SPECS

file.

subroutine sqset ( buffer, iPrint, iSumm, inform,
$ cw, lencw, iw, leniw, rw, lenrw )
subroutine sqseti( buffer, ivalue, iPrint, iSumm, inform,

$ cw, lencw, iw, leniw, rw, lenrw )
subroutine sqsetr( buffer, rvalue, iPrint, iSumm, inform,

$ cw, lencw, iw, leniw, rw, lenrw )

character*(*) buffer
integer ivalue, iPrint, iSumm, inform
double precision rvalue
integer lencw, leniw, lenrw
character*8 cw(lencw)
integer iw(leniw)
double precision rw(lenrw)

On entry:

buffer is a string to be decoded. Use sqset if the string contains all relevant data. For
example, if the value 1000 is known at compile time, say

call sqset ( ’Iterations 1000’, iPrint, iSumm, inform, ... )

Restriction: len(buffer) ≤ 72 (sqset) or ≤ 55 (sqseti and sqsetr).

ivalue is an integer value associated with the keyword in buffer. Use sqseti if it is
convenient to define the value at run time. For example, the following allows the
iterations limit to be computed:

itnlim = 1000
if (m .gt. 500) itnlim = 8000
call sqseti( ’Iterations’, itnlim, iPrint, iSumm, inform, ... )

rvalue is a real value associated with the keyword in buffer. The following illustrates how
the LU stability tolerance could be defined at run time:

factol = 100.0d+0
if ( illcon ) factol = 5.0d+0
call sqsetr( ’LU factor tol’, factol, iPrint, iSumm, inform, ...)

iPrint is a file number for printing each line of data, along with any error messages. iPrint
= 0 suppresses this output.

iSumm is a file number for printing any error messages. iSumm = 0 suppresses this output.

inform should be 0 for the first call to the sqset routines.

On exit:

inform is the number of errors encountered so far.

cw(lencw), iw(leniw), rw(lenrw) record the specified option.
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5.5. Subroutines sqgetc, sqgeti, sqgetr

These routines obtain the current value of a single option.

subroutine sqgetc( buffer, cvalue, inform,
$ cw, lencw, iw, leniw, rw, lenrw )
subroutine sqgeti( buffer, ivalue, inform,

$ cw, lencw, iw, leniw, rw, lenrw )
subroutine sqgetr( buffer, rvalue, inform,

$ cw, lencw, iw, leniw, rw, lenrw )

character*(*) buffer
character*8 cvalue
integer ivalue, inform
double precision rvalue
integer lencw, leniw, lenrw
character*8 cw(lencw)
integer iw(leniw)
double precision rw(lenrw)

On entry:

buffer is a string to be decoded. Restriction: len(buffer) ≤ 72.

inform should be 0 for the first call to the sqget routines.

On exit:

cvalue is a string associated with the keyword in buffer. Use sqgetc to obtain the names
...
For example, if ..., say

call sqgetc( ’Bounds’, inform, ... )

ivalue is an integer value associated with the keyword in buffer. Example:

call sqgeti( ’Iterations limit’, itnlim, inform, ... )

rvalue is a real value associated with the keyword in buffer. Example:

call sqgetr( ’LU factor tol’, factol, inform, ...)

inform is the number of errors encountered so far.

cw(lencw), iw(leniw), rw(lenrw) contain the required option value.
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5.6. Description of the optional parameters

The following is an alphabetical list of the options that may appear in the SPECS file, and
a description of their effect.

Backup Basis file i Default = 0

This is intended as a safeguard against losing the results of a long run. Suppose that a
NEW BASIS file is being saved every 100 iterations, and that SQOPT is about to save such
a basis at iteration 2000. It is conceivable that the run may be interrupted during the next
few milliseconds (in the middle of the save). In this case the basis file will be corrupted and
the run will have been essentially wasted.

To eliminate this risk, both a NEW BASIS file and a BACKUP BASIS file may be specified.
The following would be suitable for the above example:

OLD BASIS file 11 (or 0)
BACKUP BASIS file 11
NEW BASIS file 12
Save frequency 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file 11. If the run is interrupted at iteration 2000 during the save on file 12, there will
still be a usable basis on file 11 (corresponding to iteration 1900).

Note that a NEW BASIS will be saved at the end of a run if it terminates normally, but
there is no need for a further BACKUP BASIS. In the above example, if an optimum solution
is found at iteration 2050 (or if the iteration limit is 2050), the final basis on file 12 will
correspond to iteration 2050, but the last basis saved on file 11 will be the one for iteration
2000.

Check frequency k Default = 60

Every kth iteration after the most recent basis factorization, a numerical test is made to see
if the current solution x satisfies the general constraints. The constraints are of the form
Ax− s = 0, where s is the set of slack variables. To perform the numerical test, the residual
vector r = s−Ax is computed. If the largest component of r is judged to be too large, the
current basis is refactorized and the basic variables are recomputed to satisfy the general
constraints more accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should
not be needed.

Crash option i Default = 0
Crash tolerance r Default = 0.1

Except on restarts, a CRASH procedure is used to select an initial basis from certain rows
and columns of the constraint matrix ( A − I ). The Crash option i determines which
rows and columns of A are eligible initially, and how many times CRASH is called. Columns
of −I are used to pad the basis where necessary.

i Meaning

0 The initial basis contains only slack variables: B = I.

1 CRASH is called once, looking for a triangular basis in all rows and columns of the
matrix A.
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2 CRASH is called once, looking for a triangular basis in linear rows.

3 CRASH is called twice. The two calls treat linear equalities and linear inequalities
separately.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2,
numerical values are used to exclude slacks that are close to a bound.) CRASH then makes
several passes through the columns of A, searching for a basis matrix that is essentially
triangular. A column is assigned to “pivot” on a particular row if the column contains
a suitably large element in a row that has not yet been assigned. (The pivot elements
ultimately form the diagonals of the triangular basis.) For remaining unassigned rows, slack
variables are inserted to complete the basis.

The Crash tolerance r allows the starting procedure CRASH to ignore certain “small”
nonzeros in each column of A. If amax is the largest element in column j, other nonzeros aij

in the column are ignored if |aij | ≤ amax × r. (To be meaningful, r should be in the range
0 ≤ r < 1.)

When r > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is
likely to be nonsingular and almost triangular. The intention is to obtain a starting basis
containing more columns of A and fewer (arbitrary) slacks. A feasible solution may be
reached sooner on some problems.

For example, suppose the first m columns of A form the matrix shown under LU factor
tolerance; i.e., a tridiagonal matrix with entries −1, 4, −1. To help CRASH choose all m
columns for the initial basis, we would specify Crash tolerance r for some value of r > 1/4.

Dump File i Default = 0

If i > 0, the last solution obtained will be output to the file with unit number i in the format
described in §9.3. The file will usually have been output previously as a LOAD file.

Elastic mode i Default = 1

This parameter determines if (and when) elastic mode is to be started. Three elastic modes
are available as follows:

i Meaning

0 Elastic mode is never invoked. SQOPT will terminate as soon as infeasibility is de-
tected. There may be other points with significantly smaller sums of infeasibilities.

1 Elastic mode is invoked only if the constraints are found to be infeasible (the default).
If the constraints are infeasible, continue in elastic mode with the composite objective
determined by the values of Elastic objective and Elastic weight.

2 The iterations start and remain in elastic mode. This option allows you to minimize
the composite objective function directly without first performing phase-1 iterations.

The success of this option will depend critically on your choice of Elastic weight. If
Elastic weight is sufficiently large and the constraints are feasible, the minimizer of
the composite objective and the solution of the original problem are identical. How-
ever, if the Elastic weight is not sufficiently large, the minimizer of the composite
function may be infeasible, even though a feasible point for the constraints may exist.
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Elastic objective i Default = 2

This option determines the form of the composite objective. Three types of composite
objectives are available.

i Meaning

0 Include only the true objective q(x) in the composite objective. This option sets γ = 0
in the composite objective and will allow SQOPT to ignore the elastic bounds and find
a solution that minimzes q subject to the nonelastic constraints. This option is useful
if there are some “soft” constraints that you would like to ignore if the constraints are
infeasible.

1 Use a composite objective defined with γ determined by the value of Elastic weight.
This value is intended to be used in conjunction with Elastic mode = 2.

2 Include only the elastic variables in the composite objective. The elastics are weighted
by γ = 1. This choice minimizes the violations of the elastic variable at the expense
of possibly increasing the true objective. This option can be used to find a point
that minimizes the sum of the violations of a subset of constraints determined by the
parameter helast.

Elastic weight r Default = 1.0

This keyword defines the value of γ in the composite objective.

• At each iteration of elastic mode, the composite objective is defined to be

minimize σq(x) + r(sum of infeasibilities),

where σ = 1 for Minimize, σ = −1 for Maximize, and q is the current objective value.

• Note that the effect of r is not disabled once a feasible iterate is obtained.

Expand frequency i Default = 10000

This option is part of the EXPAND anti-cycling procedure [5] designed to make progress
even on highly degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the
bounds on the variables by a small amount. Suppose that the Feasibility tolerance is
δ. Over a period of i iterations, the tolerance actually used by SQOPT increases from 0.5δ
to δ (in steps of 0.5δ/i).

Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most
of which are eliminated during a resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see Pivot tolerance).

Factorization Frequency k Default = 100 (LP) or 50 (QP)

At most k basis changes will occur between factorizations of the basis matrix.

• With linear programs, the basis factors are usually updated every iteration. The
default k is reasonable for typical problems. Higher values up to k = 100 (say) may
be more efficient on problems that are extremely sparse and well scaled.
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• When the objective function is quadratic, fewer basis updates will occur as an optimum
is approached. The number of iterations between basis factorizations will therefore
increase. During these iterations a test is made regularly (according to the Check
frequency) to ensure that the general constraints are satisfied. If necessary the basis
will be refactorized before the limit of k updates is reached.

Feasibility tolerance t Default = 1.0E-6

A feasible problem is one in which all variables satisfy their upper and lower bounds to within
the absolute tolerance t. (This includes slack variables. Hence, the general constraints are
also satisfied to within t.)

• SQOPT attempts to find a feasible point for the non-elastic constraints before opti-
mizing the objective. If the sum of the infeasibilities of these constraints cannot be
reduced to zero, the problem is declared INFEASIBLE. If sInf is quite small, it may
be appropriate to raise t by a factor of 10 or 100. Otherwise, some error in the data
should be suspected.

• Note: if sInf is not small and you have not asked SQOPT to minimize the violations of
the elastic variables (i.e., you have not specified Elastic objective = 2, there may
be other points that have a significantly smaller sum of infeasibilities. SQOPT will not
attempt to find the solution that minimizes the sum unless Elastic objective = 2.

• If scale is used, feasibility is defined in terms of the scaled problem (since it is then
more likely to be meaningful).

Insert File f Default = 0

If f > 0, this references a file containing basis information in the format of §9.2.

• The file will usually have been output previously as a punch file.

• The file will not be accessed if an old basis file is specified.

Infinite Bound Size r Default = 1.0E+20

If r > 0, r defines the “infinite” bound BigBnd in the definition of the problem constraints.
Any upper bound greater than or equal to BigBnd will be regarded as plus infinity (and
similarly for a lower bound less than or equal to −BigBnd). If r ≤ 0, the default value is
used.

Iterations Limit k Default = 3 ∗ m
This is the maximum number of iterations of the simplex method or the QP reduced-gradient
algorithm allowed.

• Itns is an alternative keyword.

• k = 0 is valid. Both feasibility and optimality are checked.

Load File f Default = 0

If f > 0, this references a file containing basis information in the format of §9.3.
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• The file will usually have been output previously as a DUMP file.

• The file will not be accessed if an OLD BASIS file or an INSERT file is specified.

Log Frequency k Default = 1
see Print Frequency

LU factor tolerance r1 Default = 100.0
LU update tolerance r2 Default = 10.0

These tolerances affect the stability and sparsity of the basis factorization B = LU during
refactorization and updating, respectively. They must satisfy r1, r2 ≥ 1.0. The matrix L is
a product of matrices of the form (

1
µ 1

)
,

where the multipliers µ satisfy |µ| ≤ ri. Smaller values of ri favor stability, while larger
values favor sparsity. The default values usually strike a good compromise.

• For large and relatively dense problems, r1 = 10.0 or 5.0 (say) may give a useful
improvement in stability without impairing sparsity to a serious degree.

• For certain very regular structures (e.g., band matrices) it may be necessary to reduce
r1 and/or r2 in order to achieve stability. For example, if the columns of A include a
submatrix of the form 

4 −1
−1 4 −1

−1 4 −1
. . . . . . . . .

−1 4 −1
−1 4


,

one should set both r1 and r2 to values in the range 1.0 ≤ ri < 4.0.

LU singularity tolerance r3 Default = ε2/3

This tolerance should satisfy r3 ≤ ε1/4 ≈ 10−4. It helps guard against ill-conditioned basis
matrices. When the LU factors of B are computed directly (not updated), the diagonal
elements of U are tested as follows: if |Ujj | ≤ r3 or |Ujj | < r3 maxi |Uij |, the j-th column of
the basis is replaced by the corresponding slack variable. (Replacements are rare because the
LU updating method is stable. They are most likely to occur during the first factorization.)

LU density tolerance r1 Default = 0.6
LU singularity tolerance r2 Default = ε2/3 ≈ 10−11

The density tolerance r1 is used during LU factorization of the basis matrix. Columns of L
and rows of U are formed one at a time, and the remaining rows and columns of the basis
are altered appropriately. At any stage, if the density of the remaining matrix exceeds r1,
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the Markowitz strategy for choosing pivots is altered to reduce the time spent searching for
each remaining pivot. Raising the density tolerance towards 1.0 may give slightly sparser
LU factors, with a slight increase in factorization time.

The singularity tolerance r2 helps guard against ill-conditioned basis matrices. When
the basis is refactorized, the diagonal elements of U are tested as follows: if |Ujj | ≤ r2 or
|Ujj | < r2 maxi |Uij |, the jth column of the basis is replaced by the corresponding slack
variable. (This is most likely to occur after a restart, or at the start of a major iteration.)

Minimize Default
Maximize

This specifies the required direction of optimization. It applies to both linear and quadratic
terms in the objective.

New Basis File f Default = 0

If f > 0, a basis map will be saved on file f every kth iteration, where k is the Save
frequency.

• The first card of the file will contain the word PROCEEDING if the run is still in progress.

• If f > 0, a basis map will also be saved at the end of a run, with some other word
indicating the final solution status.

Old Basis File f Default = 0

If f > 0, the starting point will be obtained from this file in the format of §9.1.

• The file will usually have been output previously as a NEW BASIS file.

• The file will not be acceptable if the number of rows or columns in the problem has
been altered.

Optimality tolerance t Default = 1.0e-6

This is used to judge the size of the reduced gradients dj = gj − πT aj , where gj is the jth
component of the gradient, aj is the associated column of the constraint matrix tmatA−I,
and π is the set of dual variables.

• By construction, the reduced gradients for basic variables are always zero. The prob-
lem will be declared optimal if the reduced gradients for nonbasic variables at their
lower or upper bounds satisfy

dj/‖π‖ ≥ −t or dj/‖π‖ ≤ t

respectively, and if |dj |/‖π‖ ≤ t for superbasic variables.

• In the above tests, ‖π‖ is a measure of the size of the dual variables. It is included to
make the tests independent of a scale factor on the objective function.

• The quantity ‖π‖ actually used is defined by

‖π‖ = max{σ/
√

m, 1}, where σ =
m∑

i=1

|πi|,

so that only large scale factors are allowed for.
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• If the objective is scaled down to be very small, the optimality test reduces to com-
paring dj against 0.01t.

Partial Price i Default = 10 (LP) or 1 (QP)

This parameter is recommended for large problems that have significantly more variables
than constraints. It reduces the work required for each “pricing” operation (when a nonbasic
variable is selected to become superbasic).

• When i = 1, all columns of the constraint matrix ( A − I ) are searched.

• Otherwise, A and I are partitioned to give i roughly equal segments Aj , Ij (j = 1 to
i). If the previous pricing search was successful on Aj , Ij , the next search begins on
the segments Aj+1, Ij+1. (All subscripts here are modulo i.)

• If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to become
superbasic. If nothing is found, the search continues on the next segments Aj+2, Ij+2,
and so on.

• Partial price t (or t/2 or t/3) may be appropriate for time-stage models having t
time periods.

Pivot Tolerance r Default = ε2/3

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they
would cause the basis to become almost singular.

• When x changes to x+αp for some search direction p, a “ratio test” is used to determine
which component of x reaches an upper or lower bound first. The corresponding
element of p is called the pivot element.

• For linear problems, elements of p are ignored (and therefore cannot be pivot elements)
if they are smaller than the pivot tolerance r.

• It is common for two or more variables to reach a bound at essentially the same time.
In such cases, the Feasibility tolerance (say t) provides some freedom to maximize
the pivot element and thereby improve numerical stability. Excessively small values
of t should therefore not be specified.

• To a lesser extent, the Expand frequency (say f) also provides some freedom to
maximize the pivot element. Excessively large values of f should therefore not be
specified.

Print frequency k Default = 1

One line of the iteration log will be printed every kth iteration. A value such as k = 10 is
suggested for those interested only in the final solution.

Print level k Default = 1

This controls the amount of printing produced by SQOPT as follows.
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0 No output except error messages. If you want to suppress all output, set Print file =
0.

≥ 1 The set of selected options (including workspace limits), problem statistics, summary
of the scaling procedure, information about the initial basis resulting from a CRASH or
a BASIS file. A single line of output each iteration (controlled by Print frequency),
and the exit condition with a summary of the final solution.

≥ 10 Basis factorization statistics.

Punch file f Default = 0

If f > 0, the final solution obtained will be output to file f in the format described in §9.2.
For linear programs, this format is compatible with various commercial systems.

Save frequency k Default = 100

If a NEW BASIS file has been specified, a basis map describing the current solution will be
saved on the appropriate file every kth iteration. A BACKUP BASIS file will also be saved
if specified.

Scale option i Default = 2 (LP) or 1 (QP)
Scale tolerance r Default = 0.9
Scale Print

Three scale options are available as follows:

i Meaning

0 No scaling. This is recommended if it is known that x and the constraint matrix never
have very large elements (say, larger than 1000).

1 The constraints and variables are scaled by an iterative procedure that attempts to
make the matrix coefficients as close as possible to 1.0 (see Fourer [1]). This will
sometimes improve the performance of the solution procedures.

2 The constraints and variables are scaled by the iterative procedure. Also, a certain
additional scaling is performed that may be helpful if the right-hand side b or the
solution x is large. This takes into account columns of (A −I ) that are fixed or have
positive lower bounds or negative upper bounds.

Scale tolerance affects how many passes might be needed through the constraint ma-
trix. On each pass, the scaling procedure computes the ratio of the largest and smallest
nonzero coefficients in each column:

ρj = max
i
|aij |/ min

i
|aij | (aij 6= 0).

If maxj ρj is less than r times its previous value, another scaling pass is performed to adjust
the row and column scales. Raising r from 0.9 to 0.99 (say) usually increases the number
of scaling passes through A. At most 10 passes are made.

Scale Print causes the row-scales r(i) and column-scales c(j) to be printed. The scaled
matrix coefficients are āij = aijc(j)/r(i), and the scaled bounds on the variables and slacks
are l̄j = lj/c(j), ūj = uj/c(j), where c(j) ≡ r(j − n) if j > n.
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Solution Yes
Solution No
Solution If Optimal, Infeasible, or Unbounded
Solution File f Default = 0

The first four options determine whether the final solution obtained is to be output to the
PRINT file. The FILE option operates independently; if f > 0, the final solution will be
output to file f (whether optimal or not).

• For the YES, IF OPTIMAL, and IF ERROR options, floating-point numbers are printed
in F16.5 format, and “infinite” bounds are denoted by the word NONE.

• For the FILE option, all numbers are printed in 1pe16.6 format, including “infinite”
bounds which will have magnitude 1.000000E+20.

• To see more significant digits in the printed solution, it will sometimes be useful to
make f refer to the system PRINT file.

Summary file f Default = 6
Summary frequency k Default = 100

If f > 0, a brief log will be output to file f , including one line of information every kth
iteration. In an interactive environment, it is useful to direct this output to the terminal,
to allow a run to be monitored on-line. (If something looks wrong, the run can be manually
terminated.) Further details are given in §6.7.

Superbasics limit i Default = min{500, n1 + 1}

This places a limit on the storage allocated for superbasic variables. Ideally, i should be set
slightly larger than the “number of degrees of freedom” expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom.
(The number of variables lying strictly between their bounds is no more than m, the number
of general constraints.) The default value of i is therefore 1.

For quadratic problems, the number of degrees of freedom is often called the “number
of independent variables”.

• Normally, i need not be greater than ncolH+1, where ncolH is the number of leading
nonzero columns of H.

• For many problems, i may be considerably smaller than ncolH. This will save storage
if ncolH is very large.

• This parameter also sets the Reduced Hessian dimension, unless the latter is speci-
fied explicitly (and conversely).

Suppress Parameters

Normally SQOPT prints the SPECS file as it is being read, and then prints a complete list
of the available keywords and their final values. The Suppress Parameters option tells
SQOPT not to print the full list.
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Total real workspace maxrw Default = lenrw
Total integer workspace maxiw Default = leniw
Total character workspace maxcw Default = lencw
User real workspace maxru Default = 500
User integer workspace maxiu Default = 500
User character workspace maxcu Default = 500

These options may be used to confine SQOPT to certain parts of its workspace arrays cw,
iw, rw. (The arrays are defined by the last six parameters of sqopt.)

The Total ... options place an upper limit on sqopt’s workspace. They may be useful
on machines with virtual memory. For example, some systems allow a very large array
rw(lenrw) to be declared at compile time with no overhead in saving the resulting object
code. At run time, when various problems of different size are to be solved, it may be
sensible to restrict SQOPT to the lower end of rw in order to reduce paging activity slightly.
(However, SQOPT accesses storage contiguously wherever possible, so the benefit may be
slight. In general it is far better to have too much storage than not enough.)

If sqopt’s “user” parameters ru, lenru happen to be the same as rw, lenrw, the nonlinear
function routines will be free to use ru(maxrw +1 : lenru) for their own purpose. Similarly
for the other work arrays.

The User ... options place a lower limit on sqopt’s workspace (not counting the first
500 elements). Again, if sqopt’s parameters ru, lenru happen to be the same as rw, lenrw,
the function routines will be free to use ru(501 : maxru) for their own purpose. Similarly
for the other work arrays.

Unbounded Step Size αmax Default = 1.0E+18

This parameter is intended to detect unboundedness in a quadratic problem. (It may or
may not achieve that purpose!) During a line search, q is evaluated at points of the form
x + αp, where x and p are fixed and α varies. if α exceeds αmax, iterations are terminated
with the exit message problem is unbounded.

Note that unboundedness in x is best avoided by placing finite upper and lower bounds
on the variables.
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6. Output

The following information is output to the PRINT file during the solution of each problem
referred to in the SPECS file.

• A listing of the relevant part of the SPECS file.

• A listing of the parameters that were or could have been set in the SPECS file.

• An estimate of the amount of working storage needed, compared to how much is
available.

• Some statistics about the problem.

• The amount of storage available for the LU factorization of the basis matrix.

• A summary of the scaling procedure, if Scale was specified.

• Notes about the initial basis resulting from a CRASH procedure or a BASIS file.

• The iteration log.

• Basis factorization statistics.

• The EXIT condition and some statistics about the solution obtained.

• The printed solution, if requested.

The last four items are described in the following sections. Further brief output may be
directed to the SUMMARY file, as discussed in §6.7.

6.1. The iteration Log

If Print level > 0, one line of information is output to the PRINT file every kth iteration,
where k is the specified Print frequency (default k = 1). A heading is printed before
the first such line following a basis factorization. The heading contains the items described
below. In this description, a PRICE operation is defined to be the process by which one or
more nonbasic variables are selected to become superbasic (in addition to those already in
the superbasic set). The variable selected will be denoted by jq. If the problem is purely
linear, variable jq will usually become basic immediately (unless it should happen to reach
its opposite bound and return to the nonbasic set).

If Partial price is in effect, variable jq is selected from App or Ipp, the ppth segments
of the constraint matrix ( A − I ).

Label Description

Itn The current iteration number.

pp The Partial Price indicator. The variable selected by the last PRICE operation
came from the ppth partition of A and −I. pp is set to zero when the basis is
refactored.

dj This is dj, the reduced cost (or reduced gradient) of the variable jq selected by
PRICE at the start of the present iteration. Algebraically, dj is dj = gj −πT aj for
j = jq, where gj is the gradient of the current objective function, π is the vector
of dual variables, and aj is the jth column of the constraint matrix (A − I ).

Note that dj is the norm of the reduced-gradient vector at the start of the iteration,
just after the PRICE operation.



6. Output 35

+SBS The variable jq selected by PRICE to be added to the superbasic set.

-SBS The variable chosen to leave the set of superbasics. It has become basic if the
entry under -B is nonzero; otherwise it has become nonbasic.

-BS The variable removed from the basis (if any) to become nonbasic.

-B The variable removed from the basis (if any) to swap with a slack variable made
superbasic by the latest PRICE. The swap is done to ensure that there are no
superbasic slacks.

Step The step length α taken along the current search direction p. The variables x have
just been changed to x + αp. If a variable is made superbasic during the current
iteration (i.e., +SBS is positive), Step will be the step to the nearest bound. During
phase 2, the step can be greater than one only if the reduced Hessian is not positive
definite.

Pivot If column aq replaces the rth column of the basis B, Pivot is the rth element of a
vector y satisfying By = aq. Wherever possible, Step is chosen to avoid extremely
small values of Pivot (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the Pivot tolerance to exclude very small
elements of y from consideration during the computation of Step.

L The number of nonzeros representing the basis factor L. Immediately after a
basis factorization B = LU , this is lenL, the number of subdiagonal elements in
the columns of a lower triangular matrix. Further nonzeros are added to L when
various columns of B are later replaced. (Thus, L increases monotonically.)

U The number of nonzeros in the basis factor U . Immediately after a basis factor-
ization, this is lenU, the number of diagonal and superdiagonal elements in the
rows of an upper-triangular matrix. As columns of B are replaced, the matrix U is
maintained explicitly (in sparse form). The value of U may fluctuate up or down;
in general it will tend to increase.

ncp The number of compressions required to recover storage in the data structure for
U . This includes the number of compressions needed during the previous basis
factorization. Normally ncp should increase very slowly. If not, the amount of
integer and real workspace available to SQOPT should be increased by a significant
amount. As a suggestion, the work arrays iw(*) and rw(*) should be extended
by L + U elements.

nInf The number of infeasibilities before the present iteration. This number will not
increase unless the iterations are in elastic mode.

Sinf,Objective If nInf > 0, this is sInf, the sum of infeasibilities before the present
iteration. (It will usually decrease at each nonzero Step, but if nInf decreases
by 2 or more, sInf may occasionally increase. However, in elastic mode, it will
decrease monotonically.)

Otherwise, it is the value of the current objective function after the present iter-
ation.

Note: If Elastic mode = 2, the heading is Composite Obj.

The following items are printed if the problem is a QP or if the superbasic set is non-empty
(i.e., if the current solution is nonbasic).

Label Description



36 References

Norm rg This quantity is rg, the norm of the reduced-gradient vector at the start of the
iteration. (It is the Euclidean norm of the vector with elements dj for variables j
in the superbasic set. During phase 2 this norm will be approximately zero after
a unit step.

nS The current number of superbasic variables.

Cond Hz An estimate of the condition number of the reduced Hessian. It is the square of
the ratio of the largest and smallest diagonals of the upper triangular matrix R.
This constitutes a lower bound on the condition number of the reduced Hessian
RT R.

To guard against high values of cond Hz, attention should be given to the scaling
of the variables and the constraints.

6.2. Basis Factorization Statistics

When Print Level ≥ 20 and Print file > 0, the following lines of intermediate printout
(< 120 characters) are produced on the unit number specified by Print file whenever the
matrix B or BS = (B S )T is factorized. Gaussian elimination is used to compute an LU
factorization of B or BS , where PLPT is a lower triangular matrix and PUQ is an upper
triangular matrix for some permutation matrices P and Q. This factorization is stabilized
in the manner described under LU factor tolerance in §5.6.

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

Code Meaning

0 First LU factorization.

1 Number of updates reached the value of the optional parameter
Factorization Frequency.

2 Excessive non-zeros in updated factors.

7 Not enough storage to update factors.

10 Row residuals too large (see the description for Check Frequency).

11 Ill-conditioning has caused inconsistent results.

Iteration The current iteration number.

Infeas The number of infeasibilities at the start of the previous iteration.

Objective If Infeas > 0, this is the sum of infeasibilities at the start of the previous
iteration.

If Infeas = 0, this is the value of the objective function after the previous
iteration.

Nonlinear The number of nonlinear variables in the current basis B. (not printed if BS is
factorized).

Linear The number of linear variables in B. (not printed if BS is factorized).

Slacks The number of slack variables in B. (not printed if BS is factorized).

Elems The number of nonzero matrix elements in B. (not printed if BS is factorized).
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Density The percentage nonzero density of B, 100×Elems/(m×m), where m is the number
of rows in the problem (m = Linear + Slacks).

Comprssns The number of times the data structure holding the partially factored matrix
needed to be compressed, to recover unused storage. Ideally this number should
be zero. If it is more than 3 or 4, the amount of workspace available to SQOPT

should be increased for efficiency.

Merit The average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be (c− 1)(r− 1) where c and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of m such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization.

lenL The number of nonzeros in L. On most machines, each nonzero is represented
by one eight-byte REAL and two two-byte integer data types.

lenU The number of nonzeros in U . The storage required for each nonzero is the
same as for the nonzeros of L.

Increase The percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B; i.e., 100× (lenL + lenU− Elems)/Elems.

m is the number of rows in the problem. Note that m = Ut + Lt + bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax The maximum subdiagonal element in the columns of L. This will be no larger
than the LU factor tolerance.

Bmax The maximum nonzero element in B.

Umax The maximum nonzero element in U , excluding elements of B that remain in
U unaltered. (For example, if a slack variable is in the basis, the corresponding
row of B will become a row of U without alteration. Elements in such rows will
not contribute to Umax. If the basis is strictly triangular, none of the elements
of B will contribute, and Umax will be zero.)

Ideally, Umax should not be substantially larger than Bmax. If it is several orders
of magnitude larger, it may be advisable to reduce the LU factor tolerance
to some value nearer 1.0. (The default value is 10.0.)

Umax is not printed if BS is factorized.

Umin The smallest diagonal element of PUQ in absolute magnitude.

Growth The ratio Umax/Bmax, which should not be too large (see above).

As long as Lmax is not large (say 10.0 or less), the ratio
max{Bmax, Umax} / Umin gives an estimate of the condition number of B. If
this number is extremely large, the basis is nearly singular and some numerical
difficulties could conceivably occur. (However, an effort is made to avoid near-
singularity by using slacks to replace columns of B that would have made Umin
extremely small. Messages are issued to this effect, and the modified basis is
refactored.)

Lt is the number of triangular columns of B at the beginning of L.
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bp is the size of the “bump” or block to be factorized nontrivially after the trian-
gular rows and columns have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.6.

6.3. Crash statistics

When Print Level ≥ 20 and Print file > 0, the following CRASH statistics (< 120
characters) are produced on the unit number specified by Print file whenever Start =
’Cold’ (see §5.6). They refer to the number of columns selected by the CRASH procedure
during each of several passes through A, whilst searching for a triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis.

Preferred is the number of “preferred” columns in the basis (i.e., hs(j) = 3 for some
j ≤ n).

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis.

6.4. EXIT conditions

For each problem in the SPECS file, a message of the form EXIT -- message is printed to
summarize the final result. Here we describe each message and suggest possible courses of
action.

A number is associated with each message below. It is the final value assigned to the
integer variable inform.

The following messages arise when the SPECS file is found to contain

no further problems.

-2. EXIT -- input error. SQOPT encountered end-of-file or an
endrun card before finding a specs file on unit nn

The SPECS file may not be properly assigned. Its unit number nn is defined at compile
time in subroutine sqInit, and normally it is the system card input stream.

Otherwise, the SPECS file may be empty, or cards containing the keywords Skip or
Endrun may imply that all problems should be ignored (see §5).

-1. ENDRUN
This message is printed at the end of a run if SQOPT terminates of its own accord. Oth-

erwise, the operating system will have intervened for one of many possible reasons (excess
time, missing file, arithmetic error in the user routine, etc.).

The following messages arise when optimization terminates gracefully.
A solution exists, any of the BASIS files may be saved, and the solution
will be printed and/or saved on the SOLUTION file if requested.



6. Output 39

0. EXIT -- optimal solution found
The final point seems to be a unique solution of LCQP. This means that x is feasible (it

satisfies the constraints to the accuracy requested by the Feasibility tolerance), the
reduced gradient is negligible, the reduced costs are optimal, and R is nonsingular.

The input data for sqopt should always be checked (even if sqopt terminates with the
value inform = 0!).

1. EXIT -- the problem is infeasible
Feasibility is measured with respect to the upper and lower bounds on the variables. The

message tells us that among all the points satisfying the general constraints Ax − s = 0,
there is apparently no point that satisfies the bounds on x and s. Violations as small as
the Feasibility tolerance are ignored, but at least one component of x or s violates a
bound by more than the tolerance.

Note: Although the objective function is the sum of infeasibilities (when nInf > 0), this
sum will usually not have been minimized when SQOPT recognizes the situation and exits.
There may exist other points that have a significantly lower sum of infeasibilities.

2. EXIT -- the problem is unbounded (or badly scaled)
For linear problems, unboundedness is detected by the simplex method when a nonbasic

variable can apparently be increased or decreased by an arbitrary amount without causing
a basic variable to violate a bound. A message prior to the EXIT message will give the
index of the nonbasic variable. Consider adding an upper or lower bound to the variable.
Also, examine the constraints that have nonzeros in the associated column, to see if they
have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give
an erroneous indication of unboundedness. Consider using the Scale option.

3. EXIT -- iteration limit exceeded
The Iterations limit was exceeded before the required solution could be found. Check

the iteration log to be sure that progress was being made. If so, restart the run using a
basis file that was saved (or should have been saved!) at the end of the run.

4. EXIT -- QP Hessian appears to be indefinite
The problem appears to be nonconvex and cannot be solved using this version of SQOPT.

The matrix H cannot be positive semidefinite, i.e., there must exist a vector y such that
yT Hy < 0.

You should check that qpHx is coded correctly and that all relevant components of Hx
are assigned their correct values.

5. EXIT -- the superbasics limit is too small: nnn
The problem appears to be more nonlinear than anticipated. The current set of basic and

superbasic variables have been optimized as much as possible and a PRICE operation is
necessary to continue, but there are already nnn superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind the
storage needed for the reduced Hessian. (The Hessian dimension h will also increase to s
unless specified otherwise, and the associated storage will be about 1

2s2 words.) In extreme
cases you may have to set h < s to conserve storage, but beware that the rate of convergence
will probably fall off severely.

6. EXIT -- weak solution found
The final point is a weak minimizer. (The objective value is a global optimum, but it may
be achieved by an infinite set of points x.)

This exit will occur when (i) the problem is feasible, (ii) the reduced gradient is negligible,
(iii) the Lagrange multipliers are optimal, and (iv) the reduced Hessian is singular or there
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are some very small multipliers. This exit cannot occur if H is positive definite (i.e., q(x) is
strictly convex).

10. EXIT -- cannot satisfy the general constraints
An LU factorization of the basis has just been obtained and used to recompute the basic

variables xB, given the present values of the superbasic and nonbasic variables. A single step
of “iterative refinement” has also been applied to increase the accuracy of xB. However, a
row check has revealed that the resulting solution does not satisfy the current constraints
Ax− s = 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. Request the Scale
option if there are any linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a sys-
tematic growth may occur in the factor U . Consult the description of Umax, Umin and
Growth in §6.2, and set the LU factor tolerance to 2.0 (or possibly even smaller, but not
less than 1.0).

If the following exits occur during the first basis factorization, the
basic variables xB will have certain default values that may not be
particularly meaningful, and the dual vector π will be zero. BASIS

files will be saved if requested, but certain values in the printed solu-
tion will not be meaningful. The problem will be terminated.

20. EXIT -- not enough integer/real storage for the basis factors
The main integer or real storage array iw(*) or rw(*) is apparently not large enough for

this problem. The routine declaring rw should be recompiled with a larger dimension for rw
or iw. The new value should also be assigned to leniw or lenz.

In some cases it may be sufficient to increase the specified Workspace (user), if it is
currently less than Workspace (total).

An estimate of the additional storage required is given in messages preceding the exit.

21. EXIT -- error in basis package
A preceding message will describe the error in more detail. One such message says that

the current basis has more than one element in row i and column j. This could be caused
by a corresponding error in the input parameters a(*), ha(*), and ka(*).

22. EXIT -- singular basis after nnn factorization attempts
This exit is highly unlikely to occur. The first factorization attempt will have found the

basis to be structurally or numerically singular. (Some diagonals of the triangular matrix
PUQ were respectively zero or smaller than a certain tolerance.) The associated variables
are replaced by slacks and the modified basis is refactorized. The ensuing singularity must
mean that the problem is badly scaled, or the LU factor tolerance is too high.

If the following messages arise, either an OLD BASIS file could not be
loaded properly, or some fatal system error has occurred. New BASIS

files cannot be saved, and there is no solution to print. The problem
is abandoned.

30. EXIT -- the basis file dimensions do not match this problem
On the first line of the OLD BASIS file, the dimensions labelled m and n are different from

those associated with the problem that has just been defined. You have probably loaded a
file that belongs to some other problem.
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Remember, if you have added rows or columns to a(*), ha(*) and ka(*), you will have
to alter m and n and the map beginning on the third line (a hazardous operation). It may
be easier to restart with a PUNCH or DUMP file from the earlier version of the problem.

31. EXIT -- the basis file state vector does not match this problem
For some reason, the OLD BASIS file is incompatible with the present problem, or is not

consistent within itself. The number of basic entries in the state vector (i.e., the number of
3’s in the map) is not the same as m on the first card, or else some of the 2’s in the map did
not have a corresponding “j xj” entry following the map.

32. EXIT -- system error. Wrong no. of basic variables: nnn
This exit should never happen. If it does, something is seriously awry in the SQOPT source
code. Perhaps the single- and double-precision files have been mixed up.

The following messages arise if additional storage is needed to allow

optimization to begin. The problem is abandoned.

42. EXIT -- not enough 8-character storage to start solving the problem
The main character storage array cw(*) is not large enough.

43. EXIT -- not enough integer storage to start solving the problem
The main integer storage array iw(*) is not large enough to provide workspace for the

optimization procedure. See the advice given for Exit 20.

44. EXIT -- not enough real storage to start solving the problem
The main real storage array rw(*) is not large enough to provide workspace for the op-

timization procedure. Be sure that the Superbasics limit and Hessian dimension are
not unreasonably large. Otherwise, see the advice given for Exit 43.
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6.5. Solution Output

At the end of a run, the final solution will be output to the PRINT file in accordance with
the Solution keyword. Some header information appears first to identify the problem and
the final state of the optimization procedure. A ROWS section and a COLUMNS section
then follow, giving one line of information for each row and column. The format used is
similar to that seen in commercial systems, though there is no rigid industry standard.

The ROWS section

The general constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the
form

α ≤ aTx ≤ β.

Internally, the constraints take the form Ax − s = 0, where s is the set of slack variables
(which happen to satisfy the bounds l ≤ s ≤ u). For the ith constraint it is the slack
variable si that is directly available, and it is sometimes convenient to refer to its state. To
reduce clutter, a “·” is printed for any numerical value that is exactly zero.

Label Description

Number The value n + i. This is the internal number used to refer to the ith slack in the
iteration log.

Row The name of the ith row.

State The state of the ith row relative to the bounds α and β. The various states possible
are as follows.

LL The row is at its lower limit, α.

UL The row is at its upper limit, β.

EQ The lower and upper limit are the same, α = β.

BS The constraint is not binding. si is basic.

SBS The constraint is not binding. si is superbasic.

A key is sometimes printed before the State to give some additional information
about the state of the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient
is essentially zero. This means that if the slack were allowed to start moving
away from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change, giving
a genuine alternative solution. However, if there are any degenerate variables
(labelled D), the actual change might prove to be zero, since one of them could
encounter a bound immediately. In either case, the values of dual variables
might also change.

D Degenerate. The slack is basic or superbasic, but it is equal to (or very close
to) one of its bounds.

I Infeasible. The slack is basic or superbasic and it is currently violating one of
its bounds by more than the Feasibility tolerance.

N Not precisely optimal. The slack is nonbasic or superbasic. If the Optimality
tolerance were tightened by a factor of 10 (e.g., if it were reduced from 10−5

to 10−6), the solution would not be declared optimal because the reduced
gradient for the slack would not be considered negligible. (If a loose tolerance
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has been used, or if the run was terminated before optimality, this key might
be helpful in deciding whether or not to restart the run.)
Note: If Scale is specified, the tests for assigning the A, D, I, N keys are made
on the scaled problem, since the keys are then more likely to be correct.

Activity The row value; i.e., the value of aTx.

Slack activity The amount by which the row differs from its nearest bound. (For free
rows, it is taken to be minus the Activity.)

Lower limit α, the lower bound on the row.

Upper limit β, the upper bound on the row.

Dual activity The value of the dual variable πi, often called the shadow price (or simplex
multiplier) for the ith constraint. The full vector π always satisfies BTπ = gB ,
where B is the current basis matrix and gB contains the associated gradients for
the current objective function.

I The constraint number, i.

The COLUMNS section

Here we talk about the “column variables” x. For convenience we let the jth component of
x be the variable xj and assume that it satisfies the bounds α ≤ xj ≤ β. A “·” is printed
for any numerical value that is exactly zero.

Label Description

Number The column number, j. This is the internal number used to refer to xj in the
iteration log.

Column The name of xj .

State The state of xj relative to the bounds α and β. The various states possible are as
follows.

LL xj is nonbasic at its lower limit, α.

UL xj is nonbasic at its upper limit, β.

EQ xj is nonbasic and fixed at the value α = β.

FR xj is nonbasic and currently zero, even though it is free to take any value. (Its
bounds are α = −∞, β = +∞. Such variables are normally basic.)

BS xj is basic.

SBS xj is superbasic.

A key is sometimes printed before the State to give some additional information
about the state of xj . The possible keys are A, D, I and N. They have the same
meaning as described above (for the ROWS section of the solution), but the words
“the slack” should be replaced by “xj”.

Activity The value of the variable xj .

Obj Gradient gj , the jth component of the linear and quadratic objective function q(x) +
cTx. (We define gj = 0 if the current solution is infeasible.)

Lower limit α, the lower bound on xj .

Upper limit β, the upper bound on xj .
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Reduced gradnt The reduced gradient dj = gj − πT aj , where aj is the jth column of the
constraint matrix (or the jth column of the Jacobian at the start of the final major
iteration).

M+J The value m + j.

An example of the printed solution is given in §6. Infinite Upper and Lower limits are
output as the word None. Other real values are output with format f16.5. The maximum
record length is 111 characters, including the first (carriage-control) character.

Note: If two problems are the same except that one minimizes q(x) and the other
maximizes −q(x), their solutions will be the same but the signs of the dual variables πi and
the reduced gradients dj will be reversed.

6.6. The SOLUTION file

If a positive SOLUTION file is specified, the information contained in a printed solution
may also be output to the relevant file (which may be the PRINT file if so desired). Infinite
Upper and Lower limits appear as ±1020 rather than None. Other real values are output
with format 1pe16.6. Again, the maximum record length is 111 characters, including what
would be the carriage-control character if the file were printed.

A SOLUTION file is intended to be read from disk by a self-contained program that
extracts and saves certain values as required for possible further computation. Typically
the first 14 records would be ignored. Each subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that
starts with a 1 and is otherwise blank. If this and the next 4 records are skipped, the
COLUMNS section can then be read under the same format. (There should be no need to
use any BACKSPACE statements.)

6.7. The SUMMARY file

If Summary file f is specified with f > 0, certain brief information will be output to file
f . When SQOPT is run interactively, file f will usually be the terminal. For batch jobs a
disk file should be used, to retain a concise log of each run if desired. (A SUMMARY file is
more easily perused than the associated PRINT file).

A SUMMARY file (like the PRINT file) is not rewound after a problem has been processed.
It can therefore accumulate a log for every problem in the SPECS file, if each specifies
the same file. The maximum record length is 72 characters, including a carriage-control
character in column 1.

The following information is included:

1. The Begin card from the SPECS file.

2. The basis file loaded, if any.

3. The status of the solution after each basis factorization (whether feasible; the objective
value; the number of function calls so far).

4. The same information every kth iteration, where k is the specified Summary frequency
(default k = 100).

5. Warnings and error messages.

6. The exit condition and a summary of the final solution.
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Item 4 is preceded by a blank line, but item 5 is not.
All items are illustrated below, where we give the SUMMARY file for the first problem

in the example program (Summary frequency = 1).
==============================

S Q O P T 5.3 (Oct 97)

==============================

Begin sqmain (Example program for sqopt)

Scale option 2, Partial price 1

----------------------------------------------------------------

Itn 0: Phase 1A -- making the linear equality rows feasible

Itn dj Step nInf SumInf Objective

0 0.0E+00 0.0E+00 1 8.868E+01 0.00000000E+00

1 0.0E+00 3.3E+01 0 0.000E+00 0.00000000E+00

Itn 1: Feasible linear equality rows

Itn 1: Phase 1B -- making all linear rows feasible

Itn dj Step nInf SumInf Objective Norm rg nS

1 0.0E+00 0.0E+00 2 5.317E+01 0.00000000E+00 3.4E+00 3

2 0.0E+00 0.0E+00 2 5.317E+01 0.00000000E+00 4.6E-01 2

3 0.0E+00 4.7E+02 1 2.896E+01 0.00000000E+00 4.8E-02 1

4 0.0E+00 9.2E+02 1 2.681E+01 0.00000000E+00 0.0E+00 0

This is problem sqmain. ncolH = 5

5 6.4E-02 6.5E+03 0 0.000E+00 -1.46750000E+06 0.0E+00 0

Itn 5: Feasible linear rows

6 -4.1E+03 2.1E-01 0 0.000E+00 -1.78368567E+06 0.0E+00 0

7 1.4E+03 1.0E+00 0 0.000E+00 -1.98453602E+06 1.4E-12 1

8 -6.3E+02 9.8E-01 0 0.000E+00 -2.04366386E+06 1.3E+01 1

9 0.0E+00 1.0E+00 0 0.000E+00 -2.04366504E+06 1.1E-12 1

EXIT -- optimal solution found

Problem name sqdat1..

No. of iterations 9 Objective value -2.0436650381E+06

No. of Hessian products 8 Linear objective 0.0000000000E+00

Quadratic objective -2.0436650381E+06

No. of superbasics 1 No. of basic nonlinears 2

No. of degenerate steps 1 Percentage 11.11

Norm of xs (scaled) 3.5E+03 Norm of pi (scaled) 8.9E+03

Norm of xs 1.6E+03 Norm of pi 1.1E+04

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 6 2.0E-12

Max Primal infeas 0 0.0E+00 Max Dual infeas 3 9.6E-13

Solution printed on file 9
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7. Example problem
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8. Algorithmic Details

SQOPT is based on an inertia-controlling method that maintains a Cholesky factorization of
the reduced Hessian (see below). The method follows Gill and Murray [2] and is described
in [6]. Here we briefly summarize the main features of the method. Where possible, explicit
reference is made to items listed in the printed output, and to the names of the relevant
optional parameters.

8.1. Overview

SQOPT’s method has a feasibility phase (also known as phase 1 ), in which a feasible point is
found by minimizing the sum of infeasibilities, and an optimality phase (or phase 2 ), in which
the quadratic objective is minimized within the feasible region. The computations in both
phases are performed by the same subroutines, with the change of phase being characterized
by the objective changing from the sum of infeasibiilities (the printed quantity sInf) to the
quadratic objective (the printed quantity Objective).

In general, an iterative process is required to solve a quadratic program. Given an iterate
(x, s) in both the original variables x and the slack variables s, a new iterate (x̄, s̄) is defined
by (

x̄

s̄

)
=

(
x

s

)
+ αp, (8.1)

where the step length α is a non-negative scalar, and p is called the search direction. (For
simplicity, we shall consider a typical iteration and avoid reference to the index of the
iteration.) Once an iterate is feasible (i.e., satisfies the constraints), all subsequent iterates
remain feasible.

8.2. Definition of the working set

At each iterate (x, s), a working set of constraints is defined to be a linearly independent
subset of the constraints that are satisfied “exactly” (to within the value of the Feasibility
tolerance). The working set is the current prediction of the constraints that hold with
equality at a solution of the LP or QP. Let mw denote the number of constraints in the
working set (including bounds), and let W denote the associated mw × (n + m) working-set
matrix consisting of the mw gradients of the working-set constraints.

The search direction is defined so that constraints in the working set remain unaltered
for any value of the step length. It follows that p must satisfy the identity Wp = 0. This
characterization allows p to be computed using any n × nZ full-rank matrix Z that spans
the null space of W . (Thus, nZ = n−mw and WZ = 0.) The null-space matrix Z is defined
from a sparse LU factorization of part of W ; see (8.2)–(8.3) below). The direction p will
satisfy Wp = 0 if p = ZpZ for any nZ-vector pZ .

The working set contains the constraints Ax−s = 0 and a subset of the upper and lower
bounds on the variables (x, s). Since the gradient of a bound constraint xj ≥ lj or xj ≤ uj

is a vector of all zeros except for ±1 in position j, it follows that the working-set matrix
contains the rows of

(
A − I

)
and the unit rows associated with the upper and lower

bounds in the working set.
The working-set matrix W can be represented in terms of a certain column partition of

the matrix
(

A − I
)
. As in §2 we partition the constraints Ax− s = 0 so that

BxB + SxS + NxN = 0,

where B is a square non-singular basis and xB , xS and xN are the basic, superbasic and
nonbasic variables respectively. The nonbasic variables are equal to their upper or lower
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bounds at (x, s), and the superbasic variables are independent variables that are chosen to
improve the value of the current objective. The number of superbasic variables is nS, which
is printed as the quantity nS. Given values of xN and xS, the basic variables xB are adjusted
so that (x, s) satisfies BxB + SxS + NxN = 0.

If P is a permutation such that
(

A − I
)
P =

(
B S N

)
, then the working-set

matrix W satisfies

WP =

(
B S N

0 0 IN

)
, (8.2)

where IN is the identity matrix with the same number of columns as N .
The null-space matrix Z is defined from a sparse LU factorization of part of W . In

particular, Z is maintained in “reduced-gradient” form, using the package lusol [4] to
maintain sparse LU factors of the basis matrix B that alters as the working set W changes.
Given the permutation P , the null-space basis is given by

Z = P

 −B−1S

I

0

 . (8.3)

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the
form Zv and ZTg are obtained by solving with B or BT. This choice of Z implies that nZ ,
the number of “degrees of freedom” at (x, s), is the same as nS, the number of superbasic
variables.

Let gZ and HZ denote the reduced gradient and reduced Hessian:

gZ = ZTg and HZ = ZTHZ, (8.4)

where g is the objective gradient at (x, s). Roughly speaking, gZ and HZ describe the first
and second derivatives of an nS-dimensional unconstrained problem for the calculation of
pZ . (The quantity Cond Hz printed in the summary-file output is a condition estimator of
HZ .)

At each iteration, an upper-triangular factor R is available such that HZ = RTR. Nor-
mally, R is computed from RTR = ZTHZ at the start of phase 2 and is then updated as
the QP working set changes. For efficiency the dimension of R should not be excessive (say,
nS ≤ 1000). This is guaranteed if the number of nonlinear variables is “moderate”.

If the QP contains linear variables, H is positive semi-definite and R may be singular
with at least one zero diagonal. However, an inertia-controlling active-set strategy is used
to ensure that only the last diagonal of R can be zero. (See [6] for discussion of a similar
strategy for indefinite quadratic programming.)

If the initial R is singular, enough variables are fixed at their current value to give a
nonsingular R. This is equivalent to including temporary bound constraints in the working
set. Thereafter, R can become singular only when a constraint is deleted from the working
set (in which case no further constraints are deleted until R becomes nonsingular).

8.3. The main iteration

If the reduced gradient is zero, (x, s) is a constrained stationary point on the working set.
During phase 1, the reduced gradient will usually be zero only at a vertex (although it may
be zero elsewhere in the presence of constraint dependencies). During phase 2, a zero re-
duced gradient implies that x minimizes the quadratic objective when the constraints in the
working set are treated as equalities. At a constrained stationary point, Lagrange multipli-
ers λ are defined from the equations WT λ = g(x). A Lagrange multiplier λj corresponding
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to an inequality constraint in the working set is said to be optimal if λj ≤ σ when the
associated constraint is at its upper bound, or if λj ≥ −σ when the associated constraint
is at its lower bound, where σ depends on the Optimality tolerance. If a multiplier is
non-optimal, the objective function (either the true objective or the sum of infeasibilities)
can be reduced by continuing the minimization with the corresponding constraint excluded
from the working set (this step is sometimes referred to as “deleting” a constraint from
the working set). If optimal multipliers occur during the feasibility phase but the sum of
infeasibilities is not zero, there is no feasible point.

The special form (8.2) of the working set allows the multiplier vector λ, the solution of
WT λ = g, to be written in terms of the vector

d =

(
g

0

)
−
(

A − I
)T

π =

(
g −AT π

π

)
, (8.5)

where π satisfies the equations BT π = gB, and gB denotes the basic components of g. The
components of π are the Lagrange multipliers λj associated with the equality constraints
Ax− s = 0. The vector dN of nonbasic components of d consists of the Lagrange multipliers
λj associated with the upper and lower bound constraints in the working set. The vector dS

of superbasic components of d is the reduced gradient gZ (8.4). The vector dB of basic com-
ponents of d is zero, by construction. (The Euclidean norm of dS, and the final values of dS,
g and π are the quantities norm rg, Reduced Gradnt, Obj Gradient and Dual Activity
in the PRINT file output.)

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the
search direction is given by p = ZZpZ , where pZ is defined below. The step length is chosen
to maintain feasibility with respect to the satisfied constraints.

There are two possible choices for pZ , depending on whether or not HZ is singular. If
HZ is nonsingular, R is nonsingular and pZ is computed from the equations,

RTRpZ = −gZ , (8.6)

where gZ is the reduced gradient at x. In this case, (x, s)+p is the minimizer of the objective
function subject to the working-set constraints being treated as equalities. If (x, s) + p is
feasible, α is defined to be one. In this case, the reduced gradient at (x̄, s̄) will be zero,
and Lagrange multipliers are computed at the next iteration. Otherwise, α is set to αN , the
step to the boundary of the “nearest” constraint along p. This constraint is added to the
working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling strategy is
used to ensure that only the last diagonal element of R is zero. (See [6] for discussion of a
similar strategy for indefinite quadratic programming.) In this case, pZ satisfies

pT
Z HZ pZ = 0 and gT

Z pZ ≤ 0,

which allows the objective function to be reduced by any step of the form (x, s)+αp, α > 0.
The vector p = ZpZ is a direction of unbounded descent for the QP in the sense that the
QP objective is linear and decreases without bound along p. If no finite step of the form
(x, s) + αp (α > 0) reaches a constraint not in the working set, the QP is unbounded and
SQOPT terminates at (x, s) and declares the problem to be unbounded. Otherwise, α is
defined as the maximum feasible step along p and a constraint active at (x, s)+αp is added
to the working set for the next iteration.

8.4. Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null-space matrix Z (8.3)
could be arbitrarily high. To guard against this, SQOPT implements a “basis repair” feature



50 References

in the following way. lusol is used to compute the rectangular factorization(
B S

)T = LU, (8.7)

returning just the permutation P that makes PLPT unit lower triangular. The pivot toler-
ance is set to require |PLPT |ij ≤ 2, and the permutation is used to define P in (8.2). It can
be shown that ‖Z‖ is likely to be little more than 1. Hence, Z should be well-conditioned
regardless of the condition of W .

This feature is applied at the beginning of the optimality phase if a potential B-S ordering
is known.

The EXPAND procedure (see Gill et al. [5]) is used to reduce the possibility of cycling
at a point where the active constraints are nearly linearly dependent. Although there is no
absolute guarantee that cycling will not occur, the probability of cycling is extremely small
(see Hall and McKinnon [7]). The main feature of expand is that the feasibility tolerance is
increased at every iteration, perhaps at the expense of violating the bounds on (x, s) by a
simple amount.

Suppose that the value of Feasibility tolerance is δ. Over a period of K iterations
(where K is the value of the optional parameter Expand frequency, the feasibility tolerance
used in SQOPT (i.e., the working feasibility tolerance) increases from 1

2δ to δ in steps of
1
2δ/K.

At certain stages, the following “resetting procedure” is used to remove small constraint
infeasibilities. First, all nonbasic variables are moved exactly onto their bounds. A count
is kept of the number of non-trivial adjustments made. If the count is nonzero, the basic
variables are recomputed. Finally, the working feasibility tolerance is reinitialized to 1

2δ.
If a problem requires more than K iterations, the resetting procedure is invoked and a

new cycle of iterations is started. (The decision to resume phase 1 or phase 2 is based on
comparing any constraint infeasibilities with δ.)

The resetting procedure is also invoked if when SQOPT reaches an apparently optimal,
infeasible, or unbounded solution, unless this situation has already occurred twice. If any
non-trivial adjustments are made, iterations are continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but
also provides a potential choice of constraint to be added to the working set. All constraints
at a distance α (α ≤ αN) along p from the current point are then viewed as acceptable
candidates for inclusion in the working set. The constraint whose normal makes the biggest
angle with the search direction is added to the working set. This strategy helps keep the
the basis matrix B well-conditioned.
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9. BASIS Files

For non-trivial problems, it is advisable to save a BASIS file at the end of a run, in order
to restart the run if necessary, or to provide a good starting point for some closely related
problem.

Three formats are available for saving basis descriptions. They are invoked by SPECS

lines of the following form:

NEW BASIS FILE 10
BACKUP FILE 11 (same as NEW BASIS but on a different file)
PUNCH FILE 20
DUMP FILE 30

The file numbers may be whatever is convenient, or zero for files that are not wanted.
NEW BASIS and BACKUP files are saved every kth iteration, in that order, where k is

the Save frequency.
NEW BASIS, PUNCH and DUMP files are saved at the end of a run, in that order. They

may be re-loaded at the start of a subsequent run by specifying SPECS lines of the following
form respectively:

OLD BASIS FILE 10
INSERT FILE 20
LOAD FILE 30

Only one such file will actually be loaded. If more than one positive file number is specified,
the order of precedence is as shown. If no BASIS files are specified, one of the Crash options
takes effect.

Figures 1–3 illustrate the data formats used for BASIS files. 80-character fixed-length
records are suitable in all cases. (36-character records would be adequate for PUNCH and
DUMP files.) The files shown correspond to the optimal solution for the SQOPT example
program, described in §7. Selected column numbers are included to define significant data
fields. The problem has 10 nonlinear constraints, 10 linear constraints, and 30 variables.

9.1. NEW and OLD BASIS Files

We sometimes call these files basis maps. They contain the most compact representation
of the state of each variable. They are intended for restarting the solution of a problem at
a point that was reached by an earlier run on the same problem or a related problem with
the same dimensions. (Perhaps the Iterations limit was previously too small, or some
other objective row is to be used.)

As illustrated in Figure 1, the following information is recorded in a NEW BASIS file.

1. A line containing the problem name, the iteration number when the file was created,
the status of the solution (OPTIMAL SOLN, INFEASIBLE, UNBOUNDED, EXCESS ITNS,
ERROR CONDN, or PROCEEDING), the number of infeasibilities, and the current objective
value (or the sum of infeasibilities).

2. A line containing the OBJECTIVE, RHS, RANGES and BOUNDS names, M = the number of
rows in the constraint matrix, N = the number of columns in the constraint matrix,
and SB = the number of superbasic variables.

3. A set of (N+M−1)/80+1 lines indicating the state of the N column variables and the M
slack variables in that order. One character HS(j) is recorded for each j = 1, 2, . . . , N+M
as follows, written with FORMAT(80I1).
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HS(j) State of the j-th variable
0 Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic
3 Basic

If variable j is fixed (lower bound = upper bound), then HS(j) may be 0 or 1. The
same is true if variable j is free (infinite bounds) and still nonbasic, although free
variables will almost always be basic.

4. A set of lines of the form
j xj

written with format(i8, 1pe24.14) and terminated by an entry with j = 0, where
j denotes the jth variable and xj is a real value. The jth variable is either the jth
column or the (j − N)th slack, if j > N. Typically, HS(j) = 2 (superbasic). When
nonlinear constraints are present, this list of superbasic variables is extended to include
all basic nonlinear variables. The Jacobian matrix can then be reconstructed exactly
for a restart.

Loading a NEW BASIS file

A file that has been saved as an OLD BASIS file may be input at the beginning of a later
run as a NEW BASIS file. The following notes are relevant:

1. The first line is input and printed but otherwise not used.

2. The values labelled M and N on the second line must agree with those for the problem
that has just been defined. The value labelled sb is input and printed but is not used.

3. The next set of lines must contain exactly m values hs(j) = 3, denoting the basic
variables.

4. The list of j and xj values must include an entry for every variable whose state is
hs(j) = 2 (the superbasic variables).

5. Further j and xj values may be included, in any order.

6. For any j in this list, if hs(j) = 3 (basic), the value xj will be recorded for nonlinear
variables, but the variable will remain basic.

7. If hs(j) 6= 3, variable j will be initialized at the value xj and its state will be reset
to 2 (superbasic). If the number of superbasic variables has already reached the
Superbasics limit, then variable j will be made nonbasic at the bound nearest to
xj (or at zero if it is a free variable).

sqdat2.. ITN 0 Optimal Soln NINF 0 OBJ -2.043665038075E+06

OBJ= RHS= RNG= BND= M= 8 N= 7 SB= 1

033023303133003

5 4.33461578293999E+02

0

Figure 1: Format of NEW and OLD BASIS files
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9.2. PUNCH and INSERT Files

These files provide compatibility with commercial mathematical programming systems. The
PUNCH file from a previous run may be used as an INSERT file for a later run on the same
problem. It may also be possible to modify the INSERT file and/or problem and still obtain
a useful advanced basis.

The standard MPS format has been slightly generalized to allow the saving and reloading
of nonbasic solutions. It is illustrated in Figure 2. Apart from the first and last line, each
entry has the following form:

Columns 2–3 5–12 15–22 25–36
Contents Key Name1 Name2 Value

The various keys are best defined in terms of the action they cause on input. It is
assumed that the basis is initially set to be the full set of slack variables, and that column
variables are initially at their smallest bound in absolute magnitude.

Key Action to be taken during INSERT
XL Make variable Name1 basic and slack Name2 nonbasic at its lower bound.
XU Make variable Name1 basic and slack Name2 nonbasic at its upper bound.
LL Make variable Name1 nonbasic at its lower bound.
UL Make variable Name1 nonbasic at its upper bound.
SB Make variable Name1 superbasic at the specified Value.

Note that Name1 may be a column name or a row name, but (on XL and XU lines) Name2
must be a row name. In all cases, row names indicate the associated slack variable, and
if Name1 is a nonlinear variable then its Value is recorded for possible use in defining the
initial Jacobian matrix.

The key SB is an addition to the standard MPS format to allow for nonbasic solutions.

Notes on PUNCH Data

1. Variables are output in natural order. For example, on the first XL or XU line, Name1
will be the first basic column and Name2 will be the first row whose slack is not basic.
(The slack could be nonbasic or superbasic.)

2. LL lines are not output for nonbasic variables if the corresponding lower bound value
is zero.

3. Superbasic slacks are output last.

4. PUNCH and INSERT files deal with the status and values of slack variables. This is
in contrast to the printed solution and the SOLUTION file, which deal with rows.

Notes on INSERT Data

1. Before an INSERT file is read, column variables are made nonbasic at their smallest
bound in absolute magnitude, and the slack variables are made basic.

2. Preferably an INSERT file should be an unmodified PUNCH file from an earlier run
on the same problem. If some rows have been added to the problem, the INSERT file
need not be altered. (The slacks for the new rows will be in the basis.)

3. Entries will be ignored if Name1 is already basic or superbasic. XL and XU lines will
be ignored if Name2 is not basic.
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4. SB lines may be added before the ENDATA line, to specify additional superbasic columns
or slacks.

5. An SB line will not alter the status of Name1 if the SUPERBASICS LIMIT has been
reached. However, the associated Value will be retained if Name1 is a Jacobian vari-
able.

9.3. DUMP and LOAD Files

These files are similar to PUNCH and INSERT files, but they record solution information
in a manner that is more direct and more easily modified. In particular, no distinction is
made between columns and slacks. Apart from the first and last line, each entry has the
form

Columns 2–3 5–12 25–36
Contents Key Name Value

as illustrated in Figure 3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit,
Basic and Superbasic respectively.

Notes on DUMP Data

1. A line is output for every variable, columns followed by slacks.

2. Nonbasic free variables will be output with either LL or UL keys and with Value zero.

Notes on LOAD Data

1. Before a LOAD file is read, all columns and slacks are made nonbasic at their smallest
bound in absolute magnitude. The basis is initially empty.

2. Each LL, UL or BS line causes Name to adopt the specified status. The associated
Value will be retained if Name is a Jacobian variable.

3. An SB line causes Name to become superbasic at the specified Value.

4. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first
BS or SB line takes effect for any given Name.)

5. An SB line will not alter the status of Name if the Superbasics limit has been
reached, but the associated Value will be retained if Name is a Jacobian variable.

6. (Partial basis) Let M be the number of rows in the problem. If fewer than M variables are
specified to be basic, a tentative basis list will be constructed by adding the requisite
number of slacks, starting from the first row and taking those that were not previously
specified to be basic or superbasic. (If the resulting basis proves to be singular, the
basis factorization routine will replace a number of basic variables by other slacks.)
The starting point obtained in this way will not necessarily be “good”.

7. (Too many basics) If M variables have already been specified as basic, any further BS
keys will be treated as though they were SB. This feature may be useful for combining
solutions to smaller problems.
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NAME sqdat2.. PUNCH/INSERT

XL ...100 ....01 3.89064E+02

XU ...101 ....02 6.19233E+02

LL ...102 ....03 1.00000E+02

SB ...105 ....04 4.33462E+02

XL ...107 ....05 3.00048E+02

XL ...111 ....06 1.58194E+02

ENDATA

Figure 2: Format of PUNCH/INSERT files

NAME sqdat2.. DUMP/LOAD

LL ...100 0.00000E+00

BS ...101 3.89064E+02

BS ...102 6.19233E+02

LL ...103 1.00000E+02

SB ...104 4.33462E+02

BS ...105 3.00048E+02

BS ...106 1.58194E+02

LL ...107 2.00000E+03

BS ...108 4.83627E+01

UL ...109 1.00000E+02

BS ...110 3.24241E+01

BS ...111 1.60065E+01

LL ...112 1.50000E+03

LL ...113 2.50000E+02

BS ...114 -2.90022E+06

ENDATA

Figure 3: Format of DUMP/LOAD files

9.4. Restarting Modified Problems

Sections 9.1–9.3 document three distinct starting methods (OLD BASIS, INSERT and
LOAD files), which may be preferable to any of the cold start (CRASH) options. The
best choice depends on the extent to which a problem has been modified, and whether it is
more convenient to specify variables by number or by name. The following notes offer some
rules of thumb.

Protection

In general there is no danger of specifying infinite values. For example, if a variable is
specified to be nonbasic at an upper bound that happens to be +∞, it will be made nonbasic
at its lower bound. Conversely if its lower bound is −∞. If the variable is free (both bounds
infinite), it will be made nonbasic at value zero. No warning message will be issued.

Default Status

If the status of a variable is not explicitly given, it will initially be nonbasic at the bound
that is smallest in absolute magnitude. Ties are broken in favor of lower bounds, and free
variables will again take the value zero.

Restarting with Different Bounds

Suppose that a problem is to be restarted after the bounds on some variable X have been
altered. Any of the basis files may be used, but the starting point obtained depends on the
status of X at the time the basis is saved.

If X is basic or superbasic, the starting point will be the same as before (all other things
being equal). The value of X may lie outside its new set of bounds, but there will be minimal
loss of feasibility or optimality for the problem as a whole.

If X was previously fixed, it is likely to be nonbasic at its lower bound (which happens
to be the same as its upper bound). Increasing its upper bound will not affect the solution.

In contrast, if X is nonbasic at its upper bound and if that bound is altered, the starting
values for an arbitrary number of basic variables could be changed (since they will be recom-
puted from the nonbasic and superbasic variables). This may not be of great consequence,
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but sometimes it may be worthwhile to retain the old solution precisely. To do this, one
must make X superbasic at the original bound value.

For example, if x is nonbasic at an upper bound of 5.0 (which has now been changed),
one should insert a line of the form

j 5.0

near the end of an OLD BASIS file, or the line

SB X 5.0

near the end of an INSERT or LOAD file. Note that the SPECS file must specify a
Superbasics limit at least as large as the number of variables involved, even for purely
linear problems.

Sequences of Problems

Whenever practical, a series of related problems should be ordered so that the most tightly
constrained cases are solved first. Their solutions will often provide feasible starting points
for subsequent relaxed problems, as long the above precautions are taken.


