
USERS GUIDE FOR SNADIOPT:
A PACKAGE ADDING AUTOMATIC

DIFFERENTIATION TO SNOPT∗

E. Michael GERTZ
Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, Illinois 60439

Philip E. GILL and Julia MUETHERIG
Department of Mathematics

University of California, San Diego

La Jolla, California 92093-0112

January 2001

Abstract

SnadiOpt is a package that supports the use of the automatic differentiation package
ADIFOR with the optimization package Snopt.

Snopt is a general-purpose system for solving optimization problems with many
variables and constraints. It minimizes a linear or nonlinear function subject to bounds
on the variables and sparse linear or nonlinear constraints. It is suitable for large-scale
linear and quadratic programming and for linearly constrained optimization, as well as
for general nonlinear programs.

The method used by Snopt requires the first derivatives of the objective and con-
straint functions to be available. The SnadiOpt package allows users to avoid the time-
consuming and error-prone process of evaluating and coding these derivatives. Given
Fortran code for evaluating only the values of the objective and constraints, SnadiOpt
automatically generates the code for evaluating the derivatives and builds the relevant
Snopt input files and sparse data structures.

Keywords: Large-scale nonlinear programming, constrained optimization, SQP
methods, automatic differentiation, Fortran software.

gertz@mcs.anl.gov pgill@ucsd.edu jmueth@ucsd.edu
http://www.mcs.anl.gov/∼gertz/ http://www.scicomp.ucsd.edu/∼peg/ http://www.scicomp.ucsd.edu/∼julia/

∗Partially supported by National Science Foundation grant CCR-95-27151.

Contents

1. Introduction 3
1.1 Problem Types . 3
1.2 Why Automatic Differentiation? . 3
1.3 ADIFOR . 4
1.4 Who Should Use This Package . 4
1.5 How to Read This Manual . 4
1.6 Basic Usage . 5
1.7 Additional Resources . 5

2. Automatic Differentiation 6

3. User-Supplied Subroutines 7
3.1 The Function Definition Routine . 7
3.2 The Initialization Routine . 8
3.3 An Example Problem . 10

4. Invoking SnadiOpt 13
4.1 Locating Executables and Libraries . 13
4.2 Basic Usage . 14
4.3 Files Generated by snadiopt.pl . 15
4.4 Merging Changes . 16
4.5 Advanced Usage . 17
4.6 Summary of All Options . 17

5. Building the Executable 18
5.1 Typical Usage . 18
5.2 Subordinate Makefiles . 18
5.3 Useful makefile Targets . 19
5.4 Useful makefile Variables . 20
5.5 Dense ADIFOR . 20

Index 22

1. Introduction 3

1. Introduction

This is the users guide for SnadiOpt, a package that adds the automatic differentiation
capability to the nonlinear optimization package Snopt [5]. SnadiOpt uses the source-to-
source automatic differentiation package ADIFOR to perform the differentiation.

1.1. Problem Types

Snopt is a collection of Fortran 77 subroutines for solving a nonlinear programming problem
assumed to be stated in the following form:

NP min
x

(or max) Fobj(x)

subject to l ≤ x ≤ u, L ≤ F (x) ≤ U,

where u, U , l, and L are constant vectors of upper and lower bounds, F (x) is a vector of
smooth linear and nonlinear problem functions, and Fobj(x) denotes the component of F to
be minimized or maximized.

Note that upper and lower bounds are specified for all variables and constraints. This
form allows full generality in specifying various types of constraint. Special values are used
to indicate absent bounds (lj = −∞ or uj = +∞ for appropriate j). Free variables and free
constraints (“free rows”) are ones that have both bounds infinite. Similarly, fixed variables
have lj = uj , and equality constraints have Lj = Uj

The method used by Snopt requires that the elements Jij(x) = ∂Fi(x)/∂xj of the Jaco-
bian matrix of first derivatives be known at any point x. In practice it is often inconvenient
or impossible to code the derivatives, and so Snopt allows the user to code as many deriva-
tives as is convenient. Snopt then estimates unknown derivatives by finite differences, by
making a call to F for each variable xj whose partial derivatives need to be estimated.
However, finite differences reduce the reliability of the optimization algorithm and can be
expensive if there are many such variables xj . The SnadiOpt package allows the user to avoid
the time-consuming and error-prone process of evaluating and coding derivatives without
the need for Snopt to compute finite differences.

Often, an element Jij is constant, which implies that variable xj occurs only linearly
in the problem function Fj(x). If a significant number of these constant elements are zero,
then J is known as a sparse matrix, and Snopt uses a sparse matrix format to store only
the nonzero elements of J . SnadiOpt automatically identifies constant and zero Jacobian
elements by using a scheme that evaluates the Jacobian at a number of points close to
the starting point (see Section 2). Given Fortran code for evaluating only F (x), SnadiOpt
automatically generates code for evaluating J and builds the relevant Snopt input files and
sparse data structures.

1.2. Why Automatic Differentiation?

Writing code for the derivatives of F (x) is difficult, time consuming, and error prone, es-
pecially when problems involve many variables and constraints. Automatic differentiation
(AD) tools, in this case ADIFOR [1, 2], quickly provide correct and numerically accurate
derivative functions from the code used to evaluate the objective and constraint functions.

Prior to the wide availability of AD software and AD-based modeling languages, nu-
merical differentiation was the only alternative to providing derivative code. Unfortunately,
numerical differentiation is an inherently unstable process that causes both theoretical and
practical difficulties for nonlinear solvers. Numerical differentiation places a severe theo-
retical limit on the accuracy of the solution that may be computed by an algorithm (see,
e.g., [7, Chapter 8]). In practice, code that uses numerical differentiation tends to need

4 User’s Guide for SNADIOPT

more iterations to find a solution than does code that uses exact derivatives. Furthermore,
code that uses numerical differentiation is typically less robust and will fail to find solutions
for problems that might have been solved if analytic derivatives were supplied. Notwith-
standing these difficulties, numerical differentiation was often used to avoid the high cost of
hand-coding the exact derivatives.

With modern AD tools, derivative code may be quickly obtained, leading to a significant
increase in user productivity—even on simple problems. Moreover, functions can now be
differentiated that were once considered too complex to be coded by hand. An example
is a function defined in terms of the output from an ordinary differential equation solver.
ADIFOR has been successfully applied to such functions.

Automatic differentiation allows users to develop models quickly. This increase in pro-
ductivity makes optimization software a much more useful tool for scientists, who often wish
to experiment with different objective functions and different sets of constraints.

1.3. ADIFOR

ADIFOR is a robust, mature automatic differentiation tool developed through a collabora-
tive project between the Mathematics and Computer Science Division at Argonne National
Laboratory and the Center for Research on Parallel Computation at Rice University. The
package is a source-to-source translator for functions written in Fortran 77. It is widely
available and runs on many popular platforms. Moreover, the source code for the ADI-
FOR libraries (but not the translator) is provided, making it possible to compile and run
ADIFOR-generated code on most platforms.

ADIFOR implements the forward mode for automatic differentiation (although it does
make some use of the reverse mode internally). As a practical matter, this means that
ADIFOR-generated code will tend to run most quickly if the number of variables is not
much larger than the number of constraints.

1.4. Who Should Use This Package

It is usually wise to try automatic differentiation before attempting to code derivatives by
hand. Some users may be more comfortable using modeling languages with an automatic
differentiation capability (see, e.g., AMPL [4] and GAMS [3]). SnadiOpt is intended for those
who prefer to code in Fortran, or need to make use of existing Fortran software. Such users
should find that this package can provide derivative code quickly and efficiently.

Programmers who typically write in C or Fortran 90 might like to consider developing
their models in Fortran 77 so that they may use this package to obtain derivatives. A C
programmer should be able to learn enough Fortran 77 to formulate simple to moderately
complicated models within a few hours. C has many features that Fortran 77 does not, but it
is exactly those features that can make the automatic differentiation of C code problematic.

1.5. How to Read This Manual

Section 1.6 summarizes the four steps needed to define and solve an optimization model
using SnadiOpt and Snopt. Section 2 describes the main features of the SnadiOpt package and
provides some background on the mechanics of automatic differentiation (this section may
be omitted on first reading). Section 3 describes the subroutines that must be provided by
users to define their model. Section 4 descibes the invocation of the Perl script snadiopt.pl
that automatically generates all input files for ADIFOR. This discussion includes detailed
information on the various files generated by SnadiOpt (see Section 4.3). Finally, Section 5
discusses the use of the Make utility to automatically differentiate the problem files and
build an executable file ready for execution.

1. Introduction 5

1.6. Basic Usage

In the simplest case, the SnadiOpt package can be used to solve problem NP in four steps.

Step 1. Construct a file prob.f containing Fortran subroutines usrini and usrfun (see Sec-
tion 3). Subroutine usrini initializes all data associated with the model, including
the bounds l, u, L, and U , and the component of F that defines the objective function.
Subroutine usrfun defines the values of the problem functions F at a given value of
x. A Fortran main program is not required. However, subroutine usrini must define
the lengths of all arrays used to define the model.

Step 2. Invoke the Perl script snadiopt.pl to generate the input files needed by the automatic
differentiation package ADIFOR. The syntax of the call is
% snadiopt.pl -o prob prob.f
(The symbol “%” is the shell prompt and is not to be typed). This generates a number
of auxiliary files with the prefix prob (see Section 4).

Step 3. Build the executable file for the model prob. This step uses ADIFOR to generate the
differentiated subroutines needed for Snopt, compiles them and links them with the
Snopt libraries. All these tasks are performed by using the Make utility, where the
makefile is one of the files automatically generated by snadiopt.pl (see Section 5).
To start the build process, type
% make prob

Step 4. Solve the optimization problem by typing
% ./prob
Any output from the run will be written to the files defined in the subroutine usrini.

1.7. Additional Resources

All users should read the Snopt users guide [6], which details the many user options available
in Snopt that may be set by providing a “specs” file. The users guide describes the algorithm
and its output and answers many questions about the performance of the optimizer on a
particular model.

SnadiOpt tries to insulate the user from the details of invoking ADIFOR, but users may
wish to read the ADIFOR users guide. In particular, while ADIFOR is very robust, it is
possible to write Fortran code that fools ADIFOR, and the manual will explain how to avoid
this pitfall.

For general information on optimization, we recommend that users explore the NEOS
guide on the Web: http://www.mcs.anl.gov/otc/Guide/index.html.

More information about automatic differentiation in general, and ADIFOR in particular,
may be found on the Argonne National Laboratory automatic differentiation Web page:
http://www.mcs.anl.gov/autodiff.

Users with complicated functions for which the automatically differentiated code appears
to be unacceptably slow can often accelerate their code by refactoring it. Several technical
reports on the automatic differentiation page describe how to do this.

The authors of this package also maintain Web pages. Philip Gill’s page∗ has links to
published papers and technical reports on Snopt. Michael Gertz maintains a Web page† at
Argonne National Laboratory.

∗http://scicomp.ucsd.edu/~peg/
†http://www.mcs.anl.gov/~gertz/

6 User’s Guide for SNADIOPT

2. Automatic Differentiation

Automatic differentiation is the process of producing code that evaluates the derivatives
of a function from code that evaluates the function itself. It is closely related to symbolic
differentiation but differs from it in important ways. Symbolic differentiation takes the
mathematical expression for a function and produces another expression that represents the
derivative of that function. Unlike symbolic differentiation packages, automatic differentia-
tion packages:

• understand programming concepts such as loops, branches and subroutines and

• use intermediate quantities and the chain rule to avoid potentially exponential growth
in the size of the resulting code.

ADIFOR is a source-to-source translator: it takes as its input a function expressed as
a Fortran 77 subroutine and generates Fortran code that computes the derivatives of the
dependent variables with respect to the independent variables. Suppose F : IRn → IRm is a
function and

subroutine func (x, n, F, m)
integer m, n
double precision x(n), F(m)

is a Fortran subroutine that will compute the value of F at any given x. Let J(x) = F ′(x)
be the Jacobian of F . ADIFOR will produce code that computes J(x)S for any n×p matrix
S with p ≤ n. Thus, if S = I, ADIFOR will compute the Jacobian itself.

In many optimization models, certain terms that occur in F will be linear and will result
in constant elements in J(x). SnadiOpt does not require that these elements occur in a
particular part of J(x), but for the sake of discussion, let us assume that J(x) has the
following structure,

J(x) =

(
N11 L12

L21 L22

)
,

where the elements of L12, L21, and L22 are constant and the elements of N11 may or
may not be constant, but all rows and columns of N11 contain at least one nonconstant
element. Any Jacobian may be transformed to a matrix with this structure by permuting
the constraints (rows) and variables (columns). Snopt is designed to exploit the constant
elements in J . For instance, the constraints corresponding to (L21 L22) are linear, and
Snopt will maintain feasibility with respect to the linear constraints. Because the ADIFOR
generated code computes J(x)S, SnadiOpt is able to choose an S in a manner that avoids
the need to reassign L12, L21, and L22 every time J is required.

Snopt is designed to solve problems with sparse derivatives. These are problems for
which many of the elements of J(x) are identically zero. SnadiOpt determines the sparsity
pattern for the Jacobian and identifies the constant elements automatically. To make this
determination, SnadiOpt computes the value of J(x) at two random perturbations of a user-
supplied initial point x0. If an element of the Jacobian is the same at both points, then
it is taken to be constant. If it is zero at both points, it is taken to be identically zero.
The random points are not chosen close together, so the heuristic will correctly classify the
Jacobian elements in the vast majority of cases. Snopt validates the computed derivatives,
linearity pattern, and sparsity pattern at the point x0, by comparing the supplied values
to values computed using numerical differentiation. This additional test at a third point
makes it unlikely that an incorrect sparsity or linearity pattern will be used.

Of course, it is possible to fool this heuristic. SnadiOpt cannot deal well with functions
for which the sparsity pattern or linearity pattern in a (relatively large) region around x is

3. User-Supplied Subroutines 7

not representative of the sparsity or linearity pattern of the function as a whole. Computing
a sparsity pattern for such a function would require significant additional user intervention.
Because we are uncertain of the demand to minimize such functions, we have opted for the
simpler user interface. We welcome examples of real-word optimization models that fall into
this category.

Once SnadiOpt has computed the sparsity and linearity pattern and the appropriate S to
minimize recomputation of the derivatives of linear elements, it calls Snopt as a “black-box”
optimization routine. This means that it presents the optimization data to Snopt in the
same format as a hand-written routine for computing the derivatives. Users have full access
to all the options and features of Snopt and can link the resulting code with their own code
(subject, of course, to any licensing restrictions.)

3. User-Supplied Subroutines

In order to use SnadiOpt, the user must provide the following Fortran routines:

usrfun (§3.1) Defines the functions Fi(x).

usrini (§3.2) Defines the actual dimension of the problem and initializes all data needed
by Snopt. The workspace for SnadiOpt is also assigned here.

The user routines usrfun and usrini have fixed parameter lists but may have any conve-
nient name. The names of the parameters may also be chosen by the user.

3.1. The Function Definition Routine

The user must provide a subroutine that calculates the vector F of objective and constraint
functions at a given point x.

subroutine usrfun(Status, mode, x, n, F, neF,
& cu, lencu, iu, leniu, ru, lenru)
integer Status, mode, neF, n
double precision F(neF), x(n)
integer lencu, leniu, lenru
character*8 cu(lencu)
integer iu(leniu)
double precision ru(lenru)

On entry:

Status indicates the first and last call to usrfun.

If Status = 0, there is nothing special about the current call to usrfun.

If Status = 1, Snopt is calling the subroutine for the first time. Some data may
need to be input or computed and saved.

If Status ≥ 2, Snopt is calling the subroutine for the last time. The user may wish
to perform some additional computation using the final solution.

If the nonlinear functions are expensive to evaluate, it may be desirable to do
nothing on the last call, by including a statement of the form

if (Status .ge. 2) return

at the start of the subroutine.

8 User’s Guide for SNADIOPT

x(n) contains the point at which the problem functions are to be evaluated.

cu(lencu), iu(leniu), ru(lenru) are character, integer and real scratch arrays. These
arrays may be used to store any information that needs to be saved between calls
to usrfun.

On exit:

F(neF) holds the values of the objective and constraint functions computed at x. The
objective is component F(ObjRow), as defined in usrini.

mode is used to communicate between Snopt and the user. If the user is unwilling or
unable to evaluate the function at the current point then mode should be set to −1.
Snopt will try to provide an alternative point at which to evaluate the function.

If for some reason the user wishes to terminate solution of the current problem,
mode should be set to a negative value (other than −1).

cu(lencu), iu(leniu), ru(lenru) are character, integer, and double precision arrays in
which the user may store information between calls to usrfun.

3.2. The Initialization Routine

Subroutine usrini is used to initialize quantities associated with the problem. It is called
once before Snopt.

subroutine usrini(ObjAdd, ObjRow, Prob,
& x, xlow, xupp, xstate, Names,
& Fmul, Flow, Fupp, Fstate, FNames,
& iSpecs, iPrint, iSumm, iErr,
& cu, iu, ru,
& cw, iw, rw)

Each argument is fully described below. Many of the arguments are arrays (e.g., x is the
vector containing an initial guess at the solution). However, we emphasize that the lengths
of the array arguments do not appear in the argument list . The user must declare all arrays
to be of fixed length at the head of the subroutine usrini. These declarations are used by
the Perl script snadiopt.pl to automatically construct a main program that calls Snopt
with appropriately dimensioned arrays. For example, a typical definition of the variables at
the head of usrini is as follows.

integer n, neF
integer nName, nFnames
integer lencw, leniw, lenrw, lencu, leniu, lenru
parameter (lencw = 501, leniw = 10000, lenrw = 20000)
parameter (lencu = 1, leniu = 1, lenru = 1)
parameter (n = 5, neF = 6)
parameter (nName = 1, nFnames = 1)
character*8 Names(nName), FNames(nFnames)
double precision x(n), xlow(n), xupp(n)
double precision Flow(neF), Fupp(neF), Fmul(neF)
integer xstate(n), Fstate(neF)
integer iu(leniu), iw(leniw)
double precision ru(lenru), rw(lenrw)
character*8 cu(lencu), cw(lencw)

3. User-Supplied Subroutines 9

The names of the arguments for usrini are unimportant, but the position of each argument
is significant. For example, if the user prefers to call the vector of variables “vars” and
declares the fourth argument of usrini to be

parameter (maxvars = 5)
double precision vars(maxvars)

then snadiopt.pl will parse this declaration and include

parameter (n = 5)
double precision x(n)

in the automatically generated calling routine. SnadiOpt can recognize Fortran style param-
eters and numbers but cannot read more complicated expressions. For instance, declaring
Fmul as “double precision Fmul(n+1)” will definitely confuse it.

Below, we describe each of the arguments of usrini. In many cases, these arguments
are assigned a default value in the automatically generated calling program. If the user
wishes to use the default value of an argument, then it should not be altered in usrini.
The symbol “∞” denotes the value of the Snopt optional parameter Infinite bound, which
has default value 1020.

Parameters:

ObjAdd is a double precision constant that is added to the objective function for printing
purposes. ObjAdd does not affect the minimizer found.

Default value: ObjAdd = 0.0.

ObjRow is an integer defining the component of F (x) to be used as the objective function
Fobj(x). If ObjRow = 0, then Snopt finds a point x that satisfies the constraints
l ≤ x ≤ u, and L ≤ F (x) ≤ U ,

Default value: ObjRow = 1.

Prob is an eight-character name for this model.

Default value: The name of the executable, truncated to eight characters.

x is a double precision array containing the point at which Snopt will start searching
for a minimizer.

Default value: x(j) = 0.0.

xlow, xupp are double precision arrays containing the lower and upper bounds l and u
such that l ≤ x ≤ u. By default, xlow and xupp are assumed to be infinite (i.e.,
the value of x is not restricted).

Default values: xlow(j) = −∞, xupp(j) = +∞.

xstate defines the initial state for each variable x. One may set xstate(j) = 0, x(j) = 0.0
for all j = 1 : n. All variables will be eligible for the initial basis.

Less trivially, to say that the optimal value of variable j will probably be equal to
one of its bounds, set xstate(j) = 4 and x(j) = xlow(j) or xstate(j) = 5 and
x(j) = xupp(j) as appropriate.

Default value: xstate(j) = 0.

Names is a character array of symbolic names for the components of x. Each name may
have up to eight characters. If the user does not wish to supply symbolic names for
the variables, Names should be declared to be be an array of length one.

10 User’s Guide for SNADIOPT

Fmul is a double precision array of estimates of the dual variables for the constraints
L ≤ F (x) ≤ U . (Dual variables are sometimes known as Lagrange multipliers or
shadow prices.) Fmul(ObjRow) corresponds to the objective and is ignored.

Default value: Fmul(j) = 0.0.

Flow, Fupp are double precision arrays containing the lower and upper bounds L and U
such that L ≤ Fi(x) ≤ U . The components Flow(ObjRow) and Fupp(ObjRow)
corresponding to the objective is ignored. For an equality constraint of the form
Fi(x) = c, set Flow(j) = Fupp(j) = c.

Default values: Flow(j) = −∞ and Fupp(j) = +∞.

FNames is a character array of symbolic names for the constraints. Each name may consist of
up to eight characters. If the user does not wish to supply names for the constraints,
FNames should be declared to be an array of length one.

iSpecs is an open, readable Fortran file descriptor pointing to an options, or “specs” file.
See the Snopt users guide to discover which options are available. If one chooses
not to use an options file, iSpecs should be set to zero.

Default value iSpecs = 0.

iPrint is a Fortran file descriptor pointing to a file that will be overwritten with the results
of this run of Snopt. If one does not wish to save the output to a file, iPrint should
be set to zero.

Default value iPrint = 0.

iSumm a Fortran file descriptor pointing to a file that will be overwritten with summary
information from this run of Snopt. Typically, iSumm is either set to 6, which will
cause the summary output to be printed on the terminal, or set to 0, which disables
the printing of summary information.

Default value iSumm = 6.

iErr a Fortran file descriptor pointing to a file that will be overwritten with diagnostic
information from this run of Snopt. Set iErr to zero to disable printing of diagnostic
information.

Default value iErr = 0.

cu, iu, ru are character, integer, and double precision arrays in which the user may store
information between calls to usrfun.

cw, iw, rw are character, integer, and double precision work-space arrays used by Snopt.
These arrays must be declared sufficiently large for Snopt to solve the optimization
problem.

3.3. An Example Problem

Here we give examples of subroutines usrini and usrfun for the following four variable
problem:

minimize 3x1 + (x1 + x2 + x3)2 + 5x4

subject to 4x2 + 2x3 ≥ 0
x1 + x2

2 + x2
3 = 2

x4
2 + x4

3 + x4 = 4
x1 ≥ 0 x4 ≥ 0.

3. User-Supplied Subroutines 11

In the format of problem NP we have L ≤ F (x) ≤ U , where

L =


−∞

0
2
4

 , F =


3x1 + (x1 + x2 + x3)2 + 5x4

4x2 + 2x3

x1 + x2
2 + x2

3

x4
2 + x4

3 + x4

 , U =


+∞
+∞

2
4

 .

The objective function has been assigned to the first component of F , which means that
ObjRow = 1. The objective component is not constrained by Snopt, so there are infinite
upper and lower bounds on Fobj. (A component with infinite upper and lower bounds is
known as a “free row” of the problem.) Snopt automatically provides these infinite bounds
on the objective row, and so it is unnecessary to provide them (unless later the user plans
to set ObjRow = 0 to make Snopt find a feasible point for the constraints).

The upper and lower bounds on the variables are given by l ≤ x ≤ u, where

l =


0

−∞
−∞

0

 , x =


x1

x2

x3

x4

 , u =


+∞
+∞
+∞
+∞

 .

Our version of subroutine usrini performs four tasks: (i) it defines the length of the variable-
dimensioned arrays used by Snopt and SnadiOpt; (ii) it opens the print file and summary
file; (iii) it initializes the array of variables; and (iv) it defines the upper and lower bounds
on x and F .

subroutine usrini(ObjAdd, ObjRow, Prob,

& x, xlow, xupp, xstate, Names,

& Fmul, Flow, Fupp, Fstate, FNames,

& iSpecs, iPrint, iSumm, iErr,

& cu, iu, ru, cw, iw, rw)

implicit none

integer n, neF, nName, nFnames, ObjRow,

& lencw, leniw, lenrw, lencu, leniu, lenru

parameter (lencw = 501, leniw = 10000, lenrw = 20000)

parameter (lencu = 1, leniu = 1, lenru = 1)

parameter (n = 4, neF = 4)

parameter (nName = 1, nFnames = 1)

integer iSpecs, iPrint, iSumm, iErr, xstate(n),

& Fstate(neF), iu(leniu), iw(leniw)

double precision ObjAdd, x(n), xlow(n), xupp(n), Flow(neF),

& Fupp(neF), Fmul(neF), ru(lenru), rw(lenrw)

character*8 Prob, Names(nName), FNames(nFnames),

& cu(lencu), cw(lencw)

* ==

* usrini defines input data for the problem discussed in the

* SnadiOpt Users Guide.

* ==

integer i

character*20 lfile

double precision plInfy

parameter (plInfy = 1.0d+20)

* --

* Initial x.

12 User’s Guide for SNADIOPT

x(1) = 1.0d+0

x(2) = 1.0d+0

x(3) = 1.0d+0

x(4) = 1.0d+0

xlow(1) = 0.0d+0

xlow(4) = 0.0d+0

* Impose bounds on the constraint rows.

Flow(2) = 0.0d+0

Flow(3) = 2.0d+0 ! Equality constraint

Fupp(3) = 2.0d+0

Flow(4) = 4.0d+0 ! Equality constraint

Fupp(4) = 4.0d+0

iSpecs = 4

iPrint = 15

lfile = ’prob.spc’

open(iSpecs, file=lfile, status=’OLD’, err=800)

lfile = ’prob.out’

open(iPrint, file=lfile, status=’UNKNOWN’, err=800)

return

800 write(iErr, 4000) ’Error while opening file’, lfile

4000 format(/ a, 2x, a)

end ! subroutine usrini

Note that default initial values are used for the variables Prob, Fmul, xstate, Fstate, and
ObjAdd. Similarly, only those bounds not equal to their default infinite values are assigned.

The subroutine usrfun defines the values of the vector F (x).

subroutine usrfun(Status, mode,

& neF, n, x, F,

& cu, lencu, iu, leniu, ru, lenru,

& cw, lencw, iw, leniw, rw, lenrw)

implicit none

integer Status, mode, neF, n, lencu, leniu, lenru,

& lencw, leniw, lenrw, iu(leniu), iw(leniw)

double precision F(neF), x(n), ru(lenru), rw(lenrw)

character*8 cu(lencu), cw(lencw)

* ==

* Usrfun computes the objective and constraint functions for the

* problem featured in the SnadiOpt users guide.

* ==

integer Obj

* --

Obj = 1 ! The objective row

F(Obj) = 3.0d+0*x(1) + (x(1) + x(2) + x(3))**2 + 5.0d+0*x(4)

4. Invoking SnadiOpt 13

* Constraint functions.

F(2) = 4.0d+0*x(2) + 2.0d+0*x(3)

F(3) = x(1) + x(2)**2 + x(3)**2

F(4) = x(2)**4 + x(3)**4 + x(4)

end ! subroutine usrfun

4. Invoking SnadiOpt

The user-supplied routines must be run through ADIFOR and then compiled and linked into
a complete program, before Snopt may be invoked. There are two steps in the process of
building this complete program. First, the user invokes the script snadiopt.pl to scan the
user-supplied routines and produce the components that are needed to build a complete
executable, notably the main program itself. Second, the user invokes a version of the
program make to perform the build.

Users will typically call snadiopt.pl only once. Most changes made to a model can be
incorporated into the executable by simply typing make. By design, snadiopt.pl generates
a (relatively) straightforward set of components that may be modified at will. In some cases,
particularly if the sizes of the arrays defined in usrini change, it may be convenient to call
snadiopt.pl again rather than modifying multiple files. We have incorporated a feature
into snadiopt.pl to simplify this process. See Section 4.4 for more information.

4.1. Locating Executables and Libraries

Before one can use SnadiOpt, the package must, of course, be installed on the user’s machine.
Installation instructions are provided with the SnadiOpt distribution. Because the installa-
tion process depends on the machine type and the source of the distribution, installation
instructions will not be repeated here. A few words, however, are in order.

The SnadiOpt package consists of a program named snadiopt.pl, some data files needed
by snadiopt.pl, and code libraries that must be combined (linked) with user-supplied code
to produce a problem executable. Ideally, these components will be installed in an appropri-
ate, system-dependent location. On Unix systems, for instance, the default location is the
/usr/local/ directory structure. If the SnadiOpt package is located in some appropriate
system location, then typing

% snadiopt.pl --help

will provide summary help information about using the snadiopt.pl program. If this
is the case, then the rest of this section may be skipped. If the system cannot find the
snadiopt.pl program, then the user will need to tell the system where to find it. The
following instructions are for versions of the Unix operating system.

First, one should ask the individual who installed SnadiOpt where the snadiopt.pl
program is located. If it is not in a system-dependent location, it will normally be found in
the bin subdirectory of the Snopt distribution. The cd command may be used to change
the working directory to the directory containing snadiopt.pl. The command used to set
the PATH environment variable depends on which shell is being used. For bash or ksh, the
appropriate command is

% PATH=$PATH:$PWD

but for csh or tcsh, the command

% setenv PATH ${PATH}:${PWD}

14 User’s Guide for SNADIOPT

must be used. Virtually all users will be using a shell that responds to one of these two
commands. It is safe to try these commands if one is unsure which shell is being used.

Once the PATH environment variable has been set, the system will be able to find
snadiopt.pl. One can then generate and compile problem executables. The executa-
bles may not, however, run. While this would seem to be undesirable behavior, there is
actually a reason for it. Modern operating systems support the concept of dynamically
linked libraries. Such libraries are not copied into an executable, but rather are loaded into
memory when a program is run. With such a scheme, several executables may share one
library. SnadiOpt uses dynamically linked libraries whenever possible.

Because dynamically linked libraries must be loaded at run-time, the operating system
must know where to locate these libraries. The simplest scheme is to place the libraries in
a system-dependent location. If one had to set the PATH environment variable to tell the
system where to find the snadiopt.pl program, then it is likely that one will need to tell
the system where to find the SnadiOpt libraries as well. To do so, one should first change
the working directory to the directory containing the SnadiOpt libraries. These libraries will
usually be located in the lib subdirectory of the Snopt distribution, and will have names
similar to libsnddiopt.so and libsnsdiopt.so. If the user is using bash or ksh, the
command

% LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD
% export LD_LIBRARY_PATH

should be executed. Those using csh or tcsh, must determine whether LD LIBRARY PATH
has already been set. If the command

% printenv LD_LIBRARY_PATH

prints nothing, then the variable has not been set, and

% setenv LD_LIBRARY_PATH ${PWD}

will set it appropriately. Otherwise, typing

% setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${PWD}

will add the current directory to the existing LD LIBRARY PATH.
Let us make a few, final notes about this process. These days, it is common for a user

to have multiple command windows open. It is a frequent mistake to think that setting
the PATH variable, or any variable, in one window sets its value in all windows. Setting
a variable in one command window does not affect the other command windows in any
way. It is usually possible to alter certain initialization files to set the values of PATH and
LD LIBRARY PATH in every command window automatically at login. It is not possible for
us to describe this process, because it is very system dependent. One should ask a system
administrator how to do this.

4.2. Basic Usage

Suppose a user has placed all the code needed to define a certain problem, including the
required subroutines usrfun and usrini, in a file named prob.f. The command

% snadiopt.pl -o prob prob.f

will generate the files that are needed to build an executable named prob that solves the
user’s optimization model.

To actually build the executable, invoke the GNU version of the program make. On many
systems, GNU make is installed as make or gmake, and so typing

4. Invoking SnadiOpt 15

% make

or

% gmake

should build a program named prob that may be executed from the command line.

4.3. Files Generated by snadiopt.pl

In this section, we briefly describe the files generated by snadiopt.pl itself. Other tempo-
rary files may be generated by the compiler and ADIFOR. A beginning user should not need
to know about the generated files in order to use this package. Therefore, this section may
be skipped on a first reading.

This section lists the files generated for a problem named prob. The script snadiopt.pl
uses “prob” as the prefix for most of the files generated for this problem. If the user had
invoked the command

% snadiopt.pl -o prob prob.f

then “prob” will be the prefix of the generated files. In general, the -o option determines
the prefix of the generated files. If the option is omitted, then “unnamed” will be the prefix
used.

GNUmakefile. This is the only generated file that is not prefixed by the name of the
problem. The GNUmakefile is meant to be shared by all problems in a given directory; it
contains general information about building and managing problem executables.

Users may wish to modify GNUmakefile to customize the build process. For instance,
GNUmakefile might be modified to tell the compiler to generate object code suitable for use
with a debugger. The snadiopt.pl program will not overwrite an existing GNUmakefile,
unless it is called with the --refresh-makefile option. Therefore, it is safe to modify this
file.

prob submake, prob submake.orig, prob submake.bak. The file prob submake contains
the commands for building the program, including the commands for calling ADIFOR . The
file should contain the complete dependency information for the program and should be
capable of rebuilding the program when components are modified.

It is sometimes necessary to modify prob submake. The file prob submake.orig contains
the original version of this file, as generated by snadiopt.pl. This allows the user to
compare the modified version of prob submake with the original file.

If snadiopt.pl detects an existing file named prob submake, it will save this file as
prob submake.bak. The user may then reapply any changes made to prob submake to
the newly generated file. Many times, these changes can be merged automatically. See
Section 4.4 for more information.

prob main.f, prob main.f.orig, prob main.f.bak. The file prob main.f contains the
Fortran main program that calls Snopt with the user’s data and problem definition func-
tions. It also performs some necessary bookkeeping and initialization and is responsible for
allocating the arrays that the user requests in the usrini subroutine.

Users may wish to modify prob main.f. For instance, a user might wish to output the
results from Snopt in a particular format and so might place the commands for doing so in
prob main.f. The file prob main.f.orig contains the version of prob main.f generated

16 User’s Guide for SNADIOPT

by the last call to snadiopt.pl. This allows the user to compare the modified prob main.f
with the original file.

If snadiopt.pl detects an existing file named prob main.f, it will save that file as
prob main.f.bak before proceeding. All changes that the user had made to the existing
prob main.f are saved in that back-up file, and the user may reapply these changes to
the newly generated file. Many times, these changes can be merged automatically. See
Section 4.4 for more information.

prob.adf. The file prob.adf contains the ADIFOR “script” for differentiating the model’s
functions. See the ADIFOR users guide for more information. It is unlikely that a user will
need to modify this file.

prob admain.f. ADIFOR requires a complete compilable program in order to differentiate
a function called from that program. The file prob admain.f contains a phony program
that calls usrfun. We know of no reason for users to modify this file.

prob sparse dispatch.f, prob dense dispatch.f. These files call library routines sup-
porting the use of ADIFOR with Snopt. The existence of these files is an artifact of the
Fortran language not having syntax for storing a reference to a subroutine. We know of no
reason for users to modify these files.

prob.cmp. The file user.cmp is not generated by snadiopt.pl, but rather is created as
an intermediate file in the build process. It contains a list of Fortran files that are to be
sent to ADIFOR. One should not not modify this file; one should modify the AD SOURCE and
AD OTHER FILES variables in the file prob submake.

4.4. Merging Changes

Users need to call snadiopt.pl only once. The components that it creates may then be
modified at will, and the executable rebuilt using make. However, on some occasions it may
be useful to call snadiopt.pl again, particularly when

• the sizes of the arrays in usrini have changed. The array sizes in prob main.f and
possibly prob.adf must also be modified. The program snadiopt.pl will update
these quantities automatically.

• the names of the parameters of usrfun have changed. The user must either call
snadiopt.pl again, or edit prob.adf to update the names of the independent variables
(AD IVARS) and the names of the dependent variables (AD DVARS).

• the names of Fortran source files are modified, or new source files are added. Users
will need to update prob submake, or call snadiopt.pl again.

It is not uncommon, however, for users to want to modify prob submake to customize
the build process, or modify prob main.f to perform some action on the results of snopt.
Normally, when snadiopt.pl is called, it overwrites these files, saving copies of the existing
files as prob main.f.bak and prob submake.bak. Users may then reapply the changes they
had made to the old prob main.f and prob submake to the newly generated files.

There are, however, Unix utilities that are able to merge changes between versions au-
tomatically. The snadiopt.pl --merge option provides an interface to these tools. Simply
call snadiopt.pl with the arguments

% snadiopt.pl --merge -o prob prob.f

4. Invoking SnadiOpt 17

The merge is based only on the comparison of blocks of text. It does not pretend to
understand the meaning of the code. However, it is effective remarkably often. In case the
merge is ineffective, the files that snadiopt.pl would have produced without the merge
option may be found in prob submake.orig and prob main.f.orig.

Rarely, there will be conflicts that make it impossible to complete the merge. In these
cases, lines of the form

<<<<<<< prob_submake.bak
lines from prob_submake.bak
=======
lines from prob_submake.orig
>>>>>>> prob_submake.orig

will be inserted in the files, and these sections must be edited by hand.
The merge option uses the standard Unix utilities diff3 and ed. Merging is not sup-

ported on platforms on which these programs are not available. We don’t support automatic
merging of the other generated files. Merging requires that the files prob main.f.orig and
prob submake.orig generated by the last call to snadiopt.pl be present in the current
directory.

4.5. Advanced Usage

Multiple Source Files. The script snadiopt.pl is not restricted to scanning a single
file. If several Fortran files are needed to define the problem, all file names should be included
on the command line.

Library Source Files. ADIFOR understands Fortran intrinsics, operators such as sqrt
that look like functions but actually have special status in the language. It must, however,
have the source code to actual functions used in the program, such as the functions defined
in the BLAS [8]. Source files for these functions must be included on the command line.

If a user is certain that the included library functions do not need to be differentiated,
and would rather link against the installed library than recompile, he may include the
source file names in the AD OTHER FILES variable in the prob submake. See Section 5 for
more information.

Using Alternative Function Names The snadiopt.pl script tries to be flexible about
the names of the problem definition functions. Several options that allow these names and
the names of certain output files to be specified by the user. The available options are
summarized in Section 4.6.

4.6. Summary of All Options

Usage: snadiopt.pl [switches] file1.f [file2.f]
-help Print this message.
-version Print the version number of snadiopt.pl.
-o PROGRAM The optimization problem (and binary executable)

will be named PROGRAM. (default: a.out)
-makefile MAKEFILE The output makefile will be named MAKEFILE.

(default: PROGRAM_submake or unnamed_submake
if PROGRAM is not specified.)

-refresh-makefile Create MAKEFILE, even if it already exists.
Unless given this option, the script will not

18 User’s Guide for SNADIOPT

overwrite an existing MAKEFILE.
-usrfun NAME The FORTRAN subroutine named NAME computes the

functions needed in this optimization problem.
(default: usrfun)

-usrini NAME The FORTRAN subroutine named NAME initializes
this optimization problem. (default: usrini)

-merge Merge changes between prob_main.f.orig and
the current version of prob_main.f into the newly
generated prob_main.f. Do the same for
prob_submake.

5. Building the Executable

The Unix Make utility is used to generate targets, in this case executables that solve specific
optimization problems, from source files. The rules that Make uses to build these targets
are specified in files known as makefiles. The Make utility is also commonly used to perform
certain bookkeeping tasks, such as removing files generated by the build process.

This project uses the GNU dialect of Make. This dialect has certain pattern substitution
features that are absent in other versions of Make. Furthermore, GNU Make is freely available
on virtually every platform. Vendor-specific versions of Make are not consistent in interface,
language, or quality. Thus, we use GNU make to get predictable performance on a wide
variety of platforms.

We assume that the reader has a basic knowledge of the Make utility. (For a good
introduction to Make, see [10] or [11].) This section describes how we have arranged our
makefiles, the targets that are available, and variables that may be modified to effect the
build process. Most users will simply invoke GNU Make without any arguments to build all
problems in the current directory (provided that snadiopt.pl has already been invoked to
create the necessary components.) For the rest of this section, we assume that GNU Make
has been installed and may be invoked by the command make. Users should substitute the
command that they use to invoke GNU Make wherever appropriate.

On Unix systems, if the SnadiOpt package is not installed in an appropriate system
location, the user may have to set the LD LIBRARY PATH environment variable before the
executables that are built will run. See Section 4.1 for instructions on how to do this.

5.1. Typical Usage

Before invoking Make, users must call snadiopt.pl to generate the components of each
problem they wish to build. Then, typing make will cause executables to be built for all
models in the current directory. If users wish to build executables for only some of the
problems, they may instead list the names of the executables that they wish to build. For
instance;

% make prob1 prob3

would build only the executables prob1 and prob3.

5.2. Subordinate Makefiles

Traditionally, Make takes all its input from a single file, typically named makefile, Makefile,
or GNUmakefile. This scheme has proven to be too restrictive in practice, so many versions
of Make, and GNU make in particular, support the include directive. A line of the form

include filename

5. Building the Executable 19

tells Make to act is if all the text in “filename” were included literally in the makefile.
In a problem directory, there will be a single file named GNUmakefile and one or more

files with the suffix “submake.” Each of the files with an appended submake is called a
subordinate makefile, because it does not contain a complete set of rules and dependencies
for building the executable for a problem. The GNUmakefile uses the include directive to
include the text of all the subordinate makefiles. Each model in a directory will have its
own subordinate makefile, which will contain the specific rules, variables, and dependencies
for building an executable that optimizes that model. The text of GNUmakefile contains
generic rules and dependencies that are needed to build any model.

Subordinate makefiles are useful for several reasons:

• Users may wish to have more than one model in a directory. Having complete, sepa-
rately named makefiles for each model becomes awkward, requiring the user to specify
the name of the makefile for each build.

• Users may want to build the executable for more than one model or to take some other
action that affects more than one model. When subordinate makefiles are used, the
rules for all the models are available, so a user may build any combination of targets
by typing their names on the command line. The command “make all” works as
expected and is the default target.

• Sometimes multiple models will share one or more files. Because Make is given the
complete set of dependencies for the executables of all the models, it can quickly
determine which files need to be rebuilt. If each model had a separate makefile, the
user would have to make this determination or, alternatively, call Make once for every
executable.

The Make program can scan all the subordinate makefiles and build a complete set of
dependencies quickly. The time taken is typically many times shorter than the time needed
to compile a single file. Some users may be surprised by this speed. See [9] for a discussion
of issues affecting the efficiency of Make.

5.3. Useful makefile Targets

In addition to the names of the programs, a number of “phony” targets may be specified
for Make. These targets cause some action to be taken, rather than causing the target to
be built. These targets commonly are defined to perform useful project-management tasks,
such as deleting “.o” files.

all builds everything. This is the default, so make all is equivalent to Make.

check checks the consistency of the Fortran files used to build each program. This requires
that ftnchek has been installed. The ftnchek program and documentation are freely
available and may be obtained from http://www.netlib.org.

clean removes object (“.o”) files and some common ”garbage” files, such as core files.
This does not remove the executable file or any files generated by ADIFOR.

veryclean removes more files generated by the build process, including the executable
and all output from ADIFOR. This target also removes files named “prob.out”, the
traditional name for output from the solvers.

20 User’s Guide for SNADIOPT

distclean cleans up for distribution. This target is like veryclean but does not delete the
differentiated Fortran problem files, since those files are considered part of a distribu-
tion. Use this target to distribute the files to a machine on which the ADIFOR transla-
tor is not available. This target invokes clean, adifor-clean and snadiopt-clean.

maintainer-clean deletes everything that can be rebuilt. This includes the files created
by a call to snadiopt.pl and the makefiles themselves.

adifor-clean removes ADIFOR auxiliary files, but not the autodifferentiated Fortran files.

adifor-veryclean removes ADIFOR auxiliary files and the differentiated Fortran files (and
*.cmp).

snadiopt-clean removes auxiliary files generated by SnadiOpt for use with all the pro-
grams. These are the “.bak” and “.orig” files.

snadiopt-veryclean removes all files generated by SnadiOpt for use with all the programs.
Files generated by SnadiOpt cannot be rebuilt by using commands in the makefile. This
target is intended to reverse the effect of calling snadiopt.pl.

These targets also have versions that are limited to the components of a single module.
For instance, make prob-clean will remove auxiliary files generated in a build of the ex-
ecutable prob. In general, any of these targets may be prefixed by the name of a specific
problem.

5.4. Useful makefile Variables

Each subordinate makefile contains the following variables that users might need to modify.

prob USER LIBS defines any libraries that need to be linked with the user’s code to produce
an executable. The SnadiOpt libraries are automatically included.

prob SOURCE is a list of all Fortran source files for the model prob. A reference to the
variables prob AD SOURCE and prob AD G SOURCE should appear in this list.

prob AD SOURCE is the list of files to be differentiated by ADIFOR.

prob AD OTHER FILES is a list of files that must be passed to ADIFOR in addition to those of
prob AD SOURCE in order to make a complete program. The files in this list differ from
the files in prob AD SOURCE in that neither the original file nor the result computed by
ADIFOR need be compiled into the problem executable. Phony main programs and
phony library stubs belong on this list.

5.5. Dense ADIFOR

Snopt is a sparse optimization solver; its internal data is stored in sparse matrix format.
Sparse matrix format is designed to take advantage of the fact that many the elements of
the matrix will be identically zero.

ADIFOR can either generate derivative code that uses sparse matrices internally or code
that uses dense matrices internally. For small problems, typically problems with fewer than
30 variables, the derivative code generated by dense ADIFOR can be more efficient. This is
typically not an important issue unless the problem is highly nonlinear (otherwise, it is just
a small simple problem and will be solved quickly regardless of which version of ADIFOR is
used.)

A sequence of commands of the form

References 21

% make adifor-veryclean
% make AD_FLAVOR=dense

will cause ADIFOR to generate code that uses dense matrices to compute derivatives. It
is important to make adifor-veryclean whenever switching between dense and sparse
versions of ADIFOR. The make program is unable to tell that a user has switched versions
of ADIFOR, and it thus cannot tell which files need to be rebuilt.

References
[1] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR: Generating derivative

codes from Fortran programs, Sci. Programming, 1 (1992), pp. 11–29.

[2] C. Bischof, A. Carle, P. Khademi, and A. Mauer, ADIFOR 2.0: Automatic differentiation of
Fortran 77 programs, IEEE Computational Science & Engineering, 3 (1996), pp. 18–32.

[3] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User’s Guide, Release 2.25, Scientific Press,
1988.

[4] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, Duxbury Press/Brooks-Cole Publishing Company, 1993. ISBN 0-534-37895-1.

[5] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale constrained
optimization, Numerical Analysis Report 97-2, Department of Mathematics, University of California,
San Diego, La Jolla, CA, 1997.

[6] , User’s guide for SNOPT 5.3: a Fortran package for large-scale nonlinear programming, Nu-
merical Analysis Report 97-5, Department of Mathematics, University of California, San Diego, La
Jolla, CA, 1997.

[7] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London and
New York, 1981. ISBN 0-12-283952-8.

[8] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic linear algebra subprograms for
FORTRAN usage, ACM Trans. Math. Soft., 5 (1979), pp. 308–323.

[9] P. Miller, Recursive make considered harmful. http://www.pcug.org.au/ millerp/rmch/recu-make-
cons-harm.html.

[10] A. Oram and S. Talbott, Managing Projects with make, 2nd Edition, O’Reilly & Associates, 1991.
ISBN: 0-937175-90-0.

[11] R. M. Stallman and R. McGrath, GNU Make, A Program for Directing Recompilation, Free Software
Foundation, April 2000. ISBN: 1-882114-81-7.

Index

AD (automatic differentiation), 3–4, see dif-
ferentiation

AD FLAVOR, 21
AD OTHER FILES, 16, 17
AD SOURCE, 16
ADIFOR, 3, 4

files for model prob, 20
for dense Jacobians, 20
generated files, 15–17
input/output, 6
libraries, 4, 20
library source files, 17
linking other files, 20
removing ADIFOR differentiated files, 20
removing ADIFOR auxiliary files, 20
removing *.o files, 19
sparse vs. dense, 21
User’s Guide, 5
web page, 5, 6

adifor-clean, see makefile targets
adifor-veryclean, see makefile targets
all, see make targets, see makefile targets
AMPL, 4
Argonne National Laboratory, 4

Basic Linear Algebra Subroutines, see BLAS
BLAS, 17
bounds, 3
bounds on F, see Flow and Fupp

bounds on x, see xlow and xupp

C compiler, 4
check, see makefile targets
clean, see makefile targets
constrained optimization, see nonlinear con-

strained optimization
constraint functions, see F vector
constraint names, see Fnames

constraints, 3
cu(lencu) (user character scratch array)

argument of usrfun, 7
argument of usrini, 9
description, 8, 10

cw(lencw) (Snopt character work array)
argument of usrini, 9
description, 10

data initialization routine, see usrini

dense ADIFOR, 20
dense matrix format, 21
derivatives of F , see Jacobian matrix
derivatives of F, 3
differentiation

automatic, 1, 3, 4, 6
numerical, 3, 4, 7
symbolic, 6
why automatic?, 3

distclean, see makefile targets
dual variables, see Fmul

F (x), 3, 7, 8, 11
F (array of problem function values), 6

argument of usrfun, 7
description, 8

Fobj(x), 3, 8, 9, 11

Flow (lower bounds on F)
argument of usrini, 9
default values, 10
description, 10

Fmul (array of multipliers)
argument of usrini, 9
default values, 10
description, 10

FNames (names of F)
argument of usrini, 9
description, 10

Fortran compiler, 1, 4
Fortran 77, 4
Fortran 90, 4
code recognized by SnadiOpt, 9
intrinsics, 17

forward mode (for AD), 4
ftnchek, 19

web page, 19
function definition routine, see usrfun

Fupp (upper bounds on F)
argument of usrini, 9
description, 10

GAMS, 4
GNU Make, 13, 15, 18
gmake, see GNU Make
GNUmakefile, see makefile

iErr (diagnostic file descriptor)
argument of usrini, 9
default value, 10
description, 10

Infinite bound, 9
initial point x0

calculation of sparse Jacobian, 6
iPrint (print file descriptor)

argument of usrini, 9
default value, 10
description, 10

iSpecs (specs file descriptor)

22

INDEX 23

argument of usrini, 9
default value, 10
description, 10

iSumm (summary file descriptor)
argument of usrini, 9
default value, 10
description, 10

iu(leniu) (user integer scratch array)
argument of usrfun, 7
argument of usrini, 9
description, 8, 10

iw(leniw) (Snopt integer work array)
argument of usrini, 9
description, 10

J , see Jacobian matrix
Jacobian matrix, 3, 6

constant elements, 3
linearity pattern, 7
sparse matrix format, 3, 20
sparsity pattern, 7

L, 3, 5, 10, 11
l, 3, 5, 9, 11
Lagrange multipliers, see Fmul

libraries
ADIFOR, 20
SnadiOpt, 20

linearity pattern, 7

maintainer-clean, see makefile targets
Make, 13

GNU version of make, 18
Makefile, see makefile

makefile

GNUmakefile, 15
include directive, 19
recursive invocation, 19
subordinate, 19
targets

adifor-clean, 20, 21
adifor-veryclean, 20, 21
all, 19
check, 19
clean, 19
distclean, 20
maintainer-clean, 20
phony, 19
prob-clean, 20
snadiopt-clean, 20
snadiopt-veryclean, 20
veryclean, 20

use of submake, 19
mode

argument of usrfun, 7
description, 8

Names (variable names)
argument of usrini, 9
description, 10

NEOS, 5
nonlinear constrained optimization, 3, 20
nonlinear programming, see nonlinear con-

strained optimization

Objadd (objective additive constant)
argument of usrini, 9
default value, 9
description, 9

objective function, see ObjRow

ObjRow (objective row)
argument of usrini, 9
bounds ignored, 10
component of F , 8
default value, 9
description, 9

optimization
web page, 5

options file, see Snopt specs file
ordinary differential equation solver, 4

Perl, 5, 8
phony, see makefile targets
Prob (model name)

argument of usrini, 9
default value, 9
description, 9

prob files
Fortran source files, 5, 11, 20
prob.adf, 16
prob.cmp, 16
prob.f (user supplied), 5, 11, 15
prob.out, 20
prob admain.f, 16
prob dense dispatch.f, 16
prob main.f.bak, 16
prob main.f.orig, 16
prob main, 16
prob sparse dispatch.f, 16
prob submake, 15–17
prob (executable), 5, 15, 20
combining multiple source files, 17

prob-clean, see makefile targets
prob AD OTHER FILES, 20
prob AD SOURCE, 20
prob SOURCE, 20
prob USER LIBS, 20

Rice University, 4
ru(lenru) (user double scratch array)

argument of usrfun, 7
argument of usrini, 9
description, 8, 10

24 INDEX

rw(lenrw) (Snopt double work array)
argument of usrini, 9
description, 10

scratch arrays
character, cu(lencu)

argument of usrfun, 7
argument of usrini, 9
description, 8

integer, iu(leniu)
argument of usrfun, 7
argument of usrini, 9
description, 8

real, ru(lenru)
argument of usrfun, 7
argument of usrini, 9
description, 8

shadow prices, see Fmul

SnadiOpt package, 1, 3, 6, 7
basic usage, 5
libraries, 20
make targets, 20
treatment of sparse Jacobians, 3

snadiopt-clean, see makefile targets
snadiopt-veryclean, see makefile targets
snadiopt.pl, 5, 8

merge option, 17
basic usage, 5
build process, 18
generated files, 15
help option, 13
invocation, 13
loading multiple source files, 17
merging changes, 16, 17
options, 17

Snopt, 1, 3, 20
call to Snopt, 7
input of the Jacobian, 6, 7
specs file, 10
specs file, 5, see also iSpecs

user work-space, see scratch arrays
User’s Guide, 5
web page, 6
work-space, see work arrays

source files, see prob files
sparse Jacobian, 6
specs file, see Snopt specs file
SQP methods, 1
Status

argument of usrfun, 7
description, 7

subordinate makefile, see makefile

summary file, see iSumm

U , 3, 5, 10, 11
u, 3, 5, 9, 11

UNIX, 13
diff3 and ed, 17
merge option, 17

user-supplied subroutines, see usrfun, usrini
usrfun (user-supplied subroutine), 5, 7

called byprob admain.f, 16
example, 11
merging changes, 16
specification, 7
using an alternate name, 17

usrini (user-supplied subroutine), 5, 7
changing the source, 13
example, 11
merging changes, 16
specification, 8
using an alternate name, 17

variable names, see Names

variables, see x

vector of constraints, see F

vector of variables, see x

veryclean, see makefile targets

work arrays
character, cw(lencw)

argument of usrini, 9
integer, iw(leniw)

argument of usrini, 9
real, rw(lenrw)

argument of usrini, 9

x (array of variables)
argument of usrfun, 7
argument of usrini, 9
default values, 9
description, 8, 9

xlow (lower bounds on x)
argument of usrini, 9
default values, 9
description, 9

xstate (status of bounds on x)
argument of usrini, 9
default values, 10
description, 10

xupp (upper bounds on x)
argument of usrini, 9
default values, 9
description, 9

