User’s Guide for SQOPT Version 7.6:
Software for
Large-Scale Linear and Quadratic Programming*

Philip E. GILL and Elizabeth WONG
Department of Mathematics
University of California, San Diego, La Jolla, CA 92093-0112, USA

Walter MURRAY and Michael A. SAUNDERS
Systems Optimization Laboratory
Department of Management Science and Engineering
Stanford University, Stanford, CA 94305-4026, USA

January 30, 2017

Abstract

SQOPT is a software package for minimizing a convex quadratic function subject
to both equality and inequality constraints. SQOPT may also be used for linear pro-
gramming and for finding a feasible point for a set of linear equalities and inequalities.
SQOPT uses a two-phase, active-set, reduce-Hessian method. It is most efficient on
problems with relatively few degrees of freedom (for example, if only some of the vari-
ables appear in the quadratic term, or the number of active constraints and bounds
is nearly as large as the number of variables). However, unlike previous versions of
SQOPT, there is no limit on the number of degrees of freedom.

SQOPT is primarily intended for large linear and quadratic problems with sparse
constraint matrices. A quadratic term %ﬂcTH z in the objective function is represented
by a user subroutine that returns the product Hzx for a given vector x.

SQOPT uses stable numerical methods throughout and includes a reliable basis
package (for maintaining sparse LU factors of the basis matrix), a practical anti-
degeneracy procedure, scaling, and elastic bounds on any number of constraints and
variables.

SQOPT is part of the SNOPT package for large-scale nonlinearly constrained op-
timization. The source code is re-entrant and suitable for any machine with a Fortran
compiler. SQOPT may be called from a driver program in Fortran, MATLAB, or C/C++
with the new interface based on the Fortran 2003 standard on Fortran-C interoper-
ability. A f2c translation of SQOPT to the C language is still provided, although this
feature will be discontinued in the future (users should migrate to the new C/C++ in-
terface). SQOPT can also be used as a stand-alone package, reading data in the MPS
format used by commercial mathematical programming systems.

Keywords: optimization, large-scale linear programming, large-scale quadratic pro-
gramming, convex quadratic programming, sparse linear constraints, Fortran software,

C software.
pgill@ucsd.edu http://www.cam.ucsd.edu/ peg
elwong@ucsd.edu http://wuw.CCoM.ucsd.edu/ elwong
walter@stanford.edu http://www.stanford.edu/ "walter

saunders@stanford.edu http://www.stanford.edu/ saunders

*Partially supported by Northrop Grumman Aerospace Systems, National Science Foundation grants
DMS-1318480 and DMS-1361421, and the National Institute of General Medical Sciences of the National
Institutes of Health [award U01GM102098]. The content is solely the responsibility of the authors and does
not necessarily represent the official views of the funding agencies.

2 SQOPT 7 User’s Guide
Contents
1. Introduction 3
1.1 Convex objective functions Lo oL 3
1.2 Least-squares problems and non-convex QP problems 4
1.3 TImplementation L 4
1.4 Files . . o o o e e 4
1.5 Overview of the package 4
1.6 Getting started L 5
2. A brief description of quadratic programming 8
2.1 Formulation of the problem L. 8
2.2 Active-set methods 8
2.3 The reduced Hessian and reduced gradient 9
2.4 Treatment of constraint infeasibilities 10
2.5 Degeneracy and the feasibility tolerance 11
2.6 Basisrepair e 11
3. Subroutines associated with sqOpt 12
3.1 Subroutine sqOpt 13
3.2 Subroutine gpHx 19
3.3 Subroutine sqInit 21
3.4 Subroutine sqMem e 22
4. Optional parameters 24
4.1 The Specsfile. 24
4.2 Multiple sets of options in the Specs file 24
4.3 SPECS file checklist and defaults 0. 25
4.4 Subroutine sqSpec 27
4.5 Subroutines sqSet, sqSeti, sqSetro 28
4.6 Subroutines sqGet, sqGetc, sqGeti, sqGetr 29
4.7 Description of the optional parameters 30
5. Output 41
5.1 The Print file 41
5.2 The iteration log L 41
5.3 Basis factorization statisticso oo 42
5.4 Crash statistics L 44
5.5 EXIT conditions e 45
5.6 Solution output 49
5.7 The Solution file 51
5.8 The Summary file 51
6. Basis files 53
6.1 New and Old basis files 53
6.2 Punch and Insert fileso 55
6.3 Dump and Load files 56
6.4 Restarting modified problems L. 56
References 59
Index 60

1. Introduction 3

1. Introduction

SQOPT is a software package for solving large-scale linear programming or convez quadratic
programming problems of the form

LQP minimize ¢(x)

. T
subject to | < (A:c) < u,

where x is an n-vector of variables, [and u are constant lower and upper bounds, A is
an m X n sparse matrix, and ¢(z) is a linear or quadratic objective function that may be
specified in a variety of ways.

Upper and lower bounds are specified for all variables and constraints. The jth constraint
may be defined as an equality by setting I; = ;. If certain bounds are not present, the
associated elements of [or u may be set to special values that are treated as —oo or +oc.

SQOPT is suitable for large problems in which the matrix A is sparse—i.e., when there
are sufficiently many zero elements in A to justify storing them implicitly. The matrix A is
input via parameters Acol (*), indA(*), locA(*) that allow you to specify the pattern of
nonzero elements in A (see Section 3.1).

1.1. Convex objective functions

The possible forms for g(z) are summarized in Table 1. The most general form is

q(fE) :QS—}—CT{E—l-%xTH:E = gf){—Zijj—l-%ZZl'iHij(Ej, (11)
j=1

i=1 j=1

where ¢ (phi) is a constant, ¢ is a constant n-vector, and H is a constant symmetric n x n
matrix called the Hessian, with elements {H;;}. The defining feature of a convex quadratic
program (QP) is that H must be positive semidefinite (xTHx > 0 for all z). If SQOPT
encounters a negative x”Hz, it terminates with the error indicator INFO = 53.

If H =0, then ¢(z) = ¢ + ¢’z and the problem is a linear program (LP). Rather than
defining an H with zero elements, you may define H to have dimension zero by setting
ncolH = 0 when calling subroutine sqOpt.

If H=0, ¢ =0, and ¢ = 0, there is no objective function and the problem is a feasible
point problem (FP). SQOPT terminates when it finds a point that satisfies the constraints on
z. If no feasible point exists, several options are available for finding a point that minimizes
the constraint violations. (See the optional parameter Elastic mode.)

SQOPT exploits structure in the Hessian by requiring H to be defined implicitly in a
subroutine that computes the product Hz for any given vector x. Such products can be
computed efficiently if H is a sparse matrix or a sum of matrices of low rank.

Table 1: Choices for the convex objective function ¢(x).

Problem type Objective function ¢ Hessian matrix H
Quadratic Programming (QP) | ¢ + cfx + %xTH x Symmetric positive semidefinite
Linear Programming (LP) ¢+l H=0
Feasible Point (FP) Not Applicable ¢p=0,¢c=0,H=0

4 SQOPT 7 User’s Guide

T2 may be input in three ways: as row i0bj of A,

The vector ¢ defining the linear term c
as an explicit dense vector ¢, or both (in which case, “c’2” is the sum of two linear terms).
When c is stored in A (i0bj > 0) it is known as the objective row and it must be a free
row of A (its lower and upper bounds must be —oo and +00). This is recommended if ¢
is a sparse vector. An explicit ¢ is recommended for a sequence of problems with differing

objectives (see parameters cObj and lencObj of subroutine sqOpt).

1.2. Least-squares problems and non-convex QP problems

If the objective is of the form g¢(z) = ¢’z + 3||Ca — d||3, problem LQP is a constrained
least-squares problem. This is a special case of convex QP, and we recommend the solver
LSSOL [3], which is unique in avoiding use of the matrix CTC or products CT(Cx).

If H is indefinite, problem LQP is non-convexr but the solvers MINOS [13], QPOPT [5],
or SNOPT [6, 7] may be used to find a local minimizer.

1.3. Implementation

SQOPT is implemented as a library of Fortran 77 subroutines. The source code is compatible
with all known Fortran 77, 90, and 95 compilers, and can be converted to C code by the
£2c translator [1] included with the distribution.

All routines in SQOPT are intended to be re-entrant (as long as the compiler allocates
local variables dynamically). Hence they may be used in a parallel or multi-threaded envi-
ronment. They may also be called recursively.

1.4. Files
SQOPT reads or creates the following files:

Specs file. A list of run-time options, input by sqSpec.
Print file. A detailed iteration log, error messages, and optionally the printed solution.

Summary file. A brief iteration log, error messages, and the final solution status. In-
tended for screen output in an interactive environment.

Solution file. A separate copy of the printed solution.

Basis files. To allow restarts.

Unit numbers for the Specs, Print, and Summary files are defined by inputs to subroutines
sqInit and sqSpec. The other SQOPT files are described in Sections 5 and 6.

1.5. Overview of the package

SQOPT is normally accessed via a sequence of subroutine calls. For example, sqOpt may be
invoked by the statements

call sqInit(iPrint, iSumm, ...)
call sqSpec(iSpecs, ...)
call sqOpt (Start, gpHx, m, ...)

where sqSpec reads a file of run-time options (if any). Also, individual run-time options
may be “hard-wired” by calls to sqSet, sqSeti, and sqSetr.

Subroutine sqInit must be called before any other SQOPT routine. It defines the Print
and Summary files, prints a title on both files, and sets all user options to be undefined.
(SQOPT will later check the options and set undefined ones to default values.)

1. Introduction 5

1.6. Getting started

For a given value of n, suppose that we wish to find the n-vector x that is closest in Euclidean
norm to a given vector xg. The complication is that not only must x lie in the set

S:{x:ijzl, xZO,},
j=1

but also its components must be nonincreasing: x; < x;41. This problem may be written
as a quadratic program

e 1 n o N2
minimize 72 =1 (zj — (20);)

IN

subject to x; —x;41 <0, j=1,2,....,n—1, (1.2)
dixi =1, x>0.

The objective function to be minimized can be written in the form

%(az — J:O)T(x — 1) = %xgxo — xOTa: + %xTx,

which is the quadratic ¢ + ¢’z + %zTHx with ¢ = %:cOTxo, c=—xg,and H = 1.

The constraints x; < x;41 are written in the form —oco < x; — 2,41 < 0. These n — 1
constraints, together with the restriction that the variables must sum to one, define m so-
called “range constraints” of the form 4 < Ax < ua, with m = n in this case. When
n =23,

—00 -1 1 0 0
ly=|—-o0], A= 0 -1 1], and uga= |0
1 1 1 1 1

These quantities define the general constraints of the problem. Similarly the nonnegativity
constraints on the components of z may be written as n simple bounds I, < z < u,, where

0 +o00
l,=10] and u, = [+o0
0 +o00

Internally sqOpt converts the general constraints to equalities by introducing a set of slack
variables s = (s1, S2,. - ., sm)T. For example, the first linear constraint —oco < x1 — z2 < 0
is replaced by z1 — 2 — 517 = 0 together with the bounded slack —oo < s; < 0. Problem
LQP can therefore be rewritten in the following equivalent form:

minimize g(z) subjectto Az —s=0, [< (i) < u.
x,s
The slack variables s are subject to the same bounds as the components of Az. They allow
us to think of the bounds on and Az as bounds on the combined vector (z, s).

Now we must provide sqOpt the following information:

1. A subroutine gqpHx that computes Hx, the product of H with a vector x. For this
simple example, H is the identity matrix and the qpHx output vector Hx is defined
using the simple assignments:

Hx(1) = x(1)
Hx (2) x(2)
Hx (3) x(3)

SQOPT 7 User’s Guide

2. The objective row cObj and constant term ObjAdd. These quantities define ¢ and ¢
in (1.1). For problem (1.2), cObj is the constant vector ¢ = —xg, and 0bjAdd is the
quantity ¢ = %xgxo. (SQOPT minimizes the quadratic c’x + %xTH x and adds the
constant ¢ for printing purposes only.)

3. The lower and upper bounds I and u on (x,s). These vectors are input as arrays bl
and bu, each of length at least n +m. The first n elements of bl and bu hold the
bounds [, and u,:

infBnd = 1.0d4+20
bl(1) 0.0
bl1(2) = 0.0
b1(3) = 0.0
bu(1) = infBnd
bu(2) = infBnd
bu(3) = 1infBnd

where infBnd represents “infinity”. It must be at least as large as the Infinite
bound (default value 102°).

Elements n 4+ 1 through n + m of bl and bu hold the bounds l4 and w:

bl(n+1) = -infBnd

bl(n+2) = -infBnd
bl(n+3) = 1.0
bu(n+1) = 0.0
bu(n+2) = 0.0
bu(n+3) = 1.0

Note that the third row, which simply sums the variables, must have equal bounds to
make it an “equality” row. Also note that real numbers should really be entered in
double precision on most machines. For example, 1.0 should be written 1.0d+0.

4. The nonzero elements of the matriz A. These are stored by columns in the array Acol.
The corresponding row numbers are stored in the parallel array indA. In our example,
the columns of A have 2, 3, and 2 nonzeros with the following values and row indices:

Acol 0 0 0 0

{-1.0
indA {

1.0 1.0 -1. 1. 1. 1.0 }
1 3 1 2 3 2 3 3}

with neA = 7 entries. Another integer array locA is needed to indicate where each
column of A starts in those parallel arrays. In this case we have

loch={1 3 6 81%

with n 4+ 1 entries. The last entry must be set to the number of nonzeros plus 1:
locA(n+1) = neA + 1. Then for all j we may determine the number of nonzeros in
the jth column using the expression locA(j + 1) — LocA(j).

This scheme is easy to generalize to problems with arbitrary column dimension. The
following code fragment defines the constraint data structure for Problem (1.2) with
n variables and m = n general constraints:

1. Introduction 7

one = 1.0d4+0
neA =0 ! Counts the nonzeros in A
do j=1,n
locA(j) = neA + 1 ! Points to the start of column j
if (j .gt. 1) then
nel = neA + 1
indA(ned) = j -1
Acol(neld) = -one
end if
if (j .1t. n) then
nel = neA + 1
indA(ned) = j
Acol(ned) = one
end if
neA = neA + 1
indA(neA) = m
Acol(neA) = one
end do

locA(n+l) = neA + 1

As a matter of good programming practice, we recommend using the counter neA to
reference the elements of Acol and indA as they are generated. This allows the code
to be updated easily if new constraints or variables are added to the problem.

This example is included as examples/sqmain.f in the SQOPT distribution.

8 SQOPT 7 User’s Guide

2. A brief description of quadratic programming

SQOPT uses a reduced-Hessian active-set method (Gill and Murray [4, 10]), implemented
as a reduced-gradient method similar to that in MINOS [12]. Here we summarize the main
features of the method and introduce some terminology used in the description of subroutine
sqOpt and its arguments. Where possible, explicit reference is made to items listed in the
printed output, and to the names of the relevant optional parameters.

2.1. Formulation of the problem

As mentioned in Section 1.6, Problem LQP can be written in the equivalent form

minrirglize q(z) subject to Ax—s=0, < (i) <,
where s is the vector of slack variables. The bounds on s are the bounds on Axz. SQOPT
solves LP or QP problems using a two-phase iterative procedure in which the general con-
straints Az — s = 0 are satisfied throughout.

Phase 1 (the feasibility phase) minimizes the sum of infeasibilities with respect to the
bounds on x and s, seeking a feasible point that satisfies all constraints to within a specified
Feasibility tolerance. It solves a linear program of the form

n+m

FP minimize g (v; + w,)
T,8,V,W

j=1

subject to Ax — s =0, l§<i)—v+w§u, v>0, w>0.

If a point is found where both v and w are zero, the associated (x, s) satisfies the constraints
in the original problem and provides a starting point for phase 2.

Phase 2 (the optimality phase) minimizes the objective g(x) by constructing a sequence
of iterates that are all feasible.

In the Print and Summary files, the quantity being minimized changes from the sum of
infeasibilities (sInf) to the quadratic objective (Objective).

2.2. Active-set methods

In a reduced-gradient method, the general constraints Ax — s = 0 are partitioned into the
form Bxy + Sxs + Nxy = 0, where the basis matriz B is square and nonsingular, and the
matrices S, N are the remaining columns of (A —I). The vectors g, Tg, x5 are the
associated basic, superbasic, and nonbasic components of (z, s).

The term active-set method arises because the nonbasic variables xy are temporarily
frozen at their upper or lower bounds, and their bounds are considered to be active. Since
the general constraints are satisfied also, the set of active constraints takes the form

" D=) ()
I sl = \ay)
TN
where x y represents the current values of the nonbasic variables. (In practice, nonbasic vari-
ables are sometimes frozen at values strictly between their bounds.) The reduced-gradient
method chooses to move the superbasic variables in a direction that will improve the objec-

tive function. The basic variables “tag along” to keep Az — s = 0 satisfied, and the nonbasic
variables remain unaltered until one of them is chosen to become superbasic.

2. A brief description of quadratic programming 9

At a nonoptimal feasible point (z,s) we seek a search direction p such that (z,s) + p
remains on the set of active constraints yet improves the QP objective (or sum of infeasibil-
ities). If the new point is to be feasible, we must have Bps + Sps + Npy = 0 and py = 0.
Once py is specified, py is uniquely determined from the system Bpy = —Sps. It follows
that the superbasic variables may be regarded as independent variables that are free to move
in any desired direction. The number of superbasic variables (ng say) therefore indicates
the number of degrees of freedom remaining after the constraints have been satisfied. In
broad terms, ng is a measure of how nonlinear the problem is. In particular, ng need not
be more than one for FP and LP problems.

2.3. The reduced Hessian and reduced gradient

The dependence of p on py may be expressed compactly as p = Zpg, where Z is a matrix
that spans the null space of the active constraints:

—-B7lS
p()) e
0

where P permutes the columns of (A —1I) into the order (B S N). Minimizing g(z)
with respect to ps now involves a quadratic function of pg:

gTZpS + %pZZTHZpSu

where g and H are now defined for all variables (z,s). This is a quadratic with Hessian
ZTH Z (the reduced Hessian) and constant vector ZTg (the reduced gradient). If the reduced
Hessian is nonsingular, ps is computed from the system

ZTH Zps = —774. (2.2)

The matrix Z is used only as an operator, i.e., it is not stored explicitly. Products of the
form Zv or Z%g are obtained by solving with B or BT. The package LUSOL [8] is used to
maintain sparse LU factors of B as the BSN partition changes. From the definition of Z,
we see that the reduced gradient can be computed from

B'nr =g, Z'g=gs— S,

where 7 is an estimate of the dual variables associated with the m equality constraints
Ax — s =0, and g5 is the basic part of g.

By analogy with the elements of Z7g, we define a vector of reduced gradients (or reduced
costs) for all variables in (z, s):

AT
d=g— (—I)W’ so that ds = Z7y.
At a feasible point, the reduced gradients for the slacks s are the dual variables .

The optimality conditions for problem LQP may be written in terms of d. The current
point is optimal if d; > 0 for all nonbasic variables at their lower bounds, d; < 0 for all
nonbasic variables at their upper bounds, and d; = 0 for all superbasic variables (ds = 0).
In practice, an approzimate QP solution is found by slightly relaxing these conditions on d;
(see Optimality tolerance p. 35).

If ds = 0, no improvement can be made with the current BSN partition, and a nonbasic
variable with non-optimal reduced gradient is selected to be added to S. The iteration is
then repeated with ns increased by one. At all stages, if the step (z,s) + p would cause a

10 SQOPT 7 User’s Guide

basic or superbasic variable to violate one of its bounds, a shorter step (x, s) + ap is taken,
one of the variables is made nonbasic, and ng is decreased by one.

The process of computing and testing reduced gradients d, is known as pricing (a term
introduced in the context of the simplex method for linear programming). Pricing the jth
variable means computing d; = g; — ajTﬂ', where a; is the jth column of (A —I). In
the Print file, d; and j are denoted by dj and +SBS. If A has significantly more columns
than rows (i.e., n > m), pricing can be computationally expensive. In this case, a strategy
known as partial pricing can be used to compute and test only a subset of d.

The vector dj of basic components of d is zero by construction. The final value of ||ds]|;
is listed as norm rg after the EXIT message in the Summary and Print files, and the final
vectors 7, g, and d are labeled Dual Activity, Obj Gradient, and Reduced Gradnt in the
Print and Solution files.

Solving the reduced Hessian system (2.2) is sometimes expensive. With the option
QPSolver Cholesky, an upper-triangular matrix R is maintained satisfying RTR = ZTH Z.
Normally, R is computed from Z7H Z at the start of phase 2 and is then updated as the BSN
sets change. For efficiency the dimension of R should not be excessive (say, ns < 1000).
This is guaranteed if the number of nonlinear variables is “moderate”. Other QPSolver
options are available for problems with many degrees of freedom.

If the QP contains linear variables, H is positive semi-definite and R may be singular
with at least one zero diagonal. In this case, an inertia-controlling active-set strategy is used
to ensure that only the last diagonal of R can be zero. (See [10] for discussion of a similar
strategy for indefinite quadratic programming.)

2.4. Treatment of constraint infeasibilities

If the constraints are infeasible (v # 0 or w # 0 at the end of phase 1), no solution exists for
Problem LQP. The user has the option of terminating or else continuing in so-called elastic
mode (see Elastic mode p. 31), wherein a “relaxed” or “perturbed” problem is solved in
which ¢(z) is minimized while allowing some of the bounds to become “elastic”. Variables
subject to elastic bounds are known as elastic variables. They are specified by sqOpt’s input
parameter hEtype. An elastic variable is free to violate one or both of its original upper or
lower bounds, but a penalty is incurred.
In the situation where all the variables are elastic, the relaxed problem has the form

n+m

EP(): mgnimize q(z) + Z (v; + w;)
,8,0,W =

subject to Az —s =0, lS(i)—v—i—wSu, v>0, w>0,

where v is a nonnegative parameter known as the elastic weight, and q(z) +v>_ j(vj + w;)
is called the composite objective. In the more general situation where only a subset of the
bounds are elastic, the v’s and w’s for the non-elastic bounds are fixed at zero.

Using Elastic weight, v can be chosen to make the composite objective behave like the
original objective g(x), or the sum of infeasibilities, or anything in between. If v = 0, SQOPT
attempts to minimize g(x) subject to the (true) upper and lower bounds on the nonelastic
variables (and declare the problem infeasible if the nonelastic variables cannot be made
feasible). At the other extreme, choosing v sufficiently large has the effect of minimizing
the sum of the violations of the elastic variables subject to the original constraints on the
non-elastic variables. Choosing a large value of the elastic weight is useful for defining a
“least-infeasible” point for an infeasible problem.

2. A brief description of quadratic programming 11

In phase 1 and elastic mode, all calculations involving v and w are done implicitly. For
example, if an elastic variable x; is allowed to violate its lower bound, an explicit value of
v; can be recovered as v; = l; — x;.

2.5. Degeneracy and the feasibility tolerance

For numerical reasons, SQOPT allows the variables (x,s) to stray outside their bounds
by as much as a specified Feasibility tolerance § (default value 1076). The EXPAND
procedure of Gill et al. [9] takes advantage of § to reduce the chance of cycling at a point
where the active constraints are nearly linearly dependent. Although there is no guarantee
of preventing cycling, the probability is very small (see Hall and McKinnon [11]).

The main feature of EXPAND is that over a period of K iterations (where K is the
specified Expand frequency), a “working” feasibility tolerance increases from %5 to d in
steps of %5 /K. At certain stages, the following “resetting procedure” is used to remove
small constraint infeasibilities. First, all nonbasic variables are moved exactly onto their
bounds. A count is kept of the number of non-trivial adjustments made. If the count is
nonzero, the basic variables are recomputed. Finally, the working feasibility tolerance is
reinitialized to %5.

If a problem requires more than K iterations, the resetting procedure is invoked and a
new cycle of iterations is started. (The decision to resume phase 1 or phase 2 is based on
comparing any infeasibilities with 4.)

The resetting procedure is also invoked when SQOPT reaches an apparently optimal,
infeasible, or unbounded solution, unless this situation has already occurred twice. If any
non-trivial adjustments are made, iterations are continued.

The EXPAND procedure allows a positive step to be taken at every iteration, and also
provides a potential choice of constraint to be added to the working set. All constraints
at a distance a (o < ay) along p from the current point are then viewed as acceptable
candidates for inclusion in the working set. The constraint whose normal makes the biggest
angle with the search direction is added to the working set. This strategy helps keep the
the basis matrix B well-conditioned.

2.6. Basis repair

If the basis matrix is not chosen carefully, the condition of the null-space matrix Z (2.1)
could be arbitrarily high. (The quantity Cond Hz printed in the Summary output is a
condition estimator for ZTHZ.) To guard against this, SQOPT implements a “basis repair”
feature in the following way. LUSOL is used to compute the rectangular factorization

(gi) — LU, (2.3)

returning just the permutation P that makes PLPT unit lower triangular. The stability
tolerance is set to require |L;;| < 2, and the permutation is used to define P in (2.1). It can
be shown that || Z]| is likely to be little more than 2. Since the smallest singular value of Z
is at least 1, it means that Z should be well-conditioned regardless of the condition of the
constraints.

This feature is applied at the beginning of the optimality phase if S has one or more
columns.

12 SQOPT 7 User’s Guide

3. Subroutines associated with sqOpt

The SQOPT package is accessed via the following routines:

sqInit (Section 3.3) must be called before any other SQOPT routines.
sqSpec (Section 4.4) may be called to input a Specs file (a list of run-time options).
sqSet, sqSeti, sqSetr (Section 4.5) may be called to specify a single option.

sqGet, sqGetc, sqGeti, sqGetr (Section 4.6) may be called to obtain an option’s current
value.

qpHx (Section 3.2) is supplied by the user to define the matrix-vector product Hz for
given vectors z. For FP and LP, you can either provide your own “empty” gpHx or
use the dummy routine nullHx provided with the SQOPT distribution.

sqOpt (Section 3.1) is the main solver.

sgMem (Section 3.4) computes the size of the workspace arrays cw, iw, rw required for
given problem dimensions. Intended for Fortran 90 and C drivers that reallocate
workspace if necessary.

The user routine gpHx has a fixed parameter list but may have any convenient name. It is
passed to sqOpt as a parameter.

The SQOPT routines are intended to be re-entrant (as long as the Fortran compiler
allocates local variables dynamically). Hence they may be used in a parallel or multi-
threaded environment. They may also be called recursively.

In the subroutine descriptions below, note that double precision declarations are suit-
able for most machines as shown, but some machines use real.

3. Subroutines associated with sqOpt 13

3.1.

Subroutine sqOpt

Problem QP is solved by a call to subroutine sqOpt, whose parameters are defined here.

subroutine sqOpt

Frrrereeeeee

external
& qpHx
integer

(Start, gpHx, m,
n, neA, nName, lencObj, ncolH,
iObj, ObjAdd, Prob,
Acol, indA, locA, bl, bu, cObj, Names,
hEtype, hs, x, pi, rc,
INFO, mincw, miniw, minrw,
nS, nInf, sInf, 0bj,
cu, lencu, iu, leniu, ru, lenru,
cw, lencw, iw, leniw, rw, lenrw)

& i0bj, INFO, lencObj, lencu, leniu, lenru, lencw, leniw,
& lenrw, m, mincw, miniw, minrw, n, neA, nName, ncolH, nS,
& nInf, hEtype(n+m), hs(n+m), indA(ned), iu(leniu), iw(leniw),
&

locA(n+1)

double precision
& Obj, ObjAdd, sInf, Acol(neA), bl(n+m), bu(n+m), cObj(*),
& pi(m), rc(n+m), x(n+tm), ru(lenru), rw(lenrw)

characterx*(*)

& Start
character

& Prob*8, Names(nName)*8, cu(lencu)*8, cw(lencw)*8

On entry:

Start

is a character string that specifies how a starting basis (and certain other items)
are to be obtained.

’Cold’

’Basis file’

’Warm’

’Hot’

requests that the CRASH procedure be used to choose an initial
basis, unless a basis file is provided via Old basis, Insert, or Load.

is the same as Start = ’Cold’ but is more meaningful when a basis
file is given.

means that a basis is already defined via the argument hs (probably
from an earlier call).

or ’Hot FHS’ means SQOPT should start with all three types of
information available from an earlier call. Just one type may be
requested as follows:

Start Information held in work arrays
"Hot F’ | Factors of the basis (LU)
’Hot H’ | Factors of the reduced Hessian (Cholesky)
’Hot S’ Scale factors for the constraints and variables

Any combination of F, H, S may be specified, such as Hot FS’.

14 SQOPT 7 User’s Guide

m is m, the number of general inequalities (m > 0). It is the number of rows in A.
Note that A must have at least one row. If your problem has no constraints, or
only upper and lower bounds on the variables, then you must include a dummy row
with sufficiently wide upper and lower bounds. See the discussion of the parameters
Acol, indA and locA below.

n is the number of variables, excluding slacks (n > 0). It is the number of columns in
A.

nel is the number of nonzero entries in A (neA > 0).

nName is the number of column and row names provided in the character array Names. If

nName = 1, there are no names. Generic names will be used in the printed solution.
Otherwise, nName = n + m and all names must be provided.

lencObj is the number of elements in the constant objective vector ¢ (lencObj > 0).

ncolH

i0bj

ObjAdd

Prob

If lencObj > 0, the first 1encObj elements of belong to variables corresponding
to the constant objective term c.

is the number of leading nonzero columns of the QP Hessian (ncolH > 0).

If ncolH = 0, there is no quadratic term, and the problem is an FP or LP problem.
In this case you must provide a dummy subroutine gqpHx or use the subroutine
nullHx provided in the SQOPT distribution.

If ncolH > 0, you must provide your own version of qpHx to compute the matrix-
vector product Hx. The first ncolH elements of x belong to variables corresponding
to the nonzero block of the QP Hessian.

says which row (if any) of A is a free row containing a linear objective vector ¢
(0 < i0bj < m). If there is no such vector, i0bj = 0.

is the constant ¢ added to the objective for printing purposes. Typically ObjAdd is
Zero.

is an 8-character name for the problem. Prob is used in the printed solution and in
some routines that output basis files. A blank name may be used.

Acol(nehd), indA(ned), locA(n+1) define the nonzero elements of the constraint matrix

A. The nonzeros are stored column-wise. A pair of values (Acol(k),indA(k)) con-
tains a matrix element and its corresponding row index, and the array locA(*) is a
set of pointers to the beginning of each column of A within Acol (*) and indA(*).
Thus for j = 1:n, the entries of column j are held in Acol(k:[) and their corre-
sponding row indices are in indA(k:1), where k = locA(j) and I = locA(j +1)—1,

1. Tt is essential that locA(1l) =1 and locA(n + 1) = neA + 1.
2. The row indices indA (k) for a column may be in any order.

3. If your problem has no constraints, or just bounds on the variables, you may
include a dummy “free” row with a single (zero) element by setting Acol(1) =
0.0, indA(1) = 1, locA(l) = 1, and locA(j) = 2 for j = 2:n + 1. This
row is made “free” by setting its bounds to be bl(n + 1) = —infBnd and
bu(n + 1) = infBnd, where infBnd is typically 1.0e+20 (see next paragraph).

bl(n+m), bu(n+m) contain the bounds on the variables and slacks (z, s). The first n entries

of bl, bu, hs and x refer to the variables z. The last m entries refer to the slacks
s. For the data to be meaningful, it is required that bl(j) < bu(j) for all j.

3. Subroutines associated with sqOpt 15

To specify non-existent bounds, set b1(j) < —infBnd or bu(j) > infBnd, where
infBnd is the Infinite Bound size (default value 10%°).
To fix the jth variable at «; = §, set xlow(j) = xupp(j) = B (with |3| < infBnd).
To make the ¢th constraint an equality constraint (s; = 3, with || < infBnd), set
bl(n+ i) =bu(n+1i) = S.

cObj(lencObj) sometimes contains the explicit objective vector ¢ (if any). If the problem
is of type FP, or if lencObj = 0, then c0Obj is not referenced. (In that case, cObj
may be dimensioned (1), or it could be any convenient array.)

Names (nName) sometimes contains 8-character names for the variables and constraints. If
nName = 1, then Names is not used. The printed solution will use generic names for
the columns and row. Otherwise, nName = n + m and Names(j) should contain the
8-character name of the jth variable (j = 1:n 4+ m). If j = n + 4, the jth variable
is the ith row.

hEtype (n+m) sometimes defines which variables are to be treated as being elastic in elastic
mode.

The values hEtype(j) = 0, 1, 2, 3 have the following meaning;:

hEtype(j) Status in elastic mode
0 variable j is non-elastic and cannot be infeasible
1 variable j may violate its lower bound
2 variable j may violate its upper bound
3 variable j may violate either of its bounds

hEtype need not be assigned if Elastic mode = 0.

hs(n+m) sometimes contains a set of initial states for each variable x, or for each variable
and slack (z,s). See the following discussion of the argument x.

x(n+m) sometimes contains a set of initial values for = or (z, s).

1. If a basis file of some sort is to be input (Start = ’Cold’ or ’Basis file’
and an Old basis, Insert, or Load file is specified in the Specs file), then hs
and x need not be set.

2. Otherwise, hs(1:n) and x(1:n) must be defined for a Cold start. If nothing
special is known about the problem, or there is no wish to provide special
information, you may set hs(j) =0, x(j) = 0.0 for j = 1:n. All variables will
be eligible for the initial basis.

Less trivially, to say that the optimal value of variable j will probably be
equal to one of its bounds, set hs(j) = 4 and x(j) = bl(j) or hs(j) = 5 and
x(j) = bu(j) as appropriate.

SQOPT then uses a CRASH procedure to select variables for the initial ba-
sis. The corresponding basis matrix will be triangular (ignoring certain small
entries in each column). The values hs(j) = 0,1,2,3,4,5 have the following

meaning:
hs(j) State of variable j during CRASH
{0,1,3} | Eligible for the basis. 3 is given preference
{2,4,5} Ignored

After CRASH, columns for which hs(j) = 2 are made superbasic. Other entries
not selected for the basis are made nonbasic at the value x(5) if b1(j) < x(j) <
bu(j), or at the value bl(j) or bu(y) closest to x(j). See the description of hs
below (on exit).

16

SQOPT 7 User’s Guide

nsS

qpHx

3. For Warm and Hot starts, all of hs(1:n + m) must be 0, 1, 2 or 3 (perhaps
from some previous call) and all of x(1:n + m) must have values. Use Warm
rather than Cold if you wish to input the initial state of the slack variables.

need not be specified for Cold starts, but should retain its value from a previous
call when a Warm or Hot start is used.

is the name of the subroutine that defines the product of H with a given vector
x when the problem is a quadratic program. This is the only way that SQOPT
accesses the matrix H in the objective function. For a detailed description of qpHx,
see Section 3.2.

For problems of type FP and LP, gpHx is never called by sqOpt. You may provide
your own empty qpHx, or use the dummy routine nullHx provided with the SQOPT
distribution.

cu(lencu), iu(leniu), ru(lenru) are 8-character, integer, and real arrays of user work-

space. They may be used to pass data or workspace to your function routine qpHx
(which has the same parameters). They are not touched by sqOpt.

If gpHx doesn’t reference these parameters, you may use any arrays of the appropri-
ate type, such as cw, iw, rw (see next paragraph). You should use the latter arrays
if gpHx needs to access sqOpt’s workspace.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer, and real arrays of workspace

for sqOpt. The integers lencw, leniw, lenrw must all be at least 500. In general,
lencw = 500 is appropriate but leniw and lenrw should be as large as possible
because it is uncertain how much storage will be needed for the basis factors. As an
estimate, leniw should be about 10(m + n) or larger, and lenrw should be about
20(m + n) or larger.

Appropriate values may be obtained from a preliminary run with lencw = leniw =
lenrw = 500. If Print level is positive, the required amounts of workspace are
printed before sqOpt terminates with INFO = 82, 83, or 84. The values are returned
in mincw, miniw, and minrw.

On exit:

hs

gives the state of the final x. The elements of hs have the following meaning;:

hs(j) | State of variable j Usual value of x(j)
0 nonbasic bl(y)
1 nonbasic bu(j)
2 superbasic Between bl(j) and bu(y)
3 basic ditto

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance (default value 10~%). Note that if scaling is specified, the
Feasibility tolerance applies to the variables of the scaled problem. In this
case, the variables of the original problem may be as much as 0.1 outside their
bounds, but this is unlikely unless the problem is very badly scaled. Check the
“Primal infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much
as the Feasibility tolerance, and there may be some nonbasics for which x(j)
lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds by
an arbitrary amount (bounded by sInf if scaling was not used).

3. Subroutines associated with sqOpt 17

x(n+m) contains the final variables and slacks (z, s).

pi(m) contains the dual variables m—a set of Lagrange multipliers (shadow prices) for the
general constraints.

rc(n+m) is a vector of reduced costs, g — (A —I)T7r. If x is feasible, g is the gradient of
the objective. (The last m entries of g are zero, so the last m entries of rc are 7.)
Otherwise, g is the gradient of the phase-1 objective.

INFO reports the result of the call to sqOpt. Here is a summary of possible values. Further
details are in Section 5.5.

=W N =

12
14

21

31
33

42
43
44

53

81
82
83
84

91
92

141
142

Finished successfully

optimality conditions satisfied

feasible point found

requested accuracy could not be achieved
weak QP minimizer

The problem appears to be infeasible
infeasible linear constraints

infeasible linear equalities
infeasibilities minimized

The problem appears to be unbounded
unbounded objective

Resource limit error
iteration limit reached
the superbasics limit is too small

Terminated after numerical difficulties
singular basis

cannot satisfy the general constraints
ill-conditioned null-space basis

Error in the user-supplied functions
the QP Hessian is indefinite

Insufficient storage allocated

work arrays must have at least 500 elements
not enough character storage

not enough integer storage

not enough real storage

Input arguments out of range
invalid input argument
basis file dimensions do not match this problem

System error
wrong number of basic variables
error in basis package

mincw, miniw, minrw say how much character, integer and real storage is needed to solve
the problem. If sqOpt terminates because of insufficient storage (INFO = 82, 83, or
84), these values may be used to define better values of lencw, leniw or lenrw.

If INFO = 82, the work array cw(lencw) was too small. sq0pt may be called again
with lencw = mincw.

18 SQOPT 7 User’s Guide
If INFO = 83 or 84, the work arrays iw(leniw) or rw(lenrw) are too small. sqOpt
may be called again with leniw or lenrw suitably larger than miniw or minrw. (The
bigger the better, since it is not certain how much storage the basis factorization
needs.)

nS is the final number of superbasics.

nInf is the number of infeasibilities.

sInf is the sum of infeasibilities.

0Obj is the final value of the explicit quadratic term. If nInf = 0, 0bj is the explicit

quadratic term (if any) defined from cObj and gpHx. If nInf > 0 and cObj is
defined, Obj is the explicit linear term. Otherwise, 0bj is zero.

Note that Obj does not include contributions from the constant term 0bjAdd or the
objective row, if there is one. The final value of the objective being optimized is
ObjAdd + x(n+iObj) + Obj, where i0bj is the index of the objective row in A.

3. Subroutines associated with sqOpt 19

3.2. Subroutine gpHx

For QP problems, you must provide a subroutine that defines products of the form Hzx for
given vectors x. This is the way sqOpt accesses the matrix H in the objective function.
Your subroutine is input to sqOpt via the parameter qpHx, which must be declared external
within the routine that calls sqOpt.

For FP and LP problems, qpHx is never called by sqOpt. You may provide your own
dummy qpHx, or use the dummy routine nullHx provided in the SQOPT distribution.

subroutine qpHx
& (ncolH, x, Hx, Status,

& cu, lencu, iu, leniu, ru, lenru)
integer
& lencu, leniu, lenru, ncolH, Status, iu(leniu)
double precision
& x(ncolH), Hx(ncolH), ru(lenru)
character
& cu(lencu) *8
On entry:

ncolH is the same as sqOpt’s input parameter (0 < ncolH < n). It must not be altered
within gpHx. Similarly for the parameters cu, lencu, iu, leniu, ru, lenru.

If some of the variables enter the objective function linearly, then H will have some
zero rows and columns. In this case, it is most efficient to order the variables so
that the nonlinear variables appear first. For example, if = (y,z) and only y
enters the objective quadratically, then

me= () ()= (9,

In this case, ncolH should be the dimension of y and gpHx should compute Hiy.

x(ncolH) contains a vector x such that the product Hz should be returned in Hx. If
ncolH < n, then “z” will be the vector y above.

Status allows you to save computation time if certain data must be read or calculated only
once.

If Status = 0, there is nothing special about the current call to qpHx.

If Status = 1, sqOpt is calling your subroutine for the first time. Some data may
need to be input or computed and saved in local or common storage.

If Status > 2, sqOpt is calling your subroutine for the last time. You may wish to
perform some additional computation on the final solution.

In general, the last call is made with Status = 2 + INFO/10, where INFO indicates
the status of the final solution (see Section 5.5). In particular, if Status = 2,
the current x is optimal; if Status = 3, the problem appears to be infeasible;
if Status = 4, the problem appears to be unbounded; and if Status = 5, the
iterations limit was reached.

20 SQOPT 7 User’s Guide

cu(lencu), iu(leniu), ru(lenru) are character, integer, and real arrays that can be
used to pass user-defined auxiliary information into qpHx. The arrays are not
touched by sqOpt and can be used to retain information between calls of qpHx.

In certain applications, the objective may depend on the values of certain internal
sqOpt variables stored in the arrays cw, iw, rw. In this case, sqOpt should be called
with cw, iw, rw as actual arguments for cu, iu, ru, thereby making cw, iw, rw
accessible to qpHx.

If you require user workspace in this situation, elements 501 :maxcw, 501 :maxrw,
501:maxiw of cw, rw, iw are set aside for this purpose. (See the definition of
the optional parameters User character workspace, User real workspace, and
User integer workspace in Section 4.7.)

If you do not require workspace to be passed into qpHx, the sqOpt work arrays cw,
iw, rw can be used for cu, iu, ru.

On exit:

Hx should contain the product Hz for the vector stored in x. If ncolH < n, it is really
the product H;y mentioned above.

3. Subroutines associated with sqOpt 21

3.3. Subroutine sqInit

Subroutine sqInit must be called before any other sqOpt routine. It defines the Print and
Summary files, prints a title on both files, and sets all user options to be undefined. (Each
sqO0pt interface will later check the options and set undefined ones to default values.)

subroutine sqlnit
& (iPrint, iSumm, cw, lencw, iw, leniw, rw, lenrw)

integer
& iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)
character
& cw(lencw) *8
double precision
& rw(lenrw)

On entry:
iPrint defines a unit number for the Print file. Typically iPrint = 9.

On some systems, the file may need to be opened before sqInit is called.
If iPrint < 0, there will be no Print file output.

iSumm defines a unit number for the Summary file. Typically iSumm = 6.
(In an interactive environment, this usually denotes the screen.)

On some systems, the file may need to be opened before sqInit is called.
If iSumm < 0, there will be no Summary file output.

cw(lencw), iw(leniw), rw(lenrw) must be the same arrays that are passed to other
sq0pt routines. They must all have length 500 or more.

On exit:

Some elements of cw, iw, rw are given values to indicate that most optional parameters are

undefined.

22 SQOPT 7 User’s Guide

3.4. Subroutine sqMem

This routine estimates the size of the workspace arrays cw, iw, rw required to solve an
optimization problem of given dimensions. sqMem is not strictly needed in f77 because all
workspace must be defined explicitly in the driver program at compile time. It is available
for users wishing to allocate storage dynamically in f90 or C.

The actual storage required also depends on the values of vReduced Hessian dimension
and Superbasics limit. If these options have not been set, default values are assumed.
Ideally the correct values should be set before the call to sqMem.

subroutine sqgMem
& (INFO, m, n, neA, lencObj, ncolH,

& mincw, miniw, minrw,
& cw, lencw, iw, leniw, rw, lenrw)
integer
& INFO, m, n, neA, lencObj, ncolH, mincw, miniw, minrw,
& lencw, leniw, lenrw, iw(leniw)
double precision
& rw(lenrw)
character
& cw(lencw) *8

The arguments m, n, neA, lencObj, ncolH define the problem being solved and are
identical to the arguments used in the call to sqOpt (see Section 3.1). For a sequence of
problems, sgqMem may be called once with overestimates of these quantities.

On entry:
lencw, leniw, lenrw must be of length at least 500.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for sqMem.

On exit:

INFO reports the result of the call to sqMem. Here is a summary of possible values. Further
details are given in Section 5.5.

Finished successfully
104 memory requirements estimated

Insufficient storage allocated
81 work arrays must have at least 500 elements

mincw, miniw, minrw estimate how much character, integer and real storage is needed to
solve the problem.

To use sqMem, the first step is to allocate the work arrays. These may be temporary
arrays tmpcw, tmpiw, tmprw (say) or the sqOpt arrays cw, iw, rw, which will be reallocated
after the storage limits are known. Here we illustrate the use of sqMem using the same arrays
for sqMem and sqOpt. Note that the sqMem arrays are used to store the optional parameters,
and so any temporary arrays must be copied into the final cw, iw, rw arrays in order to
retain the options.

The work arrays must have length at least 500, so we define

3. Subroutines associated with sqOpt 23

ltmpcw = 500
ltmpiw = 500
ltmprw = 500

As with all sqOpt routines, sqInit must be called to initialize the optional parameters to
their default values:

call sqlnit
& (iPrint, iSumm, cw, ltmpcw, iw, ltmpiw, rw, ltmprw)

This installs 1tmpcw, ltmpiw, ltmprw as the default internal upper limits on the sqOpt
workspace (see the description of Total real workspace in Section 4.7). They are used to
compute the boundaries of any user-defined workspace in cw, iw, or rw.

The next step is to call sqMem to obtain mincw, miniw, minrw as estimates of the storage
needed by sqOpt:

call sgMem

& (INFO, m, n, neA, lencObj, ncolH,

& mincw, miniw, minrw,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw)

The output values of mincw, miniw, minrw may now be used to define the lengths of the
sqOpt work arrays:

lencw = mincw
leniw = miniw
lenrw = minrw

These values may be used in f90 or C to allocate the final work arrays for the problem.

One last step is needed before sqOpt is called. The current upper limits 1tmpcw, 1tmpiw,
ltmprw must be replaced by the estimates mincw, miniw, minrw. This can be done using
the option setting routine sqSeti as follows:

Errors = 0 ! Counts any errors while setting options
iPrt =0 ! Suppress print output
iSum =0 ! Suppress summary output

call sqgSeti
& (’Total character workspace’, lencw, iPrt, iSum, Errors,
& cw, ltmpcw, iw, ltmpiw, rw, ltmprw)

call sqgSeti
& (’Total integer workspace’, leniw, iPrt, iSum, Errors,

& cw, ltmpcw, iw, ltmpiw, rw, ltmprw)

call sqSeti
& (’Total real workspace’, lenrw, iPrt, iSum, Errors,
& cw, ltmpcw, iw, ltmpiw, rw, ltmprw)

An alternative way is to call sqInit again with arguments lencw, leniw, lenrw:

call sqlnit
& (iPrint, iSumm, cw, lencw, iw, leniw, rw, lenrw)

However, this has the twin effects of resetting all options to their default values and reprint-
ing the sqOpt banner (unless iPrint = 0 and iSumm = 0 are set for the Print and Summary
files).

24 SQOPT 7 User’s Guide

4. Optional parameters

The performance of sqOpt is controlled by a number of parameters or “options”. Each
option has a default value that should be appropriate for most problems. Other values may
be specified in two ways:

e By calling subroutine sqSpec to read a Specs file (Section 4.1).
e By calling the option-setting routines sqSet, sqSeti, sqSetr (Section 4.5).

The current value of an optional parameter may be examined by calling one of the routines
sqGet, sqGetc, sqGeti, sqGetr (Section 4.6).

4.1. The Specs file

The Specs file contains a list of options and values in the following general form:

Begin SQOPT options
Iterations limit 500
Feasibility tolerance 1.0e-7
Scale all variables

End SQOPT options

We call such data a Specs file because it specifies various options. The file starts with the
keyword Begin and ends with End. The file is in free format. Each line specifies a single
option, using one or more items as follows:

1. A keyword (required for all options).
2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers
may be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated
by a space or new line.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords
have synonyms, and certain abbreviations are allowed, as long as there is no ambiguity.
Blank lines and comments may be used to improve readability. A comment begins with an
asterisk (*) anywhere on a line. All subsequent characters on the line are ignored.

The Begin line is echoed to the Summary file.

4.2. Multiple sets of options in the Specs file

The keyword Skip allows you to collect several sets of options within a single Specs file. In
the following example, only the second set of options will be input.

Skip Begin SQOPT options
Scale all variables
End SQOPT options

Begin options 2
Scale linear variables
End options 2

The keyword Endrun prevents subroutine sqSpec from reading past that point in the
Specs file while looking for Begin.

4. Optional parameters 25

4.3. SPECS file checklist and defaults

The following example Specs file shows all valid keywords and their default values. The
keywords are grouped according to the function they perform.

Some of the default values depend on ¢, the relative precision of the machine being used.
The values given here correspond to double-precision arithmetic on most current machines

(€~ 2.22 x 10716).

Begin checklist of SPECS file parameters and their default values

* Printing
Print level 1 * 1-line iteration log
Print file ? * specified by subroutine sqInit
Summary file ? * specified by subroutine sqInit
Print frequency 1 * iterations log on Print file
Summary frequency 1 * iterations log on Summary file
Solution Yes * on the Print file
* Suppress options listing * options are normally listed
System information No * Yes prints more system information
* Problem specification
Minimize * (opposite of Maximize)
* Feasible point * (alternative to Max or Min)
Infinite bound 1.0e+20 *
* Convergence tolerances
Feasibility tolerance 1.0e-6 * for satisfying the simple bounds
Optimality tolerance 1.0e-6 * dual feasibility tolerance
* Scaling
Scale option 2 * all constraints and variables
Scale tolerance 0.9 *
* Scale Print * print each row and column scale
* Other tolerances
Crash tolerance 0.1 * ,
Pivot tolerance 3.7e-11 * €3
* LP/QP problems
QPSolver Cholesky *
* Cold start * has precedence over argument start
* Warm start * (alternative to a cold start)
* Hot start * (alternative to a cold start)
Time limit 0 * no time limit
Crash option 3 *
Iterations limit 10000 * or m if that is more
Partial price 1 * 10 for large LPs
Superbasics limit ncolH+ 1
Reduced Hessian dimension 2000 * or Superbasics limit if that is less
Unbounded step size 1.0e+18 *
* Infeasible problems
Elastic weight 100.0 * used only during elastic mode
Elastic mode 1 * use elastic mode when infeasible
Elastic objective 2 * infinite weight on the elastics

26 SQOPT 7 User’s Guide

* Frequencies

Check frequency 60 * test row residuals ||Az — s||
Expand frequency 10000 * for anti-cycling procedure
Factorization frequency 100 *

Save frequency 100 * save basis map

* LUSOL options

LU factor tolerance 3.99 * for QP (100.0 for LP)
LU update tolerance 3.99 * for QP (10.0 for LP)
LU singularity tolerance 3.2e-11 *
LU partial pivoting * default threshold pivoting strategy
* LU rook pivoting * threshold rook pivoting
* LU complete pivoting * threshold complete pivoting
* Basis files
01d basis file 0 * input basis map
New basis file 0 * output basis map
Backup basis file 0 * output extra basis map
Insert file 0 * input in industry format
Punch file 0 * output Insert data
Load file 0 * input names and values
Dump file 0 * output Load data
Solution file 0 * different from printed solution
* Partitions of cw, iw, rw
Total character workspace lencw *
Total integer workspace leniw *
Total real workspace lenrw *
User character workspace 500 *
User integer workspace 500 *
User real workspace 500 *
* Miscellaneous
Debug 1level 0 * for developers
Sticky parameters No * Yes makes parameter values persist
Timing level 3 * print cpu times

End of SPECS file checklist

4. Optional parameters 27

4.4. Subroutine sqSpec

Subroutine sqSpec may be called to input a Specs file (to specify options for a subsequent

call of sqOpt).

subroutine sqgSpec
& (iSpecs, INFO, cw, lencw, iw, leniw, rw, lenrw)

integer
iSpecs, INFO, lencw, leniw, lenrw, iw(leniw)

&

double precision

&

rw(lenrw)

character

&

On entry:

cw(lencw)*8

iSpecs is a unit number for the Specs file (iSpecs > 0). Typically iSpecs = 4.

On some systems, the file may need to be opened before sqSpec is called.

On exit:

cw(lencw), iw(leniw), rw(lenrw) contain the specified options.

INFO reports the result of calling sqSpec. Here is a summary of possible values.

101

131

132

133

134
> 134

Finished successfully

Specs file read.

Errors while reading Specs file
No Specs file specified (iSpecs < 0 or iSpecs > 99).

End-of-file encountered while looking for Specs file. sqSpec encountered
end-of-file or Endrun before finding Begin (see Section 4.2). The Specs file
may not be properly assigned.

End-of-file encountered before finding End. Lines containing Skip or Endrun
may imply that all options should be ignored.

Endrun found before any valid sets of options.

There were 4 = INFO — 134 errors while reading the Specs file.

28

SQOPT 7 User’s Guide

4.5. Subroutines sqSet, sqSeti, sqSetr

These routines specify an option that might otherwise be defined in one line of a Specs file.

&
&

&
&

&

&

&

&

&

subroutine sgSet
(buffer, iPrint, iSumm, Errors,
cw, lencw, iw, leniw, rw, lenrw)
subroutine sqSeti
(buffer, ivalue, iPrint, iSumm, Errors,
cw, lencw, iw, leniw, rw, lenrw)
subroutine sqgSetr
(buffer, rvalue, iPrint, iSumm, Errors,
cw, lencw, iw, leniw, rw, lenrw)

character*(*)
buffer
integer
Errors, ivalue, iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)
double precision
rvalue, rw(lenrw)
character

& cw(lencw)*8
On entry:
buffer is a string to be decoded. Restriction: len(buffer) < 72 (sqSet) or < 55 (sqSeti,

ivalue

rvalue

iPrint

iSumm

Errors

sqSetr). Use sqSet if the string contains all relevant data. For example,
call sqgSet (’Iterations 1000, iPrint, iSumm, Errors, ...)

is an integer value associated with the keyword in buffer. Use sqSeti if it is
convenient to define the value at run time. For example,

itnlim = 1000

if (m .gt. 500) itnlim = 8000

call sqSeti(’Iterations’, itnlim, iPrint, iSumm, Errors, ...)
is a real value associated with the keyword in buffer. For example,

factol = 100.0d4+0
if (illcon) factol = 5.04+0
call sqgSetr(’LU factor tol’, factol, iPrint, iSumm, Errors, ...)

is a file number for printing each line of data, along with any error messages. iPrint
= 0 suppresses this output.

is a file number for printing any error messages. iSumm = 0 suppresses this output.

is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to the option-setting routines.

On exit:

cw(len

Errors

cw), iw(leniw), rw(lenrw) hold the specified option.

is the number of errors encountered so far.

4. Optional parameters 29

4.6. Subroutines sqGet, sqGetc, sqGeti, sqGetr

These routines obtain the current value of a single option or indicate if an option has been
set.

integer function sqGet

& (buffer, Errors, cw, lencw, iw, leniw, rw, lenrw)
subroutine sqGetc

& (buffer, cvalue, Errors, cw, lencw, iw, leniw, rw, lenrw)
subroutine sqGeti

& (buffer, ivalue, Errors, cw, lencw, iw, leniw, rw, lenrw)
subroutine sqGetr

& (buffer, rvalue, Errors, cw, lencw, iw, leniw, rw, lenrw)

characterx*(*)

& buffer
integer
& Errors, ivalue, lencw, leniw, lenrw, iw(leniw)
character
& cvalue*x8, cw(lencw)*8
double precision
& rvalue, rw(lenrw)
On entry:

buffer is a string to be decoded. Restriction: len(buffer) < 72.

Errors is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to option-getting routines.

cw(lencw), iw(leniw), rw(lenrw) contain the current options data.

On exit:

sqGet is 1 if the option contained in buffer has been set, otherwise 0. Use sqGet to find if
a particular optional parameter has been set. For example: if

i = sqGet(’QPSolver Cholesky’, Errors, ...)
then ¢ will be 1 if sqOpt is using a Cholesky-based QP solver.Cholesky

cvalue is a string associated with the keyword in buffer. Use sqGetc to obtain the names
associated with an MPS file. For example, for the name of the bounds section use

call sqGetc(’Bounds’, MyBounds, Errors, ...)
ivalue is an integer value associated with the keyword in buffer. Example:
call sqGeti(’Iterations limit’, itnlim, Errors, ...)
rvalue is a real value associated with the keyword in buffer. Example:
call sqGetr(’LU factor tol’, factol, Errors, ...)

Errors is the number of errors encountered so far.

30 SQOPT 7 User’s Guide

4.7. Description of the optional parameters

The following is an alphabetical list of the options that may appear in the Specs file, and a
description of their effect.

Backup basis file f Default = 0

This is intended as a safeguard against losing the results of a long run. Suppose that a New
basis file is being saved every 100 iterations, and that sqOpt is about to save such a basis
at iteration 2000. It is conceivable that the run may be interrupted during the next few
milliseconds (in the middle of the save). In this case the basis file will be corrupted and the
run will have been essentially wasted.

The following example eliminates this risk:

01d basis file 11 (or 0)
Backup basis file 11
New basis file 12
Save frequency 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file 11. If the run is interrupted at iteration 2000 during the save on file 12, there will
still be a usable basis on file 11 (corresponding to iteration 1900).

Note that a New basis will be saved at the end of a run if it terminates normally, but
there is no need for a further Backup basis. If the above run ends at iteration 2050, the
final basis on file 12 will correspond to iteration 2050, but the last basis saved on file 11 will
correspond to iteration 2000.

Check frequency k Default = 60

Every kth iteration after the most recent basis factorization, a numerical test is made to see
if the current solution x satisfies the general constraints. The constraints are of the form
Ax —s = 0, where s is the set of slack variables. To perform the numerical test, the residual
vector 7 = s — Az is computed. If the largest component of 7 is judged to be too large, the
current basis is refactorized and the basic variables are recomputed to satisfy the general
constraints more accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should
not be needed.

Cold Start Default = value of input argument start

Requests that the CRASH procedure be used to choose an initial basis, unless a basis file is
provided via Old basis, Insert or Load in the Specs file.

This parameter has the same effect as the input argument start = ’Cold’ for sqOpt.
If specified as an optional parameter, this value has precedence over the value of the input
argument start. This allows the start parameter to be changed at run-time using the
Specs file.

Crash option i Default = 3
Crash tolerance t Default = 0.1

Except on restarts, a CRASH procedure is used to select an initial basis from certain rows
and columns of the constraint matrix (A -1) The Crash option ¢ determines which rows
and columns of A are eligible initially, and how many times CRASH is called. Columns of
—1I are used to pad the basis where necessary.

4. Optional parameters 31

i Meaning

The initial basis contains only slack variables: B = I.

1 CRASH is called once, looking for a triangular basis in all rows and columns of A.
2 Same as 1.
3 CRASH is called twice, treating linear equalities and linear inequalities separately.

If ¢ > 1, certain slacks on inequality rows are selected for the basis first. (If i = 3,
numerical values are used to exclude slacks that are close to a bound.) CRASH then makes
several passes through the columns of A, searching for a basis matrix that is essentially
triangular. A column is assigned to “pivot” on a particular row if the column contains
a suitably large element in a row that has not yet been assigned. (The pivot elements
ultimately form the diagonals of the triangular basis.) For remaining unassigned rows, slack
variables are inserted to complete the basis.

The Crash tolerance t allows the starting procedure CRASH to ignore certain “small”
nonzeros in each column of A. If ayax is the largest element in column j, other nonzeros a;;
in the column are ignored if |a;;| < amax X t. (To be meaningful, ¢ should be in the range
0<t<l)

When ¢ > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is
likely to be nonsingular and almost triangular. The intention is to obtain a starting basis
containing more columns of A and fewer (arbitrary) slacks. A feasible solution may be
reached sooner on some problems.

For example, suppose the first m columns of A form the matrix shown under LU factor
tolerance; i.e., a tridiagonal matrix with entries —1, 2, —1. To help CRASH choose all m
columns for the initial basis, we would specify Crash tolerance t for some value of ¢ > 0.5.

Dump file f Default = 0

If f > 0, the last solution obtained will be output to the file with unit number f in the
format described in Section 6.3. The file will usually have been output previously as a Load
file.

Elastic mode) Default = 1

This parameter determines if (and when) elastic mode is to be started (see Section 2.4).
Three elastic modes are available as follows:

i Meaning

0 Elastic mode is never invoked. sqOpt will terminate as soon as infeasibility is detected.
There may be other points with significantly smaller sums of infeasibilities.

1 Elastic mode is invoked only if the constraints are found to be infeasible (the default).
If the constraints are infeasible, continue in elastic mode with the composite objective
determined by the values of Elastic objective and Elastic weight.

2 The iterations start and remain in elastic mode. This option allows you to minimize
the composite objective function directly without first performing phase-1 iterations.

The success of this option will depend critically on your choice of Elastic weight. If
Elastic weight is sufficiently large and the constraints are feasible, the minimizer of
the composite objective and the solution of the original problem are identical. How-
ever, if the Elastic weight is not sufficiently large, the minimizer of the composite
function may be infeasible even if a feasible point exists.

32 SQOPT 7 User’s Guide

Elastic objective i Default = 2

This determines the form of the composite objective g(x) +v>_;(vj +w;) in problem EP(v)
(Section 2.4). Three types of composite objective are available:

i Meaning

0 Include only the true objective g(x) in the composite objective. This option sets v =0
in the composite objective and allows sqOpt to ignore the elastic bounds and find a
solution that minimizes ¢(x) subject to the nonelastic constraints. This option is useful
if there are some “soft” constraints that you would like to ignore if the constraints are
infeasible.

1 Use a composite objective defined with v determined by the value of Elastic weight.
This value is intended to be used in conjunction with Elastic mode = 2.

2 Include only the elastic variables in the composite objective. The elastics are weighted
by v = 1. This choice minimizes the violations of the elastic variables at the expense
of possibly increasing the true objective. This option can be used to find a point that
minimizes the sum of the violations of a subset of constraints specified by the input
array hEtype.

Elastic weight 0 Default = 1.0

This determines « in the objective of problem EP(v) (Section 2.4). At each iteration of
elastic mode, the composite objective is defined to be

minimize o g(x) + 7 (sum of infeasibilities),

where 0 = 1 for Minimize, 0 = —1 for Maximize, and ¢(x) is the quadratic objective. Note
that the effect of v is not disabled once a feasible point is obtained.

Expand frequency k Default = 10000

This option is part of the EXPAND anti-cycling procedure [9] designed to make progress
even on highly degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the
bounds on the variables by a small amount. Suppose that the Feasibility tolerance is
0. Over a period of k iterations, the tolerance actually used by sqOpt increases from %(5 to
§ (in steps of 16/k).

Increasing k helps reduce the number of slightly infeasible nonbasic variables (most of
which are eliminated during a resetting procedure). However, it also diminishes the freedom
to choose a large pivot element (see Pivot tolerance).

Factorization frequency k Default = 100 (LP) or 50 (QP)
At most k basis changes will occur between factorizations of the basis matrix.
e With linear programs, the basis factors are usually updated every iteration. The

default k is reasonable for typical problems. Higher values & = 100 or 200 may be
more efficient on problems that are extremely sparse and well scaled.

4. Optional parameters 33

e When the objective function is quadratic, fewer basis updates will occur as an optimum
is approached. The number of iterations between basis factorizations will therefore
increase. During these iterations a test is made regularly (according to the Check
frequency) to ensure that the general constraints are satisfied. Occasionally the basis
will be refactorized before the limit of k& updates is reached.

Feasible point
see Minimize

Feasibility tolerance t Default = 1.0e-6

A feasible problem is one in which all variables satisfy their upper and lower bounds to within
the absolute tolerance ¢. (This includes slack variables. Hence, the general constraints are
also satisfied to within ¢.)

e sq0pt attempts to find a feasible point for the non-elastic constraints before opti-
mizing the objective. If the sum of the infeasibilities of these constraints cannot be
reduced to zero, the problem is declared INFEASIBLE. If sInf is quite small, it may
be appropriate to raise ¢t by a factor of 10 or 100. Otherwise, some error in the data
should be suspected.

e Note: if sInf is not small and you have not asked sqOpt to minimize the violations of
the elastic variables (i.e., you have not specified Elastic objective = 2, there may
be other points that have a significantly smaller sum of infeasibilities. sqOpt will not
attempt to find the solution that minimizes the sum unless Elastic objective = 2.

e If Scale is used, feasibility is defined in terms of the scaled problem (since it is then
more likely to be meaningful).

Hessian dimension i Default = min{2000, nHcol + 1}
see Reduced Hessian dimension

Hot start Default = value of input argument start

This parameter indicates that basis factorization, reduced-Hessian and scaling information
are already specified via the input arrays for sqOpt. This option has the same effect as
the input argument start = ’Hot’ for sqOpt. If specified as an optional parameter, this
value has precedence over the value of the input argument start. This allows the start
parameter to be changed at run-time using the Specs file.

Insert file f Default = 0

If f > 0, this references a file containing basis information in the format of Section 6.2. The
file will usually have been output previously as a Punch file. The file will not be accessed if
an Old basis file is specified.

Infinite bound r Default = 1.0e+20

If r > 0, r defines the “infinite” bound infBnd in the definition of the problem constraints.
Any upper bound greater than or equal to infBnd will be regarded as plus infinity (and

34 SQOPT 7 User’s Guide

similarly for a lower bound less than or equal to —infBnd). If » < 0, the default value is
used.

Iterations limit) Default = 3 *m

This is the maximum number of iterations of the simplex method or the QP reduced-gradient
algorithm allowed. (Itns is an alternative keyword.) If i = 0, both feasibility and optimality
are checked.

Load file f Default = 0

If f > 0, this references a file containing basis information in the format of Section 6.3. The
file will usually have been output previously as a Dump file. The file will not be accessed if
an Old basis file or an Insert file is specified.

Log frequency k Default = 1
see Print frequency

LU factor tolerance t Default = 100.0 (LP) or 3.99 (QP)
LU update tolerance to Default = 10.0 (LP) or 3.99 (QP)

These tolerances affect the stability and sparsity of LUSOL’s basis factors B = LU [8] during
refactorization and updating, respectively. They must satisfy ¢1, to > 1.0. The matrix L is
a product of matrices of the form
1
(u 1> ’

where the multipliers p satisfy |u| < ¢;. Smaller values of ¢; favor stability, while larger
values favor sparsity.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce t;
and/or ty in order to achieve stability. For example, if the columns of A include a submatrix
of the form

2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2

one should set both ¢; and t5 to values in the range 1.0 < t; < 2.0.

LU partial pivoting Default
LU rook pivoting
LU complete pivoting

The LUSOL factorization implements a Markowitz-type search for pivots that locally mini-
mize the fill-in subject to a threshold pivoting stability criterion. The rook and complete
pivoting options are more expensive than partial pivoting but are more stable and bet-
ter at revealing rank, as long as the LU factor tolerance is not too large (say t; < 2.0).
When numerical difficulties are encountered, SQOPT automatically reduces the LU toler-
ances toward 1.0 and switches (if necessary) to rook or complete pivoting before reverting

4. Optional parameters 35

to the default or specified options at the next refactorization. (With System information
Yes, relevant messages are output to the Print file.)

LU density tolerance t Default = 0.6
LU singularity tolerance to Default = €2/3 ~ 3.2e-11

The density tolerance t; is used during LUSOL’s basis factorization B = LU. Columns of
L and rows of U are formed one at a time, and the remaining rows and columns of the
basis are altered appropriately. At any stage, if the density of the remaining matrix exceeds
t1, the Markowitz strategy for choosing pivots is terminated and the remaining matrix is
factored by a dense LU procedure. Raising ¢; towards 1.0 may give slightly sparser factors,
with a slight increase in factorization time.

The singularity tolerance to helps guard against ill-conditioned basis matrices. After B
is refactorized, the diagonal elements of U are tested as follows: if |Uj;| < tg or |Uj;| <
to max; |U;;|, the jth column of the basis is replaced by the corresponding slack variable.
(This is most likely to occur after a restart.)

Minimize Default
Maximize
Feasible point

This specifies the required direction of optimization. It applies to both linear and quadratic
terms in the objective.

The keyword Feasible point means “Ignore the objective function” while finding a
feasible point for the linear constraints. It can be used to check that the constraints are
feasible without altering the call to sqOpt.

New basis file f Default = 0

If f > 0, a basis map will be saved on file f every kth iteration, where k is the Save
frequency. The first line of the file will contain the word PROCEEDING if the run is still
in progress. A basis map will also be saved at the end of a run, with some other word
indicating the final solution status.

0l1d basis file f Default = 0

If f > 0, the starting point will be obtained from this file in the format of Section 6.1.
The file will usually have been output previously as a New basis file. The file will not be
acceptable if the number of rows or columns in the problem has been altered.

Optimality tolerance t Default = 1.0e-6

This is used to judge the size of the reduced gradients d; = g; — 7rTaj, where g; is the jth
component of the gradient, a; is the associated column of the constraint matrix (A -1),
and 7 is the set of dual variables.

e By construction, the reduced gradients for basic variables are always zero. The prob-
lem will be declared optimal if the reduced gradients for nonbasic variables at their
lower or upper bounds satisfy

dj/||wl = =t or d;/|x|| <t

respectively, and if |d;|/||7|| <t for superbasic variables.

36 SQOPT 7 User’s Guide
e In the above tests, ||7|| is a measure of the size of the dual variables. It is included to
make the tests independent of a scale factor on the objective function.
e The quantity 7| actually used is defined by
m
||| = max{o/v/m, 1}, where o= |m],
i=1
so that only large scale factors are allowed for.
e If the objective is scaled down to be very small, the optimality test reduces to com-
paring d; against 0.01¢.
Partial price i Default = 10 (LP) or 1 (QP)

This parameter is recommended for large problems that have significantly more variables
than constraints. It reduces the work required for each “pricing” operation (when a nonbasic
variable is selected to become superbasic).

When ¢ = 1, all columns of the constraint matrix (A -1) are searched.

Otherwise, A and I are partitioned to give ¢ roughly equal segments A;, I; (j =1 to
i). If the previous pricing search was successful on A;, I;, the next search begins on
the segments A;11, I;+1. (All subscripts here are modulo 4.)

If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to become
superbasic. If nothing is found, the search continues on the next segments A; 2, 142,
and so on.

Partial price T (or T/2 or T/3) may suit time-stage models with T' time periods.

Pivot tolerance t Default = ¢2/3 ~ 3.7e-11

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they
would cause the basis to become almost singular.

When = changes to x + ap for some search direction p, a “ratio test” determines which
component of x reaches an upper or lower bound first. The corresponding element of
p is called the pivot element.

Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance t¢.

It is common for two or more variables to reach a bound at essentially the same time. In
such cases, the Feasibility tolerance provides some freedom to maximize the pivot
element and thereby improve numerical stability. An excessively small Feasibility
tolerance should therefore not be specified.

To a lesser extent, the Expand frequency also provides some freedom to maximize the
pivot element. Hence, an excessively large Expand frequency should not be specified.

4. Optional parameters 37

Print file f
Print frequency k Default = 100

If f > 0, the Print file is output to file number f, including a line of the iteration log every
kth iteration. The default f is obtained from subroutine sqInit’s parameter iPrint. Set
f =0 to suppress the Print file.

Print level / Default = 1

This controls the amount of printing produced by sqOpt as follows.
12 Meaning
0 No output except error messages. To suppress all output, set Print file = 0.

>1 The set of selected options (including workspace limits), problem statistics, summary
of the scaling procedure, information about the initial basis resulting from CRASH or
a basis file. A single line of output each iteration (controlled by Print frequency),
and the exit condition with a summary of the final solution.

> 10 Basis factorization statistics.

Punch file f Default = 0

If f > 0, the final solution obtained will be output to file f in the format described in
Section 6.2. For linear programs, this format is compatible with various commercial systems.

QPSolver Cholesky Default
QPSolver CG
QPSolver QN

This specifies the method used to solve system (2.2) for the search directions in phase 2.

QPSolver Cholesky holds the full Cholesky factor R of the reduced Hessian Z7 HZ.
As the QP iterations proceed, the dimension of R changes with the number of superbasic
variables. If the number of superbasic variables needs to increase beyond the value of
Reduced Hessian dimension, the reduced Hessian cannot be stored and the solver switches
to QPSolver CG. The Cholesky solver is reactivated if the number of superbasics stabilizes
at a value less than Reduced Hessian dimension.

QPSolver QN solves the QP using a quasi-Newton method similar to that of MINOS. In
this case, R is the factor of a quasi-Newton approximate Hessian.

QPSolver CG uses an active-set method similar to QPSolver QN, but uses the conjugate-
gradient method to solve all systems involving the reduced Hessian.

e The Cholesky QP solver is the most robust, but may require a significant amount of
computation if there are many superbasics (degrees of freedom).

e The quasi-Newton QP solver does not require computation of the exact R at the
start of phase 2. It may be appropriate when the number of superbasics is large but
relatively few iterations are needed to reach a solution (e.g., if sqOpt is called with a
Warm or Hot start).

e The conjugate-gradient QP solver is appropriate for problems with many degrees of
freedom (say, more than 2000 superbasics).

38 SQOPT 7 User’s Guide

Reduced Hessian dimension i Default = min{2000,ncolH + 1}
same as Hessian dimension

This specifies that an ¢ x i triangular matrix R is to be available for use by the QPSolver
Cholesky option (to define the reduced Hessian according to RT R = ZT HZ). The value of
1 affects when QPSolver CG is activated.

Save frequency k Default = 100

If a New basis file has been specified, a basis map describing the current solution will be
saved on the appropriate file every kth iteration. A Backup basis file will also be saved if
specified.

Scale option i Default = 2 (LP) or 1 (QP)
Scale tolerance t Default = 0.9
Scale Print

Three scale options are available as follows:
i Meaning

0 No scaling. This is recommended if it is known that z and the constraint matrix have
no very large elements (say, larger than 100).

1 The constraints and variables are scaled by an iterative procedure that attempts to
make the matrix coefficients as close as possible to 1.0 (see Fourer [2]). This will
sometimes improve the performance of the solution procedures.

2 The constraints and variables are scaled by the iterative procedure. Also, a certain
additional scaling is performed that may be helpful if the effective right-hand side b
or the solution x is large. This takes into account columns of (A —1I) that are fixed
or have positive lower bounds or negative upper bounds.

Scale tolerance t affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and smallest
nonzero coefficients in each column:

pj = max|a;;|/ mina| (ay # 0).

If max; p; is less than ¢ times its previous value, another scaling pass is performed to adjust
the row and column scales. Raising ¢ from 0.9 to 0.99 (say) usually increases the number of
scaling passes through A. At most 10 passes are made.

Scale Print causes the row-scales r(7) and column-scales ¢(j) to be printed. The scaled
matrix coefficients are @;; = a;;¢(j)/r(7), and the scaled bounds on the variables and slacks
are I = l;/c(4), 4; = u;j/c(j), where c(j) = r(j —n) if j > n.

Solution Yes

Solution No

Solution If Optimal, Infeasible, or Unbounded

Solution file f Default = 0

The first three options determine whether the final solution obtained is to be output to
the Print file. The file option operates independently; if f > 0, the final solution will be
output to file f (whether optimal or not).

4. Optional parameters 39

e For the Yes and If Optimal options, floating-point numbers are printed in £16.5
format, and “infinite” bounds are denoted by the word None.

e For the file option, all numbers are printed in 1p,e16.6 format, including “infinite”
bounds, which will have magnitude infBnd (default value 1.000000e+20).

e To see more significant digits in the printed solution, it is sometimes useful to make f
refer to the Print file (i.e., the number specified by Print file).

Sticky parameters No Default
Sticky parameters Yes

User-defined optional parameters may be modified so that they lie in a sensible range. For
example, any tolerance specified as negative or zero will be changed to its positive default
value. Specifying Sticky parameters No will result in the original user-defined parameters
being reloaded into workspace after the run is completed. If a second run is made immediatly
following a call with Sticky parameters Yes (e.g., with the Hot start option) then any
modified parameter values will persist in workspace for the second run.

Summary file f
Summary frequency k Default = 100

If f > 0, the Summary file is output to file f, including a line of the iteration log every kth
iteration. The default f is obtained from subroutine sqInit’s parameter iSumm. Set f = 0
to suppress the Summary file.

Superbasics limit 1 Default = ncolH + 1

This places a limit on the storage allocated for superbasic variables. Ideally, i should be set
slightly larger than the “number of degrees of freedom” expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom.
(The number of variables lying strictly between their bounds is no more than m, the number
of general constraints.) The default value of i is therefore 1.

For quadratic problems, the number of degrees of freedom is often called the “number
of independent variables”.

Normally, ¢ need not be greater than ncolH + 1, where ncolH is the number of leading
nonzero columns of H. For many problems, ¢ may be considerably smaller than ncolH. This
will save storage if ncolH is very large.

Suppress parameters

Normally sqOpt prints the Specs file as it is being read, and then prints a complete list
of the available keywords and their final values. Suppress parameters tells sqOpt not to
print the complete list.

Total real workspace maxrw Default = lenrw
Total integer workspace maxiw Default = leniw
Total character workspace maxcw Default = lencw
User real workspace maxru Default = 500
User integer workspace maxiu Default = 500
User character workspace maxcu Default = 500

These options may be used to confine sqOpt to certain parts of its workspace arrays cw, iw,
rw. (The arrays are defined by the last six parameters of sqOpt.)

40 SQOPT 7 User’s Guide

The Total ... options place an upper limit on sqOpt’s workspace. They may be useful
on machines with virtual memory. For example, some systems allow a very large array
rw(lenrw) to be declared at compile time with no overhead in saving the resulting object
code. At run time, when various problems of different size are to be solved, it may be
sensible to restrict sqOpt to the lower end of rw in order to reduce paging activity slightly.
(However, sqOpt accesses storage contiguously wherever possible, so the benefit may be
slight. In general it is far better to have too much storage than not enough.)

If sqOpt’s “user” parameters ru, lenru happen to be the same as rw, lenrw, the non-
linear function routines will be free to use ru(maxrw + 1:lenru) for their own purpose.
Similarly for the other work arrays.

The User ... options place a lower limit on sq0pt’s workspace (not counting the first
500 elements). Again, if sqOpt’s parameters ru, lenru happen to be the same as rw, lenrw,
the function routines will be free to use ru(501 : maxru) for their own purpose. Similarly for
the other work arrays.

System information No Default
System information Yes

The Yes option provides additional information on the progress of the iterations, including
Basis Repair details when ill-conditioned bases are encountered and the LU factorization
parameters are strengthened.

Time limit) Default = 0

This places a limit of 7 cpu seconds on the time used for solving the problem. The default
value i = 0 implies that no cpu limit is imposed.

Timing level 14 Default = 3

¢ = 0 suppresses output of cpu times. (Intended for installations with dysfunctional timing
routines.)

Unbounded step size Olmax Default = 1.0e+18

This parameter is intended to detect unboundedness in a quadratic problem. During a line
search, the quadratic function g(x) is evaluated at points of the form = + ap, where z and
p are fixed and « varies. If o exceeds apay, iterations are terminated with the exit message
Problem is unbounded.

Note that unboundedness in z is best avoided by placing finite upper and lower bounds
on the variables.

Warm start Default = value of input argument start

This parameter indicates that a basis is already specified via the input arrays for sqOpt. This
option has the same effect as the input argument start = ’Warm’ for sqOpt. If specified
as an optional parameter, this value has precedence over the value of the input argument
start. This allows the start parameter to be changed at run-time using the Specs file.

5. Output 41

5. Output
5.1. The Print file

If Print file > 0, the following output is sent to the Print file (record length < 132):

A listing of the Specs file.

A listing of the parameters that were or could have been set in the Specs file.
An estimate of the working storage needed, and the amount available.
Some statistics about the problem variables and constraints.

The storage available for LU factors of the basis matrix.

A summary of the scaling procedure, if Scale was specified.

Notes about the initial basis obtained from CRASH or a basis file.
The iteration log.

Basis factorization statistics.

The EXIT condition and some statistics about the solution obtained.
The printed solution, if requested.

The last four items are described in the following sections.

5.2. The iteration log

If Print level > 0, one line of information is output to the Print file every kth iteration,
where k is the specified Print frequency (default & = 100). A heading is printed before
the first such line after a basis factorization, containing the items described below.

A PRICE operation is the process by which a nonbasic variable (denoted by jq) is selected
to become superbasic, in addition to those already in the superbasic set. If the problem is
purely linear, variable jq usually becomes basic immediately (unless it should happen to
reach its opposite bound and return to the nonbasic set). If Partial price is in effect,
variable jq is selected from Ap, or Iy, the ppth segments of the constraint matrix (A —I)

The reduced gradient (or reduced cost) for variable j is d; = g; — 7rTaj, where g; is the
gradient of the current objective function, 7 is the vector of dual variables, and a; is the
jth column of the constraint matrix (A -1)

Label Description

Itn The current iteration number.

PP The Partial Price indicator. The last PRICE operation selected variable jq from
the ppth partition of A or —I. pp is set to zero when the basis is refactored.

dj The reduced gradient of the variable jq selected by PRICE at the start of the

present iteration. This is the largest reduced gradient among the superbasics.

+SBS The variable jq selected by PRICE to be added to the superbasic set.

-SBS The superbasic variable chosen to become nonbasic.
-BS The variable removed from the basis to become nonbasic.
Step The step-length a taken along the current search direction p. The variables x

have just been changed to = + ap. In phase 2, a step of 1.0 generally means that
the quadratic objective has been minimized for the current basic and superbasic
variables.

Pivot If column a, replaces the rth column of the basis B, Pivot is the rth element of a
vector y satisfying By = a,. Wherever possible, Step is chosen to avoid extremely
small values of Pivot (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the Pivot tolerance to exclude very small
elements of y from consideration during the computation of Step.

42 SQOPT 7 User’s Guide

nInf The number of infeasibilities before the present iteration. This number will not
increase unless the iterations are in elastic mode.

Sinf The sum of infeasibilities before the present iteration. (It will usually decrease at
each nonzero Step, but if nInf decreases by 2 or more, sInf may occasionally
increase. However, in elastic mode, it will decrease monotonically.)

Objective The value of the current objective function after the present iteration.
Note: If Elastic mode = 2, the heading is Composite Obj.

L+U The number of nonzeros representing the LU factors of the basis (the sum of
two values L and U). Immediately after a basis factorization, L is the number of
subdiagonal elements in the columns of a sparse lower-triangular matrix L with
implicit unit diagonals. Further transformations are added to L when columns of
B are later replaced. Thus, L increases monotonically.

U is the number of diagonal and superdiagonal elements in the rows of a sparse
upper-triangular matrix U. As columns of B are replaced, U is maintained ex-
plicitly (in sparse form). Thus, U may fluctuate up or down, but will tend to
increase.

ncp The number of compressions required to recover storage in the data structure for
U. This includes the number of compressions needed during the previous basis
factorization. Normally ncp should increase very slowly. If not, the amount of
integer and real workspace available to sqOpt should be increased by a significant
amount. As a suggestion, the work arrays iw(*) and rw(*) should be extended
by L+U elements.

The following items are printed if the problem is a QP or if the superbasic set is non-empty.

Label Description

rgNorm The largest reduced-gradient among the superbasic variables after the current
iteration. During phase 2 this will be approximately zero after a unit step.

nsS The current number of superbasic variables.

condHz An estimate of the condition number of the reduced Hessian RT R. It is the square
of the ratio of the largest and smallest diagonals of the upper triangular matrix R
(a lower bound on the true condition number of RT R).

To guard against high values of condHz, attention should be given to the scaling
of the variables and constraints.

5.3. Basis factorization statistics

If Print level > 10, the following items are output to the Print file whenever LUSOL [§]
factorizes the basis B or the rectangular matrix Bg = (B S)T. Gaussian elimination is used
to compute sparse factors L and U, where PLPT and PUQ are lower and upper triangular
matrices for some permutation matrices P and (). Stability is ensured as described under
the LU options (page 34).

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

5. Output 43

Itn
Nonlin
Linear

Slacks

0 First LU factorization.
1 The number of updates reached the Factorization frequency.
2 The nonzeros in the updated factors have increased significantly.
7 Not enough storage to update factors.
10 Row residuals too large (see the description of Check frequency).

11 Ill-conditioning has caused inconsistent results.
The current minor iteration number.

The number of nonlinear variables in the current basis B.
The number of linear variables in B.

The number of slack variables in B.

B BR BS or BT factorize The type of LU factorization.

m
n

Elems
Amax
Density

Merit

lenL

Cmpressns

Incres

Utri

lenU

B Periodic factorization of the basis B.

BR More careful rank-revealing factorization of B using threshold rook pivot-
ing. This occurs mainly at the start, if the first basis factors seem singular
or ill-conditioned. Followed by a normal B factorize.

BS By is factorized to choose a well-conditioned B from the current (B S)
Followed by a normal B factorize.

BT Same as BS except the current B is tried first and accepted if it appears to
be not much more ill-conditioned than after the previous BS factorize.

The number of rows in B or Bg.

W_"

The number of columns in B or Bg. Preceded by or “>” respectively.

The number of nonzero elements in B or Bg.
The largest nonzero in B or Bs.
The percentage nonzero density of B or Bs.

The average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be (¢ — 1)(r — 1) where ¢ and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of n such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization.

The number of nonzeros in L.

The number of times the data structure holding the partially factored matrix
needed to be compressed to recover unused storage. Ideally this number should
be zero. If it is more than 3 or 4, the amount of workspace available to sqOpt
should be increased for efficiency.

The percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B or Bg.

is the number of triangular rows of B or By at the top of U.

The number of nonzeros in U, including its diagonals.

44 SQOPT 7 User’s Guide

Ltol The largest subdiagonal element allowed in L. This is the specified LU factor
tolerance or a smaller value currently being used for greater stability.

Umax The largest nonzero element in U.

Ugrwth The ratio Umax/Amax, which ideally should not be substantially larger than 10.0
or 100.0. If it is orders of magnitude larger, it may be advisable to reduce the
LU factor tolerance to 5.0, 4.0, 3.0 or 2.0, say (but bigger than 1.0).
As long as Lmax is not large (say 5.0 or less), max{Amax, Umax} / DUmin gives
an estimate of the condition number of B. If this is extremely large, the basis
is nearly singular. Slacks are used to replace suspect columns of B and the
modified basis is refactored.

Ltri The number of triangular columns of B or By at the left of L.

densel The number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax The actual maximum subdiagonal element in L (bounded by Ltol).

Akmax The largest nonzero generated at any stage of the LU factorization. (Values
much larger than Amax indicate instability.)

growth The ratio Akmax/Amax. Values much larger than 100 (say) indicate instability.

bump The size of the block to be factorized nontrivially after the triangular rows and
columns of B or Bg have been removed.

dense2 The number of columns remaining when the density of the basis matrix being
factorized reached 0.6. (The Markowitz pivot strategy searches fewer columns
at that stage.)

DUmax The largest diagonal of PUQ.

DUmin The smallest diagonal of PUQ.

condU The ratio DUmax/DUmin, which estimates the condition number of U (and of B

if Ltol is less than 5.0, say).

5.4. Crash statistics

When Print Level > 20 and Print file > 0, the following CRASH statistics (< 120
characters) are produced on the Print file whenever Start = ’Cold’ (see Section 3.1).
They refer to the number of columns selected by the CRASH procedure during each of
several passes through A in search of a triangular basis matrix.

Label
Slacks

Description

The number of slacks selected initially.

Free cols The number of free columns in the basis.

Preferred The number of “preferred” columns in the basis (i.e., hs(j) = 3 for some j < n).

Unit
Double
Triangle

Pad

The number of unit columns in the basis.
The number of double columns in the basis.
The number of triangular columns in the basis.

The number of slacks used to pad the basis.

5. Output 45

5.5. EXIT conditions

When sqOpt or one of its auxiliary routines terminates, a message of the following form is
output to the Print and Summary files:

SOLVER EXIT e -- exit condition
SOLVER INFO ¢ -- informational message

where e is an integer that labels a generic ezit condition, and i labels one of several alternative
informational messages. For example, sqOpt may output

SQOPT EXIT 20 -- the problem appears to be unbounded
SQOPT INFO 21 -- unbounded objective

where the exit condition gives a broad definition of what happened, while the informational
message is more specific about the cause of the termination. The integer ¢ is the value of
the output argument INFO. The integer e may be recovered from INFO by changing the least
significant digit to zero. Possible exit conditions for sqOpt follow:

0 Finished successfully
10 The problem appears to be infeasible
20 The problem appears to be unbounded
30 Resource limit error
40 Terminated after numerical difficulties
50 Error in the user-supplied functions
60 Undefined user-supplied functions
70 User requested termination
80 Insufficient storage allocated
90 Input arguments out of range
100 Finished successfully (associated with sqOpt auxiliary routines)
110 Errors while processing MPS data
130 Errors while reading the Specs file
140 System error

Exit conditions 0-20 arise when a solution exists (though it may not be optimal). A
basis file may be saved, and the solution is output to the Print or Solution files if requested.

If exit conditions 80-100 occur during the first basis factorization, the primal and dual
variables x and pi will have their original input values. Basis files are saved if requested,
but certain values in the printed solution will not be meaningful.

We describe each exit message from sqOpt and suggest possible courses of action.

EXIT -- O finished successfully

INFO -- 1 optimality conditions satisfied
INFO -- 2 feasible point found

INFO -- 4 weak QP minimizer

These messages usually indicate a successful run. Basis files are saved, and the solution
is printed and/or saved on the Solution file.

For INFO 1 the final point seems to be a unique solution of LCQP. This means that
x is feasible (it satisfies the constraints to the accuracy requested by the Feasibility
tolerance), the reduced gradient is negligible, the reduced costs are optimal, and R is
nonsingular.

For INFO 4 the final point is a weak minimizer. (The objective value is a global optimum,
but it may be achieved by an infinite set of points x.) This exit occurs when (i) the problem
is feasible, (ii) the reduced gradient is negligible, (iii) the Lagrange multipliers are optimal,
and (iv) the reduced Hessian is singular or there are some very small multipliers. It cannot
occur if H is positive definite (i.e., g(z) is strictly convex).

46 SQOPT 7 User’s Guide

One caution about “optimality conditions satisfied”. Some of the variables or
slacks may lie outside their bounds more than desired, especially if scaling was requested.
Some details are given after the exit message. Here is an example from problem sgmain?2 in
the SQOPT distribution:

SQOPT EXIT O -- finished successfully
SQOPT INFO 1 -- optimality conditions satisfied

Problem name sqProb 1
No. of iteratioms 11 Objective value -2.0436650381E+06
No. of Hessian products 15 Objective row 0.0000000000E+00
Quadratic objective -2.0436650381E+06
No. of superbasics 1 No. of basic nonlinears 2
No. of degenerate steps 0 Percentage 0.00
Max x (scaled) 3 2.2E-01 Max pi (scaled) 6 3.1E+07
Max x 3 6.2E+02 Max pi 7 9.6E+03
Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 5 1.0E-08
Max Primal infeas 0 0.0E+00 Max Dual infeas 9 3.1E-12

Max Primal infeas refers to the largest bound infeasibility and which variable or slack
is involved. If it is too large, consider restarting with a smaller Feasibility tolerance
(say 10 times smaller) and perhaps Scale option O.

Max Dual infeas indicates which variable is closest to being at a non-optimal value.
Broadly speaking, if Max Dual infeas/Max pi = 10~¢, the objective function would prob-
ably change in the dth significant digit if optimization could be continued. If d seems too
large, consider restarting with a smaller Optimality tolerance.

Note: If i0bj > 0 in the call to sqOpt, Objective row above gives the value of the
associated linear term ¢’z. Quadratic objective gives the value of %QTTH xT.

EXIT -- 10 the problem appears to be infeasible

INFO -- 11 infeasible linear constraints
INFO -- 12 infeasible linear equalities
INFO -- 14 infeasibilities minimized

This exit occurs if sqOpt is unable to find a point that satisfies the constraints.

The output messages are based on a relatively reliable indicator of infeasibility. Feasi-
bility is measured with respect to the upper and lower bounds on the variables and slacks.
Among all points satisfying the general constraints Az — s = 0, there is apparently no point
that satisfies the bounds on = and s. Violations as small as the Feasibility tolerance are
ignored, but at least one component of x or s violates a bound by more than the tolerance.

For INFO 11 and 12, the sum of infeasibilities will usually not have been minimized when
sq0pt recognizes that the constraints are infeasible and exits. There may exist other points
that have a significantly lower sum of infeasibilities.

If the problem is infeasible and Elastic mode > 0, then sqOpt will optimize the original
QP objective plus the sum of infeasibilities weighted by the Elastic weight parameter. In
elastic mode, some of the bounds are “elastic”, as specified by sqOpt’s input array hEtype
(page 15). Variables subject to elastic bounds are known as elastic variables. An elastic
variable is free to violate one or both of its original upper or lower bounds. If the problem
has no feasible solution, sqOpt will tend to determine a “good” infeasible point if the elastic
weight is sufficiently large. (If the elastic weight were infinite, sqO0pt would locally minimize
the constraint violations subject to the nonelastic constraints and bounds.)

5. Output 47

EXIT -- 20 the problem appears to be unbounded
INFO -- 21 unbounded objective
Unboundedness is detected by the simplex method when a nonbasic variable can be
increased or decreased by an arbitrary amount without causing a basic variable to violate
a bound. A message prior to the exit message gives the index of the nonbasic variable.
Consider adding an upper or lower bound to the variable. Also, examine constraints that
have nonzeros in the associated column, to see if they have been formulated as intended.
Very rarely, the scaling of the problem could be so poor that numerical error will give
an erroneous indication of unboundedness. Consider using the Scale option.

EXIT -- 30 resource limit error
INFO -- 31 iteration limit reached
INFO -- 33 the superbasics limit is too small

Some limit was exceeded before the required solution could be found. Check the iteration
log to be sure that progress was being made. If so, restart the run using a basis file that
was saved (or should have been saved!) at the end of the run.

If the superbasics limit is too small, then the problem appears to be more nonlinear
than anticipated. The current set of basic and superbasic variables have been optimized
as much as possible and a PRICE operation is necessary to continue, but there are already
Superbasics limit superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind
the storage needed for the reduced Hessian. (The Reducd Hessian dimension h will also
increase to s unless specified otherwise, and the associated storage will be about %52 words.)
In some cases you may have to set h < s to conserve storage. The QPSolver CG option will
be invoked and the rate of convergence will probably fall off severely.

EXIT -- 40 terminated after numerical difficulties
INFO -- 42 singular basis
INFO -- 43 cannot satisfy the general constraints

INFO -- 44 ill-conditioned null-space basis

These conditions arise only after the LU factorization options have been strengthened
(automatically) as much as possible.

For INFO 42, the first factorization attempt found the basis to be structurally or nu-
merically singular. (Some diagonals of the triangular matrix U were deemed too small.)
The associated variables were replaced by slacks and the modified basis refactorized, but
singularity persisted.

For INFO 43, the basic variables x; have been recomputed, given the present values of
the superbasic and nonbasic variables. A step of “iterative refinement” has also been applied
to increase the accuracy of x5, but a row check has revealed that the resulting solution does
not satisfy the constraints Az — s = 0 sufficiently well.

For INFO 44, during computation of the reduced Hessian Z7HZ, some column(s) of Z
continued to contain very large values.

In all cases, the problem must be badly scaled (or the basis must be pathologically ill-
conditioned without containing any large entries). Try Scale option 2 if it has not yet
been used.

EXIT -- 50 error in the user-supplied functions
INFO -- 53 the QP Hessian is indefinite

An indefinite matrix was detected during the computation of the reduced Hessian factor
R such that RTR = ZTHZ. This may be caused by the matrix H being indefinite, i.e.,

48 SQOPT 7 User’s Guide

there may exist a vector y such that y” Hy < 0. In this case, the QP problem is not convex
and cannot be solved using this version of sqOpt. Check that gqpHx assigns all components
of Hx correctly.

If gphx is coded correctly with H symmetric positive semidefinite, there may be very
large entries in H. Check the scaling of the variables and constraints.

EXIT -- 80 insufficient storage allocated

INFO -- 81 work arrays must have at least 500 elements
INFO -- 82 not enough character storage

INFO -- 83 not enough integer storage

INFO -- 84 not enough real storage

SQOPT cannot start to solve a problem unless the character, integer, and real work
arrays are at least 500 elements.

If the storage arrays cw(*), iw(*), rw(*) are not large enough for the current problem,
an estimate of the additional storage required is given in messages preceding the exit. The
routine declaring cw, iw, rw should be recompiled with larger dimensions lencw, leniw,
lenrw.

If rw(*) is not large enough, be sure that the Reduced Hessian dimension is not
unreasonably large.

EXIT -- 90 input arguments out of range
INFO -- 91 invalid input argument
INFO -- 92 basis file dimensions do not match this problem

These conditions occur if some data associated with the problem is out of range.

For INFO 91, at least one input argument of sqOpt is invalid. The Print and Summary
files provide more detail about which arguments must be modified.

For INFO 92, an Old basis file could not be loaded properly. (In this situation, new basis
files cannot be saved, and there is no solution to print.) On the first line of the Old basis
file, the dimensions m and n are different from those associated with the problem that has
just been defined. You have probably loaded a file that belongs to another problem.

The basis file state vector will not match the current problem if, for some reason, the
Old basis file is incompatible with the present problem, or is not consistent within itself.
The number of basic entries in the state vector (i.e., the number of 3’s in the map) is not
the same as m on the first line, or some of the 2’s in the map did not have a corresponding
“j x;” entry following the map.

EXIT -- 140 system error
INFO -- 141 wrong number of basic variables
INFO -- 142 error in basis package

These conditions may arise while the basis is being factorized.

INFO 141 should not happen. The wrong sqOpt source files may have been compiled, or
arguments of incorrect type may be used in the call to sqOpt. Check that all integer variables
and arrays are declared integer in your calling program, and that all “real” variables and
arrays are declared consistently. They should be double precision on most machines.

For INFO 142, a preceding message describes the error in more detail. One such message
says that the current basis has more than one element in row ¢ and column j. This could
be caused by an error in the input values of the arrays indA, Acol, locA.

5. Output 49

5.6. Solution output

SQOPT outputs the final solution to the Print file (record length < 111) in accordance with
the Solution keyword. Some header information appears first to identify the problem and
the final state of the optimization. A CONSTRAINTS section and a VARIABLES section
then follow, giving one line of information for each row and column (each constraint and

variable).
The format used is similar to that seen in commercial systems, though there is no rigid
industry standard. To reduce clutter, a “.” is printed for any numerical value that is exactly

zero. Infinite Upper and Lower limits are output as the word None. Other real values are
output with format £16.5.

The CONSTRAINTS section

General constraints take the form | < Az < u, and the ith constraint is of the form
a< a;px <g.

Internally, the constraints take the form Az — s = 0, where s is the set of slack variables
(which happen to satisfy the bounds | < s < w). For the ith constraint, the slack variable s;
is directly available, and it is convenient to refer to its state. It should satisfy o <'s; < .

Label Description

Number The value n + 4 (the internal number used for slack s; in the iteration log).
Row The name of the ith row.

State The state of the ith row relative to the bounds « and S.

LL The row is at its lower limit, a.

UL The row is at its upper limit, 3.

EQ The lower and upper limit are the same, a = 3.

BS The constraint is not binding, and s; is basic.

SBS The constraint is not binding, and s; is superbasic.

FR The constraint is not binding, but s; is nonbasic and lies strictly between its
bounds.

A key is sometimes printed before the State.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient
is essentially zero. This means that if the slack were allowed to start moving
away from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change, giving
a genuine alternative solution. However, if there are any degenerate variables
(key D), the actual change might prove to be zero, because one of them could
encounter a bound immediately. In either case, the values of the dual variables
might change.

D Degenerate. The slack is basic or superbasic, but it is equal (or very close) to
one of its bounds.

I Infeasible. The slack is basic or superbasic and it is currently violating one of
its bounds by more than the Feasibility tolerance.

50 SQOPT 7 User’s Guide

N Not precisely optimal. If the slack is superbasic, the dual variable 7; is not
sufficiently small, as measured by the Optimality tolerance. If the slack
is nonbasic, m; is not sufficiently positive or negative. If a loose Optimality
tolerance has been used, or if iterations were terminated before optimality,
this key might be helpful in deciding whether or not to restart the run.

Note: If Scale is specified, the tests for terminating optimization are made on the
scaled problem, because that is the problem being solved. However, the A, D, I, N
keys refer to the unscaled problem, because that is the problem you specified.

Value The constraint value; i.e., the value of a;frx.

Slack value The amount by which the constraint value differs from its nearest bound.
(For free rows, it is taken to be minus the Value.)

Lower limit «, the lower bound on the row.
Upper limit [, the upper bound on the row.

Dual variable The value of the dual variable 7;, often called the shadow price (or simplex
multiplier) for the ith constraint. The full vector 7 always satisfies BTr = gp,
where B is the current basis matrix and gp contains the associated gradients for
the current objective function.

I The row or constraint number, 7.

The VARIABLES section

Here we talk about the “column variables” x. We let x; be the jth variable and assume
that it should satisfy o < z; < 3.

Label Description

Number The value j (the internal number used for z; in the iteration log).
Column The name of z;.

State The state of z; relative to the bounds o and 3.

LL =z, is nonbasic at its lower limit, «.

UL x; is nonbasic at its upper limit, 8.

EQ =z, is nonbasic and fixed at the value o = B.
BS z; is basic.

SBS z; is superbasic.

FR z; is nonbasic but lies strictly between its bounds.

A key is sometimes printed before the State.

A Alternative optimum possible. The variable is nonbasic, but its reduced gradi-
ent is essentially zero. If ; were allowed to start moving away from its bound,
there would be no change in the value of the objective function. The values of
the basic and superbasic variables might change, giving a genuine alternative
solution. However, if there are any degenerate variables (key D), the actual
change might prove to be zero. In either case, the values of the dual variables
might change.

5. Output 51

D Degenerate. The variable is basic or superbasic, but it is equal (or very close)
to one of its bounds.

I Infeasible. The variable is basic or superbasic and it is currently violating one
of its bounds by more than the Feasibility tolerance.

N Not precisely optimal. If x; is superbasic, its Reduced gradient d; is not suf-
ficiently small, as measured by the Optimality tolerance. If x; is nonbasic,
d; is not sufficiently positive or negative.

Note: If Scale is specified, the tests for terminating optimization are made on the
scaled problem, because that is the problem being solved. However, the A, D, I, N
keys refer to the unscaled problem.

Value The value of variable ;.

Obj Gradient gj, the jth component of the linear and quadratic objective function ¢(x) +

cTx. (We define g; = 0 if the current solution is infeasible.)

Lower limit a, the lower bound on z;.
Upper limit f3, the upper bound on z;.

Dual variable The dual variable is the reduced gradient d; = g; — 7rTaj, where a; is the
jth column of the constraint matrix.

M+J The value m + j.

Note: If two problems are the same except that one minimizes ¢(z) and the other
maximizes —q(x), their solutions will be the same but the signs of the dual variables 7; and
the reduced gradients d; will be reversed.

5.7. The Solution file

If Solution file > 0, the information in a printed solution is also output to a Solution
file (which may be the Print file if so desired). Infinite Upper and Lower limits appear
as +10%° rather than None. Other real values are output with format 1p,e16.6. Again,
the maximum record length is 111 characters, including what would be the carriage-control
character if the file were printed.

A Solution file is intended to be read from disk by a self-contained program that extracts
and saves certain values as required for possible further computation. Typically the first 14
records would be ignored. Each subsequent record may be read using

format (18, 2x, 2a4, 1x, al, 1x, a3, 5el16.6, iT7)

adapted to suit the occasion. The end of the CONSTRAINTS section is marked by a record
that starts with a 1 and is otherwise blank. If this and the next 4 records are skipped, the
VARIABLES section can then be read under the same format. (There should be no need to
use any backspace statements.)

5.8. The Summary file

If Summary file > 0, brief output is sent to the Summary file (record length < 72):
The Begin line from the Specs file.
The basis file loaded, if any.
A line of the iteration log every kth iteration, where k is the Summary frequency.
The exit condition and a summary of the final solution.

52 SQOPT 7 User’s Guide

The Summary file (like the Print file) is not closed after a problem has been processed. It
can therefore accumulate a log for several calls to sqOpt if the same file is specified.

When sqOpt is run interactively, the Summary file is typically the screen. For batch
jobs, a disk file may be used to retain a concise log of each run if desired. (It is more easily
perused than the associated Print file.)

Below we give the Summary file for the example sqmain in the SQOPT distribution.
The problem is Example 1.2 (page 5) with n = 30 and z¢ = (%, %, cee %)T The number of
general constraints is m = 30. The output was generated with Summary frequency 1.

SQOPT 7.6.0 (Jan 2017)

Begin sgmain (Example program for sqopt)

Nonlinear constraints 0 Linear constraints 30
Nonlinear variables 30 Linear variables 0
Jacobian variables 0 Objective variables 30
Total constraints 30 Total variables 30

Itn FP mult NumInf SumInf

0 1 1.4000000E+01

1 1.0E+00 1 1.3000000E+01

2 1.0E+00 1 1.2000000E+01

3 1.0E+00 1 1.1000000E+01

4 1.0E+00 1 1.0000000E+01

5 1.0E+00 1 9.0000000E+00

6 1.0E+00 1 8.0000000E+00

7 1.0E+00 1 7.0000000E+00

8 1.0E+00 1 6.0000000E+00

9 1.0E+00 1 5.0000000E+00

Itn FP mult NumInf SumInf

10 1.0E+00 1 4.0000000E+00

11 1.0E+00 1 3.0000000E+00

12 1.0E+00 1 2.0000000E+00

13 1.0E+00 1 1.0000000E+00

This is sgmain problem 1. ncolH = 30
Itn 14: Feasible linear constraints

Itn QP mult NonOpt QP objective nS rgNorm

14 1 3.7500000E+00

15 1.0E+00 2 3.7500000E+00

16 -2.7E+01 1 3.7500000E+00

17 -2.9E+01 0 3.2666667E+00 1 4.1E-08
18 0 3.2666667E+00 1

SQOPT EXIT 0 -- finished successfully
SQOPT INFO 1 -- optimality conditions satisfied

Problem name sqProb
No. of iterations 18 Objective 3.2666666667E+00
No. of Hessian products 9 Linear objective 3.7500000000E+00
Quadratic objective -4.8333333333E-01
No. of superbasics 1 No. of basic nonlinears 29
No. of degenerate steps 1 Percentage 5.56
Max x (scaled) 30 3.3E-02 Max pi (scaled) 30 4.7E-01
Max x 30 3.3E-02 Max pi 30 4.7E-01
Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 0 0.0E+00
Max Primal infeas 0 0.0E+00 Max Dual infeas 0 0.0E+00

6. Basis files 53

6. Basis files

A basis file may be saved at the end of a run, in order to restart the run if necessary, or to
provide a good starting point for some closely related problem. Three formats are available.
They are invoked by options of the following form:

New basis file 10
Backup file 11
Punch file 20
Dump file 30

The file numbers should be in the range 1-99, or zero for files that are not wanted.

New basis and Backup basis files are saved in that order every kth iteration, where k is
the Save frequency.

New basis, Punch, and Dump files are saved at the end of a run, in that order. They
may be re-loaded using options of the following form:

01d basis file 10
Insert file 20
Load file 30

Only one such file will actually be loaded, with the order of precedence as shown. If no basis
files are specified, one of the Crash options takes effect.

Figures 1-3 illustrate the data formats used for basis files. 80-character fixed-length
records are suitable in all cases. (36-character records would be adequate for Punch and
Dump files.) The files shown correspond to the optimal solution for problem sqmain2 in
the SQOPT distribution. The problem has 30 linear constraints, a linear objective, and 30
variables.

6.1. New and Old basis files

These files may be called basis maps. They contain the most compact representation of
the state of each variable. They are intended for restarting the solution of a problem at a
point that was reached by an earlier run on the same problem or a related problem with
the same dimensions. (Perhaps the Iterations limit was previously too small, or some
other objective row is to be used, or the bounds are different.)

As illustrated in Figure 1, the following information is recorded in a New basis file.

1. A line containing the problem name, the iteration number when the file was created,
the status of the solution (Optimal Soln, Infeasible, Unbounded, Excess Itns,
Error Condn, or Proceeding), the number of infeasibilities, and the current objective
value (or the sum of infeasibilities).

2. A line containing the OBJECTIVE, RHS, RANGES and BOUNDS names, M = m, the number
of rows in the constraint matrix, N = n, the number of columns in the constraint
matrix, and SB = the number of superbasic variables. Any undefined names will be
printed with a blank entry.

3. A set of (n+m—1)/80+1 lines indicating the state of the n column variables and the
m slack variables in that order. One character hs(j) is recorded for each j =1:n+m
as follows, written with format (80i1):

54 SQOPT 7 User’s Guide
sqProb 2 ITN 32 Optimal Soln NINF 0 0BJ 9.130712687760E-01
0BJ= RHS= RNG= BND= M= 31 N= 30 SB= 8
0333333330333333333333333333331111111131112121212121212121330
49 -1.42537551933494E-02
57 -3.01054650047995E-02
55 -2.61425375519345E-02
47 -1.02908277404919E-02
53 -2.21796100990641E-02
45 -6.32790028763443E-03
51 -1.82166826462067E-02
43 -2.36497283477702E-03
0
Figure 1: Format of New and Old basis files for example sqmain2
hs(j) State of the jth variable
0 Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic
3 Basic
If variable j is nonbasic, it may be fized (lower bound = upper bound), or free (infinite
bounds), or it may be strictly between its bounds. In such cases, hs(j) = 0. (Free
variables will almost always be basic.)
4. A set of lines of the form

J T
written with format (i8, 1p, e24.14) and terminated by an entry with 7 = 0, where
j denotes the jth variable and z; is a real value. The jth variable is either the jth

column or the (j — n)th slack, if j > n. Typically, hs(j) = 2 (superbasic). The list
includes nonbasic variables that lie strictly between their bounds.

Loading a New basis file

A file that has been saved as an Old basis file may be input at the beginning of a later run
as a New basis file. The following notes are relevant:

1.

The first line is input and printed but otherwise not used.

The values labeled M and N on the second line must agree with m and n for the problem
that has just been defined. The value labeled SB is input and printed but is not used.

The next set of lines must contain exactly m values hs(j) = 3, denoting the basic
variables.

The list of j and z; values must include an entry for every variable whose state is
hs(j) = 2 (the superbasic variables).

Further j and x; values may be included, in any order.

For any j in this list, the value x; is recorded but the state is unaltered.

6. Basis files 55

6.2. Punch and Insert files

These files provide compatibility with commercial mathematical programming systems. The
Punch file from a previous run may be used as an Insert file for a later run on the same
problem. It may also be possible to modify the Insert file and/or problem and still obtain
a useful advanced basis.

The standard MPS format has been slightly generalized to allow the saving and reloading
of nonbasic solutions. It is illustrated in Figure 2. Apart from the first and last line, each
entry has the following form:

Columns 2-3 5-12 1522 25-36
Contents Key Namel Name2 Value

The various keys are best defined in terms of the action they cause on input. It is assumed
that the basis is initially set to be the full set of slack variables, and that column variables
are initially at their smallest bound in absolute magnitude, or zero for free variables.

Key Action to be taken during Insert

XL Make variable Namel basic and slack Name2 nonbasic at its lower bound.
XU Make variable Namel basic and slack Name2 nonbasic at its upper bound.
LL Make variable Namel nonbasic at its lower bound.

UL Make variable Namel nonbasic at its upper bound.

SB Make variable Namel superbasic at the specified Value.

Note that Namel may be a column name or a row name, but on XL and XU lines, Name2
must be a row name. In all cases, row names indicate the associated slack variable, and
Value is recorded in x. The key SB is an addition to the standard MPS format to allow for
nonbasic solutions.

Notes on Punch Data

1. Variables are output in natural order. For example, on the first XL or XU line, Namel
will be the first basic column and Name2 will be the first row whose slack is not basic.
(The slack could be nonbasic or superbasic.)

2. LL lines are not output for nonbasic variables whose lower bound is zero.

3. Superbasic slacks are output last.

Notes on Insert Data

1. Before an Insert file is read, column variables are made nonbasic at their smallest
bound in absolute magnitude, and the slack variables are made basic.

2. Preferably an Insert file should be an unmodified Punch file from an earlier run on the
same problem. If some rows have been added to the problem, the Insert file need not
be altered. (The slacks for the new rows will be in the basis.)

3. Entries will be ignored if Namel is already basic or superbasic. XL and XU lines will
be ignored if Name2 is not basic.

4. SB lines may be added before the ENDATA line, to specify additional superbasic columns
or slacks.

5. An SB line will not alter the status of Namel if the Superbasics limit has been
reached. However, the associated Value will be retained.

56 SQOPT 7 User’s Guide

6.3. Dump and Load files

These files are similar to Punch and Insert files, but they record solution information in a
manner that is more direct and more easily modified. In particular, no distinction is made
between columns and slacks. Apart from the first and last line, each entry has the form

Columns 2-3 5-12 25-36
Contents Key Name Value
as illustrated in Figure 3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit,

Basic, and Superbasic respectively.

Notes on Dump data

1. A line is output for every variable: columns followed by slacks.

2. Nonbasic free variables (strictly between their bounds) are output with key LL.

Notes on Load data

1. Before a Load file is read, all columns and slacks are made nonbasic at their smallest
bound in absolute magnitude. The basis is initially empty.

2. BS causes Name to become basic.

SB causes Name to become superbasic at the specified Value.

- W

LL or UL cause Name to be nonbasic at the specified Value.

5. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first
BS or SB line takes effect for any given Name.)

6. An SB line will not alter the status of Name if the Superbasics limit has been
reached, but the associated Value will is retained.

7. (Partial basis) Let m be the number of rows in the problem. If fewer than m variables
are specified to be basic, the first basis factorization will detect singularity and insert
appropriate slacks.

8. (Too many basics or superbasics) If more than m variables are specified basic, or more
than Superbasics limit are specified superbasic, the excess will be made nonbasic
before iterations begin.

6.4. Restarting modified problems

Sections 6.1-6.3 document three distinct starting methods (Old basis, Insert and Load files),
which may be preferable to any of the cold start (CRASH) options. The best choice depends
on the extent to which a problem has been modified, and whether it is more convenient to
specify variables by number or by name. The following notes offer some rules of thumb.

Protection

In general there is no danger of specifying infinite values. For example, if a variable is
specified to be nonbasic at an upper bound that happens to be 400, it will be made nonbasic
at its lower bound. Conversely if its lower bound is —oco. If the variable is free (both bounds
infinite), it will be made nonbasic at value zero. No warning message will be issued.

6. Basis files 57

NAME sqProb 2 PUNCH/INSERT NAME sqProb 2 DUMP/LOAD
XU x 2 r 1 5.11608E-19 LL x 1 0.00000E+00
XU x 3 r 2 5.11608E-19 BS x 2 5.11608E-19
XU x 4 r 3 5.11608E-19 BS x 3 5.11608E-19
XU x 5 r 4 5.11608E-19 BS x 4 5.11608E-19
XU x 6 r 5 5.11608E-19 BS x 5 5.11608E-19
XU x 7 r 6 5.11608E-19 BS x 6 5.11608E-19
XU x 8 r 7 5.11608E-19 BS x 7 5.11608E-19
XU x 9 r 8 5.11608E-19 BS x 8 5.11608E-19
XU x 11 r 10 -3.31931E-20 BS x 9 5.11608E-19
XU x 12 r 11 -3.31931E-20 LL x 10 0.00000E+00
XU x 13 r 12 -3.31931E-20 BS x 11 -3.31931E-20
XL x 14 r 13 2.36497E-03 BS x 12 -3.31931E-20
XU x 15 r 14 2.36497E-03 BS x 13 -3.31931E-20
XL x 16 r 15 8.69287E-03 BS x 14 2.36497E-03
XU x 17 r 16 8.69287E-03 BS x 15 2.36497E-03
XL x 18 r 17 1.89837E-02 oo . .

XU x 19 r 18 1.89837E-02 BS x 29 1.29882E-01
XL x 20 r 19 3.32375E-02 BS x 30 1.63950E-01
XU x 21 r 20 3.32375E-02 UL r 1 0.00000E+00
XL x 22 r 21 5.14541E-02 UL r 2 0.00000E+00
XU x 23 r 22 5.14541E-02 UL r 3 0.00000E+00
XL x 24 r 23 7.36337E-02 UL r 4 0.00000E+00
XU x 25 r 24 7.36337E-02 UL r 5 0.00000E+00
XL x 26 T 25 9.97763E-02 UL r 6 0.00000E+00
XU x 27 r 26 9.97763E-02 UL r 7 0.00000E+00
XL x 28 r 27 1.29882E-01 UL r 8 0.00000E+00
XU x 2 r 28 1.29882E-01 BS r 9 9.00555E-19
XL x 30 r 31 1.63950E-01 UL r 10 0.00000E+00
SB r 13 -2.36497E-03 UL r 11 0.00000E+00
SB r 15 -6.32790E-03 UL r 12 0.00000E+00
SB r 17 -1.02908E-02 SB r 13 -2.36497E-03
SB r 19 -1.42538E-02 UL r 14 0.00000E+00
SB r 21 -1.82167E-02 SB r 15 -6.32790E-03
SB r 23 -2.21796E-02

SB r 25 -2.61425E-02 BS r 30 -1.63950E-01
SB r 27 -3.01055E-02 LL r 31 1.00000E+00
ENDATA ENDATA

Figure 2: Format of Punch/Insert files Figure 3: Format of Dump/Load files

Default Status

If the status of a variable is not explicitly given, it will initially be nonbasic at the bound
that is smallest in absolute magnitude. Ties are broken in favor of lower bounds, and free
variables will again take the value zero.

Restarting with different bounds

Suppose that a problem is to be restarted after the bounds on some variable X have been
altered. Any of the basis files may be used, but the starting point obtained depends on the
status of X at the time the basis is saved.

If X is basic or superbasic, the starting point will be the same as before (all other things
being equal). The value of X may lie outside its new set of bounds, but there will be minimal
loss of feasibility or optimality for the problem as a whole.

If X was previously fized, it is likely to be nonbasic at its lower bound (which happens
to be the same as its upper bound). Increasing its upper bound will not affect the solution.

In contrast, if X is nonbasic at its upper bound and if that bound is altered, the starting

58 SQOPT 7 User’s Guide

values for an arbitrary number of basic variables could be changed (since they will be recom-
puted from the nonbasic and superbasic variables). This may not be of great consequence,
but sometimes it may be worthwhile to retain the old solution precisely. To do this, one can
make X superbasic at the original bound value.
For example, if x is nonbasic at an upper bound of 5.0 (which has now been changed),
insert a line of the form
j 5.0

near the end of an Old basis file, or the line
SB X 5.0

near the end of an Insert or Load file. The Superbasics limit must be at least as large
as the number of variables involved, even for purely linear problems.

The same effect can be obtained when calling sqOpt with Warm or Hot Starts. Simply
set hs(j) = 2 for the appropriate j.

Sequences of problems

Whenever practical, a series of related problems should be ordered so that the most tightly
constrained cases are solved first. Their solutions will often provide feasible starting points
for subsequent relaxed problems, as long the above precautions are taken.

Acknowledgements

We are grateful to Alan Brown, Sven Hammarling, Zohair Maany, and Mick Pont (all from
the Numerical Algorithms Group, UK) for their helpful comments on the source code and
documentation for SQOPT.

References 59

References

(1]
2]

3]

(4]

[9]
(10]

(11]

(12]

(13]

S. I. FELDMAN, D. M. GAy, M. W. MAIMONE, AND N. L. SCHRYER, A Fortran-to-C converter, Com-
puting Science Technical Report 149, AT&T Bell Laboratories, Murray Hill, NJ, 1990. 4

R. FOURER, Solving staircase linear programs by the simplex method. 1: Inversion, Math. Program.,
23 (1982), pp. 274-313. 38

P. E. G, S. J. HAMMARLING, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT, User’s guide
for LSSOL (Version 1.0): a Fortran package for constrained linear least-squares and conver quadratic
programming, Report SOL 86-1, Department of Operations Research, Stanford University, Stanford,
CA, 1986. 4

P. E. GiLL AND W. MURRAY, Numerically stable methods for quadratic programming, Math. Program.,
14 (1978), pp. 349-372. &

P. E. GiL, W. MURRAY, AND M. A. SAUNDERS, User’s guide for QPOPT 1.0: a Fortran package for
quadratic programming, Report SOL 95-4, Department of Operations Research, Stanford University,
Stanford, CA, 1995. 4

, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Rev., 47 (2005),
pp. 99-131. 4

, User’s guide for SNOPT Version 7: Software for large-scale nonlinear programming, Numerical
Analysis Report 06-2, Department of Mathematics, University of California, San Diego, La Jolla, CA,
2006. 4

P. E. GiL, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT, Maintaining LU factors of a general
sparse matriz, Linear Algebra Appl., 88/89 (1987), pp. 239-270. 9, 34, 42

, A practical anti-cycling procedure for linearly constrained optimization, Math. Program., 45
(1989), pp. 437-474. 11, 32

, Inertia-controlling methods for general quadratic programming, STAM Rev., 33 (1991), pp. 1-36.

8, 10

J. A. J. HAaLL AND K. I. M. McKINNON, The simplest examples where the simplex method cycles and
conditions where EXPAND fails to prevent cycling, Tech. Rep. MS 96-010, Department of Mathematics
and Statistics, University of Edinburgh, 1996. 11

B. A. MURTAGH AND M. A. SAUNDERS, Large-scale linearly constrained optimization, Math. Program.,
14 (1978), pp. 41-72. 8

——, MINOS 5.5 User’s Guide, Report SOL 83-20R, Department of Operations Research, Stanford
University, Stanford, CA, Revised 1998. 4

Index

active constraints

basis for the null space, 9

bounds and general constraints, 8
active-set method, 8-10

inertia-controlling strategy, 10
argument list, see parameter list

Backup basis file, 38
example unit assignment, 53
example usage, 30
purpose, 30
Backup basis file, 30
basic variables, 8
basis, 8
factorization, 34, 35, 41
factorization frequency, 32
factorization statistics, 37, 41-44
ill-conditioning, 35, 40
map, 35
near-triangular form in crash, 31
preferred columns, 44
repair, 11, 40
stability, 34
triangular, 15
’Basis file’, see Start
basis files, 13, 15, 37, 41, 45, 47, 48, 53-58
basis maps, 53
description, 4
basis package, see LUSOL package
Begin, 24
bound constraints, 3
example, 6
Brown, A., 58

calling sequence
qpHx, 19
sqGet sqGetc sqGeti sqGetr, 29
sqInit, 21
sqMem, 22
sqOpt, 13
sgqSet sqgSeti sqSetr, 28
sqSpec, 27
Check frequency, 30
for general constraint feasibility, 33
Cholesky method, 37
’Cold’, see Start
Cold Start, 30
Cold start, 16
composite objective, see elastic objective
conjugate-gradient method, 37
constrained linear least-squares, 4
constraints, see linear constraints
cpu time, 40

60

Crash option, 30
crash procedure, 13, 15, 31, 37
statistics, 44
Crash tolerance, 30
cu iu ru
equivalence with system workspace, 40
cw iw rw
confining access via options, 39
cycling, see EXPAND anti-cycling procedure

degeneracy, see EXPAND anti-cycling procedure
degenerate rows marked D, 49
dual degenerate rows marked A, 49
dual degenerate variables, 50
identifying degenerate variables, 51
degrees of freedom, 9, 39
dual variables, 9, 17, 35
for slacks, 9
Dump file, 31, 34, 56
example format, 57
example unit assignment, 53
Dump file, 31

Elastic mode, 3, 31
elastic mode, 10, 31
elastic bounds, 10, 32, 46
elastic objective, 10, 32, 33
elastic variables, 10, 32, 46
elastic weight, 10, 31, 32
specifying elastic variables, 15
Elastic objective, 32
Elastic weight, 32
End, 24
End-of-file encountered, 27
Endrun, 24
encountered before options, 27
EP(v), see problem EP(7)
EXIT messages, 45—48
EXPAND anti-cycling procedure, 11, 32
setting the expand frequency, 32
Expand frequency, 32, 36

f2c (Fortran to C translator), 4
Factorization frequency, 32
feasibility phase, see phase 1
Feasibility tolerance, 32, 33, 46
example specification, 24
Feasible point, 33
Feldman, S., 4
files
Backup basis file, 30, 38
basis files, 48
Dump file, 31, 34

INDEX 61

Insert file, 13, 15, 34
Load file, 13, 15, 31
MPS file, 29
New basis file, 30, 35, 38
Old basis file, 13, 15, 30, 33, 34, 48
Print file, 4, 21, 23, 35, 37, 38, 41-48, 51
Punch file, 33, 37
Solution file, 4, 51
Specs file, 4, 27, 27, 39, 41
Specs file(, 24
Summary file, 4, 21, 23, 24, 39, 51-52
Fortran
common storage, 19
dynamic storage allocation, 22
77, 4
90, 4, 12
95, 4
multi-threaded environment, 4
print formats, 24
re-entrant code, 4
translated into C, see £2¢
using recursion, 4
Fourer, R., 38
FP, see problem FP

Gay, D. M., 4
Gill, P. E., 4, 8, 32, 34, 42

Hall, J. A. J., 11
Hammarling, S., 4, 58

Iterations limit, 34
example specification, 24
Itns, see Iterations limit

Lagrange multipliers, see m
least infeasible point, see elastic mode
least-squares problem, 4
linear constraints

example, 6

scaling, 38

soft constraints, 32

time-stage models, 36
linear objective term, 46
linear objective vector, 4

explicit, 4

sequence of problems, 4

sparse form, 4

stored in A, 4
linear program, see problem LP, 3
Load file, 13, 15, 31, 56

example format, 57

example unit assignment, 53
Load file, 34
Log frequency, see Print frequency
lower bound constraints, see bound constraints
LP, see problem LP
LU complete pivoting, 34
LU density tolerance, 35
LU factor tolerance, 31, 34
LU partial pivoting, 34

Hessian dimension, see Reduced Hessian dimension,

33
Hessian matrix, 3
example of Hessian-vector product, 5
indefinite, 4, 48
positive semidefinite, 3
’Hot’, see Start
’Hot FHS’, see Start
Hot start, 16
Hot start, 33
choice of QP solver, 37

independent variables, 9
infBnd, see Infinite bound
infeasible constraints, see infeasible problem
infeasible problem, 33

EXIT condition, 46

identifying infeasible variables, 51

infeasible rows marked I, 49
Infinite bound, 14, 15, 33

example, 6
Insert file, 13, 15, 34, 55

example unit assignment, 53
Insert file, 33
iteration log

description, 41-42

LU rook pivoting, 34
LU singularity tolerance, 35
LU update tolerance, 34
LUSOL package, 9, 34
basis repair, 11, 40
error in basis package, 48
ill-conditioned basis, 35
Markowitz strategy, 35
rectangular factorization, 42
stability vs sparsity, 34
threshold pivoting, 34

Maany, Z., 58

machine precision, 25

Maimone, M. W., 4

Maximize, 35

McKinnon, K. I. M., 11

Minimize, 35

MINOS, 37

MINOS (sparse NLP solver), 8

MPS file, 29

MPS standard format, 55
modification, 55

Murray, W., 4, 8, 32, 34, 42

Murtagh, B. A., 4, 8

62 INDEX

nColH Load file, 34
influence on the default Superbasics limit, Maximize, 35
39 Minimize, 35
New basis file, 35, 38 New basis file, 35
example format, 54 0l1d basis file, 35
example unit assignment, 53 Optimality tolerance, 35
example usage, 30 Partial price, 36
interrupted save, 30 Pivot tolerance, 36
loading a, 54 Print file, 37
recorded information, 53 Print frequency, 37
New basis file, 35 Print level, 37
nonbasic variables, 8 Punch file, 37
viewed as variables active at a bound, 8 QPSolver, 37
nonlinear variables, see ncolH, 19 Reduced Hessian dimension, 38
nullHx, see gqpHx Save frequency, 38
number of infeasibilities, 42 Scale Print, 38
Numerical Algorithms Group, 58 Scale option, 38
Scale tolerance, 38
objective constant term, see ObjAdd Solution file, 38
objective function Solution, 38
composite function, 32 Sticky parameters, 39
objective row, see linear objective vector Summary file, 39
objective vector, see linear objective vector Summary frequency, 39
Old basis file, 13, 15, 33, 34, 48 Superbasics limit, 39
example format, 54 Suppress parameters, 39
example unit assignment, 53 System information, 40
example usage, 30 Time limit, 40
01d basis file, 35, 48 Timing level, 40
optimality phase, see phase 2 Total character workspace, 39
Optimality tolerance, 35, 46 Total integer workspace, 39
optional parameters, 24-40 Total real workspace, 39
Backup basis file, 30 Unbounded step size, 40
Check frequency, 30 User character workspace, 39
Cold Start, 30 User integer workspace, 39
Crash option, 30 User real workspace, 39
Crash tolerance, 30 Warm start, 40
Dump file, 31 options
Elastic mode, 31 defined in a Specs file, 24
Elastic objective, 32 inline specification, 28
Elastic weight, 32 multiple sets of, 24
Expand frequency, 32
Factorization frequency, 32 Partial price, 36
Feasibility tolerance, 33 partial pricing, see pricing, 10, 36, 41
Feasible point, 33 phase 1, 8
Hessian dimension, 33 phase 2, 8
Hot start, 33 solution of reduced Hessian system, 37
Infinite bound, 33 pi (m), see dual variables
Insert file, 33 pivot element, 36
Iterations limit, 34 Pivot tolerance, 36
LU complete pivoting, 34 effect on numerical stability, 36
LU density tolerance, 35 interaction with Expand frequency, 32
LU factor tolerance, 34 interaction with feasibility tolerance, 36
LU partial pivoting, 34 Pont, M., 58
LU rook pivoting, 34 pricing, see partial pricing, 10, 36, 41
LU singularity tolerance, 35 Print file

LU update tolerance, 34 banner reprinted, 23

INDEX

63

defined by sqInit, 4
description, 4, 41-48, 51
for system information, 35
maximum record length, 41
solution output, 38
suppressing output, 37
unit number, 4, 21
unit number set via an option, 37
Print file, 37
Print frequency
Print frequency
of the iteration log, 41
Print frequency, 37
Print level, 37
problem EP(y), 32
defined, 10
problem FP
defined, 3
problem LP, see linear program
defined, 3
problem LQP, 3, 8
generic problem, 3
slack variable form, 5
problem QP, see quadratic program
defined, 3
Punch file, 33, 37, 55
example unit assignment, 53
Punch file, 37

QP, see problem QP
qpHx, 14, 19
calling sequence, 19
dummy version (nullHx), 12
QPSolver, 29, 37
ca, 37
Cholesky, 37
QN, 37
quadratic program, see problem QP, 3
convex, 3
example, 5-7
example of general constraints, 5
example of nonnegativity constraints, 5
example of simple bounds, 5
non-convex, 4
strictly convex, 45
quasi-Newton method, 37

reduced cost, 41
reduced costs, see reduced gradient, 17
reduced gradient, 9, 35, 41
reduced Hessian, 9, 37
Reduced Hessian dimension, 38
effect on the QP solver, 37
influence on storage, 22
reduced-gradient method, 8
relative machine precision, see machine precision

restarting, see Basis files

Saunders, M. A., 4, 8, 32, 34, 42
Save frequency, 35, 38
used with basis backup, 30
Scale option, 38
example specification, 24
Scale Print, 38
Scale tolerance, 38
Schryer, N., 4
screen output, see Summary file
sequences of problems, 58
Skip, see Endrun
for multiple sets of options, 24
slack variables, 5, 8, 33
limiting basic slacks in a crash, 31
Solution, 38
Solution file
description, 4
printed after a successful run, 45
Solution file, 38
solution output, 49-51
CONSTRAINTS section, 49-50
VARIABLES section, 50-51
getting more significant digits, 39
to the Solution file, 38, 51
solving a modified problem, 56-58
Specs file, see sqSpec, 24-27, 41
calling sequence, 27
checklist and defaults, 25
description, 4
encountered Endrun before options, 27
example, 24
suppress keyword printing, 39
time limit, 40
unit number, 4
with multiple sets of options, 24
SQOPT
files required by, 4
package overview, 4
problem format, 3
sqGet sqGetc sqGeti sqGetr, 24
calling sequences, 29
sqGet sqGetc sqGeti sqGetr
used with the SQOPT package, 12
sqlnit
calling sequence, 21
example invocation, 4
used with the SQOPT package, 12
sqMem, 12
calling sequence, 22
description, 22-23
sqOpt
calling sequence, 13
example invocation, 4
used with the SQOPT package, 12

64 INDEX

sqSet sqgSeti sqgSetr
calling sequences, 28
sqSet sqgSeti sqgSetr
used to replace workspace estimates, 23
used with the SQOPT package, 12
sqSpec, see Specs file
calling sequence, 27
example invocation, 4
used with the SQOPT package, 12
Sticky parameters, 39
subroutine arguments, see calling sequences
sum of infeasibilities, 10, 33, 42, 46
effects of scaling, 33
Summary file
Begin line echoing, 24
banner reprinted, 23
brief output, 51-52
defined by sqInit, 4
description, 4
example, 52
status at the end of a run, 52
supressing output, 39
unit number, 4, 21
Summary file, 39
Summary frequency, 39, 51
superbasic variables, 8
limit reached, 47
number of (ns), 9
Superbasics limit, 39
effect of nColH, 39
influence on storage, 22
Suppress parameters, 39
System information, 35, 40

Time limit, 40

Timing level, 40

Total character workspace, 39
Total integer workspace, 39
Total real workspace, 39

Unbounded step size, 40

upper bound constraints, see bound constraints
User character workspace, 39

User integer workspace, 39

User real workspace, 39

’Warm’, see Start
Warm start, 16
Warm start, 40
choice of QP solver, 37
weak minimizer, 45
workspace arrays
printed limits, 37
system, 39
user, 40
Wright, M. H., 4, 8, 32, 34, 42

	Introduction
	Convex objective functions
	Least-squares problems and non-convex QP problems
	Implementation
	Files
	Overview of the package
	Getting started

	A brief description of quadratic programming
	Formulation of the problem
	Active-set methods
	The reduced Hessian and reduced gradient
	Treatment of constraint infeasibilities
	Degeneracy and the feasibility tolerance
	Basis repair

	Subroutines associated with sqOpt
	Subroutine sqOpt
	Subroutine qpHx
	Subroutine sqInit
	Subroutine sqMem

	Optional parameters
	The Specs file
	Multiple sets of options in the Specs file
	SPECS file checklist and defaults
	Subroutine sqSpec
	Subroutines sqSet, sqSeti, sqSetr
	Subroutines sqGet, sqGetc, sqGeti, sqGetr
	Description of the optional parameters

	Output
	The Print file
	The iteration log
	Basis factorization statistics
	Crash statistics
	EXIT conditions
	Solution output
	The Solution file
	The Summary file

	Basis files
	New and Old basis files
	Punch and Insert files
	Dump and Load files
	Restarting modified problems

	References
	Index

