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We describe an analytic method for the computation of equilibrium shapes for two-dimensional vesicles
characterized by a Helfrich elastic energy. We derive boundary value problems and solve them analytically
in terms of elliptic functions and elliptic integrals. We derive solutions by prescribing length and area,
or displacements and angle boundary conditions. The solutions are compared to solutions obtained by a
boundary integral equation-based numerical scheme. Our method enables the identification of different
configurations of deformable vesicles and accurate calculation of their shape, bending moments, tension,
and the pressure jump across the vesicle membrane. Furthermore, we perform numerical experiments
that indicate that all these configurations are stable minima.

© 2008 Published by Elsevier Ltd.

1. Introduction

The evolution of vesicle dynamics is characterized by a competi-
tion between membrane elastic energy, inextensibility, and the non-
local hydrodynamic forces [1]. Inextensible vesicles have received a
lot of attention as they are present in many biological phenomena
[2] and have been used to understand properties of biological mem-
branes [3]. Experiments on vesicle tumbling, tank-treading, and de-
formation under shear flow have been conducted by various groups
[4–8]. In addition, vesicles have been used as models for red blood
cells [9,10] and drug-carrying capsules [11].

The observable of interest in both equilibrium and dynamic stud-
ies of vesicles is their shape, but few analytical solutions exist for
calculating the shape under various constraints. The known closed
form solutions solve the shape equation for axisymmetric vesicles
for special boundary conditions [12]. The shape equation for ax-
isymmetric vesicles is a fourth order non-linear ordinary differential
equation and a general solution to this equation has not been ob-
tained. The analogue of the shape equation in two dimensions ismore
amenable to analysis and provides valuable insight for the axisym-
metric problem, and has been treated by many authors [13–15]. For
example, Arreaga et al. [13]give a detailed analysis of elastic loops un-
der area and length constraints and obtain analytic solutions for the
shape, assuming known tension and pressure. Shi et al. [14] consider
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adhesion of two-dimensional vesicles on curved substrates and ob-
tain force deformation relationships for the vesicle as a function of
substrate shape. The analysis of Shi et al. follows the work of Seifert
[15] who obtained shape equations for two-dimensional vesicles
both in the presence and absence of adhesive forces. Seifert uses a
series solution to obtain lowest energy shapes of free vesicles for
various values of the prescribed pressure difference and shows that
the shapes obtained using the two-dimensional theory are similar
to those obtained by numerically solving the axisymmetric shape
equations.

Computation of the vesicle shape is also key to interpreting an in-
teresting class of experiments involving interactions of microtubules
and lipid vesicles as reported in Fygenson et al. [16]. In this experi-
ment, the authors were able to induce shape changes in vesicles by
growing microtubules within them. In order to determine the vesi-
cle shape, the authors minimize a free energy by representing the
vesicle contour by lines and circular arcs instead of solving the shape
equation for axisymmetric vesicles with the appropriate boundary
conditions. Also, they look at the slope of the free energy of the equi-
librium shape with respect to different values of the microtubule
length and determine the force exerted by the membrane on the
microtubule. Solving the axisymmetric shape equation for the con-
straints imposed by the microtubule, to the best of our knowledge,
has not been done before. In this paper, we give a solution of the
two-dimensional analogue of this problem to develop intuition for
solving the axisymmetric problem.

Contributions: We present an analytical method for the calcula-
tion of two-dimensional equilibrium shapes of quiescent vesicles
immersed in stationary fluids. First, we consider the case in which
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we prescribe area and length constraints, and then (1) derive equi-
librium shapes analytically, and (2) verify them using a numerical
scheme developed in our group [17]. To an extent, our construction
is similar to the one presented in [13] but we prescribe different, and
perhaps more natural, constraints on the vesicle. In [13], the authors
prescribe pressure and tension. We prescribe either area and length
constraints or displacements between two parts of vesicles along
with angle or curvature information. Second, our numerical scheme is
capable of tracking the evolution of the shape of a vesicle and themo-
tion of the fluid around it, starting from arbitrary initial conditions.
It therefore gives us the path to equilibrium, and is more sophisti-
cated than solving the equilibrium equations alone. The method is
described in brief in this paper, and in more detail elsewhere [17].
Third, we consider the setting of [16], and obtain similar shapes as
the ones reported in their experiment by solving a boundary value
problem for the vesicle. In this way, we can explicitly determine the
force on the microtubule, but in addition we can also compute the
bending moment exerted by the membrane on the microtubule. The
bending moment determines how easily the microtubule will de-
velop a curvature (or buckle) as it pushes on the vesicle. Our study
complements that of Heinrich et al. [18] who compute the shapes
ofaxisymmetric vesicles under an axial load. Heinrich et al. discuss
two ensembles—one, in which the axial force is prescribed, and the
other, in which the distance between the two poles of the vesicle
is prescribed—but give explicit solutions only for the former case.
Their solutions are applicable in a situation where optical or mag-
netic beads are used to exert forces on the vesicle [18], where as,
our method is appropriate for cases where a microtubule enforces a
distance constraint between two points on the vesicle [16].

2. Problem formulation

In this section, we state the equations that determine the vesi-
cle equilibrium shape. There are two different (but related) ways
to derive these equations: the variational approach, which we use
to construct analytic solutions, and a fluid-structure dynamics ap-
proach, which we use for numerical computations. In the variational
approach, the equilibrium shape is solved as a constrained mini-
mization problem: we seek to find the shape that minimizes the
bending energy of the membrane assuming we know its length and
enclosed area. In the dynamics approach, we model the dynamics
of an arbitrary-shaped, locally inextensible vesicle. The interior and
exterior of the vesicle are occupied by a stationary incompressible
Stokesian fluid. The vesicle induces a velocity field in the fluid due
to its membrane forces and due to the no-slip coupling boundary
condition at the interface. We solve the governing equation of the
fluid numerically, until the velocity field becomes zero. The vesicle
shape at the end of the simulation is the equilibrium shape.

Variational approach: We introduce Lagrange multipliers � (ten-
sion) and p (pressure), for the length and area constraints, respec-
tively, and we seek stationary points of the Lagrangian

L=
∫
�

�2

2
d� + �

(∫
�
d� − L

)
+ p

(∫
�

1
2
x · nd� − A

)
,

where � is the curvature, � is the boundary of the vesicle, x is a point
on �, n is the unit normal, L is the length, and A is the enclosed area.
Without loss of generality, we assume a unit bending modulus for
the membrane. The force acting on the membrane is computed by
taking variations of L with respect to �. This force can be written
as a sum of a force due to bending f� = (�ss + �3/2)n, a force due to
tension f� = −��n, and a force due to pressure fp = pn, where s is
the arc-length and t is the tangent at a point on �. At equilibrium,
f� + f� + fp = 0. The force balance in the normal direction yields a
second-order, inhomogeneous, non-linear differential equation for

the curvature �, which is given by

�ss + 1
2�3 − �� + p = 0. (1)

The constants � and p are determined from the specified length and
area of the vesicle. We impose periodic boundary conditions and
solve (1) analytically; given �, the shape of the vesicle is determined
uniquely [19].

Dynamics approach: The surrounding fluid is assumed to be Stoke-
sian with unit viscosity [20]. The total membrane force is the sum of
a force due to bending f� and due to the inextensibility f�. The ten-
sion (�) acts as a Lagrange multiplier enforcing the inextensibility
locally. As a result, the expression for f� involves an additional term
and is given by f� = �st − ��n, where t is the unit tangent vector.
Let x be the position of the vesicle boundary. The vesicle dynamics
is governed by

ẋ =S[f� + f�](x) and t · d
ds

ẋ = 0, (2)

the momentum and the local inextensibility constraint, respectively.
We enforce the local inextensibility by requiring the surface diver-
gence (t · d/ds) of the velocity field (ẋ) on the fluid–vesicle interface
to vanish. The free-space Stokes single-layer potential S[f] is de-
fined by S[f](x) = ∫

� G(x − y)f(y) ds(y) with

G(r) = 1
4�

(
− ln ‖r2‖ I + r ⊗ r

‖r‖22

)
and r = x − y. (3)

For a locally inextensible vesicle, the force due to curvature can
equivalently be written as f� = −xssss (see [17, Appendix A]). Fol-
lowing the identity xss = −�n, the tension force can be written as
f� = (�xs)s. In two-dimensional, the surface divergence of a vector
field v is given by t · (d/ds)v = xs · vs. Substituting these expressions
into Eq. (2), we get

ẋ = −S[xssss](x) +S[(�xs)s](x) and

xs · (S[(�xs)s])s = xs · (S[xssss])s. (4)

3. Solution methodology

In this section, we construct analytical solutions for (1) and dis-
cuss a numerical scheme for solving the fluid-structure dynamics
problem (4).

3.1. Analytic solution

From Eq. (1), we integrate over the arc-length s and get

�2
s

2
+ �4

8
− �

2
�2 + p� = C, (5)

where C is a constant. Without loss of generality we assume that
�s = 0 at s = 0 and �(0) = �0. We then eliminate C and rewrite the
differential equation above as∫ ∞

y

dy√
y3 + Q

P
y2 + �0

P
y − 1

4P

=
∫ 0

s

√
P ds, (6)

where we have introduced a new variable y(s)=1/(�0−�(s)) and the
constants P and Q are given in terms of the tension � and pressure
p by

P = �3
0 − 2��0 + 2p, (7)

Q = −3�2
0

2
+ �. (8)

There are three unknown parameters P, Q, and �0 in these equations
and they will be determined by imposing three constraints as we
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shall show later. The integral on the left-hand side of (6) can be
calculated in terms of elliptic functions, assuming that the cubic in
the radical has only one real root � [21] and admits the factorization:

y3 + Q
P
y2 + �0

P
y − 1

4P
= (y − �)[(y − m)2 + n2], (9)

where m and n are real. The result is∫ ∞

y(s)

dy√
y3 + Q

P
y2 + �0

P
y − 1

4P

=
√
2√

y1 − y3
cn−1

(
y(s) − y1
y(s) − y3

∣∣∣∣
√

m − y3
y1 − y3

)
, (10)

where y1 and y3 are roots of the quadratic equation

y2 − 2�y + 2m� − (m2 + n2) = 0. (11)

It follows from (6) that

�(s) = �0 −
1 − cn

(
−
√
P(y1 − y3)s√

2

∣∣∣∣∣
√

m − y3
y1 − y3

)

y1 − y3cn

(
−
√
P(y1 − y3)s√

2

∣∣∣∣∣
√

m − y3
y1 − y3

) . (12)

Remark. We could have also started with the possibility that the
cubic in the radical of (7) has three real roots, but this leads to a
contradiction. To see this we assume that y3 + (Q/P)y2 + (�0/P)y −
1/4P = (y+ a)(y+ b)(y+ c), where a, b, c are real and satisfy a > b > c.
This amounts to assuming that there are four distinct values of � at
which �s =0. The differential equation (7) can now be integrated by
methods analogous to those for the imaginary roots and the solu-
tion turns out to be �(s) = �0 − sn2(

√
2abc(c − a)s|

√
(a − b)/(a − c))/

((a−c)−asn2(
√
2abc(c − a)s|

√
(a − b)/(a − c))). Corresponding to this

solution the extrema of �(s) are �0 − 1/c and �0 which contradicts
our assumption that there are four distinct values at which �s = 0.
Therefore, (12) is the final solution for the curvature.

The constants �0, P and Q can be written in terms of m, y1 and
y3 as follows:

�0 =
2m − y1y3

y1 + y3
2m(y1 + y3) − 2y1y3

, P = (y1 + y3)�0 − 0.5

m(y1 + y3)
2 ,

Q = −P
(
2m + y1 + y3

2

)
. (13)

We impose the following constraints on the solution to determine
�0, P and Q (or equivalently m, y1 and y3).

1. Periodicity of �: A closed vesicle of length L satisfies the period-
icity condition x(0)= x(L), where x(s)= [x1(s) x2(s)]. This and the
smoothness of x(s) imply that the curvature �(s) is periodic and
satisfies �(L) = �(0) = �0. In order to enforce this constraint, we
first observe that (12) is already periodic since the elliptic func-
tion cn(s|k) satisfies cn(s|k) = cn(s + 4qK(k)|k) where K(k) is the
complete elliptic integral of the first kind and q is an integer. We
enforce �(L) = �0 by requiring that√
P(y1 − y3)

2
L = 4qK

(√
m − y3
y1 − y3

)
. (14)

Note that the minimum value of q is 2; by the four-vertex theo-
rem for a closed planar curve [22], there exist at least two min-
ima and two maxima in �. Setting q = 2 gives two lobed vesicles
(see Fig. 1). By choosing q�2 we obtain q-lobed vesicles. In par-
ticular, we have obtained three- and four-lobed shapes.
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Fig. 1. In the top figure, we report the elastic energy as a function of time for
two vesicles with different reduced areas �. We also plot the evolution of the
vesicle shapes to an equilibrium state. Notice that the smaller the reduced area
the higher the bending energy. In the bottom figure, we report the bending energy
as a function of the reduced area � for two different vesicle configurations both
of which are stable local minima. We can characterize the configurations by the
number of lobes. Also, we show the equilibrium shapes corresponding to different
reduced areas. The bending energy increases with increasing number of lobes and
decreasing reduced area. The equilibrium shapes in both the figures coincide with
the analytically computed ones to several digits.

2. Length of the contour is L: As the angle � made by the tangent to
the x1-axis goes from 0 to 2�, we traverse a length L along the
vesicle contour. Said differently, the tangent to the vesicle contour
rotates through 2� rad as we go froms= 0 to L. Hence we require

∫ L

0
�(s) ds = �(L) − �(0) = 2�. (15)

3. Area enclosed by the contour is A: The final constraint is imposed
on the area enclosed by the contour. We prescribe an area A such
that A�L2/4� and enforce it as follows:

∫ L

0
x2 cos�ds = A, (16)

where we define x1(s) =
s∫
0
cos�ds and x2(s) =

s∫
0
sin�ds.
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Fig. 2. Three- and four-lobed equilibrium shapes. Each of these shapes wasprescribed as initial condition for the numerical scheme and velocity fields in the surrounding
fluid were determined as the vesicle relaxed. The induced velocities were nearly zero showing that these shapes are indeed at equilibrium. When small perturbations were
added to the shapes they relaxed back to the same equilibrium, leading us to conclude that these are stable configurations.
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Fig. 3. The tension and pressure difference plotted as a function of the reduced area � for vesicles of length 2�. Note that as � → 1 (which corresponds to a circular vesicle)
we approach different values of the pressure and tension depending on the number of lobes in the vesicle. The limiting values of p and � for the circular vesicle satisfy
1/2R3 − �R + p = 0 where R is the radius of vesicle.

These constraints reinforce the known fact that the shape of the
vesicle is determined entirely by the reduced area �=4�A/L2 and the
number of lobes q. The resulting algebraic equations for P, Q, and �0
are solved numerically using Newton's method. For a given reduced
area, we start with different values of the initial guess for the root
for different values of q. Once, we have obtained convergence for
one value of the reduced area, roots for the other values of reduced
area can be obtained by continuation. The tension � and pressure
difference p for a given reduced area then follow immediately as
solutions of (7) and (8). Shapes of two- and three-lobed vesicles for
various values of the reduced area � and their corresponding bending
energy are shown in Fig. 1.

3.2. Numerical solution

The presence of high-order spatial derivatives in f� makes the
evolution equation (4) numerically stiff [23]. As a result, numeri-
cal solution through a fully explicit time-marching scheme will be
computationally expensive. To overcome this issue, a semi-implicit
scheme was proposed in [17]. Starting from arbitrary initial shapes,
we use this scheme to compute the equilibrium shapes. We briefly
discuss this scheme here.

Let x(�, t) be a point on �(t), where � ∈ [0, 2�] parameterizes the
boundary. The numerical scheme is based on discretizing uniformly
in space {�k = 2�k/M}M−1

k=0 and time {n�t}Nn=1. A Fourier basis is used

to represent the boundary and the derivatives on x are computed
spectrally. Let x̂(m, t), m = −M/2, . . . ,M/2 − 1 be the Fourier coeffi-
cients of x(�, t). We compute x� by

x�(�, t) =
M/2−1∑

m=−M/2

(−im)x̂(m, t)e−im�. (17)

The derivatives with respect to arclength s are computed by xs =
x�/|x�|, where we substituted s� = |x�|. Hereafter, we use |x�| to

denote the magnitude of x�, that is, |x�| =
√
x21� + x22�.

Let xn denote the position at n�t. Then a first-order time-
marching scheme for (4) is given by

xn+1 − xn

�t
=
∫ 2�

0
G(xn, yn)

(
1

|yn�|

(
1

|yn�|

(
yn+1
�
|yn�|

)
�

)
�

)
�

d�

+
∫ 2�

0
G(xn, yn)

(
�n+1 yn�

|yn�|
)

�
d�, (18)

xn� ·
∫ 2�

0
G(xn, yn)

(
�n+1 yn�

|yn�|
)

�
d�

= −xn� ·
∫ 2�

0
G(xn, yn)

(
1

|yn�|

(
1

|yn�|

(
yn+1
�
|yn�|

)
�

)
�

)
�

d�. (19)
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Table 1
We computed the equilibrium shape of the topmost vesicle shown in Fig. 1 analyt-
ically.

M 16 32 64 128
‖v(x)‖∞ 4.32e − 001 8.40e − 004 7.79e − 009 3.21e − 010

The velocity field (4) evaluated on this shape must be zero. Here, we report the
max-norm errors in computing the velocity. M is the number of spatial discretization
points on the vesicle used by our numerical scheme. Since our spatial discretization
scheme is spectral and the quadrature rules are high-order, the error decays rapidly.

The tension and the term in the bending force with highest order
derivatives on the position are treated implicitly. The rest of the
terms are treated explicitly. The high-order quadrature rules of [24],
designed to handle the logarithmic singularity, are used to compute
the integrals. The unknowns are the position xn+1 and tension �n+1

at {�k}M−1
k=0 . The system of coupled equations (18) and (19) is linear

in the unknowns and solved using GMRES [25].

4. Results

We compute the equilibrium shapes by using the numerical
scheme (18) and (19) with an arbitrary initial shape and by solving
the constraint equations (14)–(16) and evaluating (12). In Fig. 1,
we plot a sample outcome of these computations. In the top figure,
we plot the snapshots of two vesicles relaxing to equilibrium. In
the bottom figure, we plot the analytically computed equilibrium
shapes for different reduced areas. Further, in Fig. 2, we show the
three- and four-lobed equilibrium shapes. The parameters � and p
in Eq. (1) corresponding to different equilibrium configurations are
plotted in Fig. 3.

At equilibrium, the tension and bending forces in Eq. (4) balance
each other. Hence ẋ should vanish for an equilibrium shape. We use
this fact for comparing our numerical and analytical solutions. We
supply the analytic solution as an initial condition to the numeri-
cal scheme. If the analytical solution is indeed a minimum energy
configuration for that particular reduced area, the velocity field (ẋ)
induced by this shape must be zero. In Table 1, we report the max-
imum velocity for different spatial discretizations. We observe that
as the spatial discretization is refined, the error converges to zero.
This convergence illustrates the excellent agreement between our
analytical and numerical computations.

Using our numerical scheme, we also verified that the shapes
with q�3 are indeed stable equilibria. This is done by slightly per-
turbing the equilibrium shapes and verifying that they relax to a
shape with the same number of lobes. The same conclusion is not
true for vesicles in three dimensions as shown by Peterson [15,26].
In two dimensions Arreaga et al. [13] showed that shapes with q�3
can indeed be obtained as solutions to the equilibrium equations, but
they have higher energy than the corresponding two-lobed shapes,
which is consistent with our results.

5. Shape of the vesicle in the presence of a microtubule

Prescribing the area enclosed by the vesicle is one way of control-
ling its shape. The shape can also be controlled by other methods,
e.g., by growing microtubules within the vesicle [16]. The tension �
and pressure difference p in this problem are determined again by
first solving for the shape. In order to illustrate this procedure, we
consider the special case of p=0 and solve for the shape of the vesi-
cle under a displacement constraint imposed by the microtubule.
The equation of equilibrium now reads

�ss + �3

2
− �� = 0. (20)

The solution to this equation can be written in terms of elliptic
functions as follows:

� = 1
	
dn
(

s
2	

∣∣∣∣ k
)

and k2 = 2 − 4�	2, (21)

where 	 is a length scale and k is a constant depending on the tension
�. We integrate this once to obtain �(s) = 2am(s/2	|k), where the
integration constant has been eliminated by enforcing �(0) = 0. It
follows that

x1(s) =
∫ s

0
cos�ds =

(
1 − 2

k2

)
s + 4	

k2
E
(

s
2	

∣∣∣∣ k
)
, (22)

x2(s) =
∫ s

0
sin�ds = 4	

k2

(
dn
(

s
2	

∣∣∣∣ k
)

− 1
)
, (23)

where E(s|k)= ∫ s
0 dn2(s|k) ds is the incomplete elliptic integral of the

second kind and we have removed two arbitrary constants by en-
forcing x1(0)=0 and x2(0)=0 [27]. Note that this solution possesses
the symmetry x1(s) = −x1(−s) and x2(s) = x2(−s). The constants 	
and k are determined by enforcing two constraints. For instance, we
could specify the distance x1(L/4) − x1(−L/4) = a, as would be the
case when a microtubule of length a > L/� is placed inside the vesicle
in such way that it pushes against the membrane. This leads to the
equation(
1 − 2

k2

)
L
4

+ 4	
k2

E
(

L
8	

∣∣∣∣ k
)

= a
2
. (24)

A second equation can be obtained by various means. One possibility
is to impose

�
(
L
4

)
= 2am

(
L
8	

∣∣∣∣ k
)

= �a, (25)

where �a is an angle determined by the nature of the interaction
between the membrane and the microtubule. A second possibility is
to impose

�
(
L
4

)
= 1

	
dn
(

L
8	

∣∣∣∣ k
)

= 0, (26)

which would be the case if the membrane exerts no moments on
the microtubule at their point of intersection. Eqs. (24) and (25) or
(26) are two equations in the two unknowns 	 and k and can be
solved numerically. The tension � in the membrane is then easily
determined from (21). The shape of the vesicle is obtained from (22)
and (23) and is symmetric about the x1- and x2-axes. The results of
this exercise are shown in Fig. 4 where the end-curvature, tension,
bending energy and the vesicle shape are plotted as a function of
the angle �(L/4).

Note that the shapes seen in the experiment of Fygenson et al.
[16] look ellipsoidal and similar to the shapes with �(L/4) = 90◦

(see Fig. 4) when the microtubule is only slightly longer than the di-
ameter of the vesicle, while they have pronounced protrusions when
the microtubules are much longer than the vesicle diameter. This
suggests that there might be non-specific adhesive interactions be-
tween the microtubule and the vesicle when the microtubules are
much longer than the diameter of the vesicle. Indeed, Fygenson et
al. [28] mention that non-specific (adhesive) interactions between
the tubulin monomers (that make up the microtubule) and the lipids
(that make up the vesicle) are possible. When the microtubules are
many times longer than the vesicle diameter cylindrical tethers are
formed. Tether formation is imminent when the vesicle contour de-
velops an inflection point close to the location where the micro-
tubule impinges on it [16]. The angle made by the vesicle contour to
the microtubule at this juncture can be determined by solving (24)
and (25) and compared with the experiment. For instance, at a/L =
0.37, the angle �(L/4) ≈ 120◦ when tubule formation is imminent
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Fig. 4. The curvature is plotted as a function of the angle �(L/4) made by the vesicle
contour to the x1-axis at s = L/4 for a particular ratio of the microtubule length a
and vesicle contour length L. A larger magnitude of the end-curvature would imply
a higher propensity for microtubule buckling. As the values of �a deviate from 90◦

the shapes have localized protrusions at the points where the microtubule interacts
with the vesicle. This is similar to the observations of Fygenson et al. [16]. The inset
shows the variation of the bending energy and the tension as a function of �(L/4). The
bending energy is a minimum at the angle where the curvature is zero. This would
be the natural shape of the vesicle if the microtubule had no other interactions with
the vesicle except impinging on it. Formation of vesicle shapes with pronounced
protrusions suggests that there might be more complex interactions between the
vesicle and microtubule.

(see Fig. 4) in our two-dimensional problem. If this angle (obtained
by applying a zero curvature boundary condition in the axisymmet-
ric case) is close to the one observed in the experiment then it would
suggest that there are no adhesive/repulsive interactions between
the microtubules and the vesicle. On the other hand, a large differ-
ence between the theoretical and experimental value of the angle �a

would suggest that there are non-specific interactions between the
microtubule and the lipids.

6. Conclusions

In this paper, we have obtained analytical solutions to the shape
equations for a vesicle in two dimensions. Our solutions allow us
to determine the vesicle shape under constraints of given length
and given enclosed area. We used a numerical method to show that
equilibrium multi-lobed vesicles are stable. Also, we have solved
analytically for the shape of the vesicle when the distance between
two points on the contour is constrained by the presence of a micro-
tubule. We have shown that our two-dimensional theory is capable
of producing shapes that are similar to those seen in the experi-
ments of Fygenson et al. [16]. We believe that the results presented

here provide valuable insight for the solution of the full axisymmetric
shape equations. It is our future goal to solve the axisymmetric shape
equationswith the constraints imposed by themicrotubule assuming
no topology changes.
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