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ABSTRACT Undulatory locomotion, as seen in the nematode Caenorhabditis elegans, is a common swimming gait of organ-
isms in the low Reynolds number regime, where viscous forces are dominant. Although the nematode’s motility is expected to be
a strong function of its material properties, measurements remain scarce. Here, the swimming behavior of C. elegans is inves-
tigated in experiments and in a simple model. Experiments reveal that nematodes swim in a periodic fashion and generate trav-
eling waves that decay from head to tail. The model is able to capture the experiments’ main features and is used to estimate the
nematode’s Young’s modulus E and tissue viscosity h. For wild-type C. elegans, we find E z 3.77 kPa and h z –860 Pa$s;
values of h for live C. elegans are negative because the tissue is generating rather than dissipating energy. Results show
that material properties are sensitive to changes in muscle functional properties, and are useful quantitative tools with which
to more accurately describe new and existing muscle mutants.
INTRODUCTION
Motility analysis of model organisms, such as the nematode

Caenorhabditis elegans (C. elegans), is of great scientific

and practical interest. It can provide, for example, a powerful

tool for the analysis of genetic diseases in humans such as

muscular dystrophy (1–3), as C. elegans have muscle cells

that are highly similar in both anatomy and molecular

makeup to vertebrate skeletal muscles (4,5). Due to the

nematode’s small size (L z 1 mm), the motility of

C. elegans swimming in a simple, Newtonian fluid is usually

investigated in the low Reynolds numbers (Re) regime,

where linear viscous forces dominate over nonlinear inertial

forces (6,7). At low Re, locomotion results from nonrecip-

rocal deformations to break time-reversal symmetry (8);

this is the so-called ‘‘scallop theorem’’ (9). Experimental

observations have shown that motility of swimming nema-

todes including C. elegans results from the propagation of

bending waves along the nematode’s body length (10–12).

These waves consist of alternating phases of dorsal and

ventral muscle contractions driven by the neuromuscular

activity of muscle cells. Although it is generally accepted

that during locomotion the nematode’s tissues obey a visco-

elastic reaction (13–15), quantitative data on C. elegans’

material properties such as tissue viscosity and Young’s

modulus remain largely unexplored.

Motility behavior of C. elegans is a strong function of its

body material properties. Recent investigations have pro-

vided valuable data on C. elegans’ motility, such as velocity,

bending frequency, and body wavelength (11–13,16–18).

However, only recently have the nematode’s material proper-
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ties been probed using piezoresistive cantilevers (19). Such

invasive measurements provided Young’s modulus values

of the C. elegans’ cuticle of ~400 MPa; this value is closer

to stiff rubber than to soft tissues.

In this article, we investigate the motility of C. elegans in

both experiments and in a model, to estimate the nematode’s

material properties. Experiments show that nematodes swim

in a highly periodic fashion and generate traveling waves that

decay from head to tail. Based on force and moment (torque)

balance, we propose a dynamic model. A simplified version

of the model is able to capture the main features of the exper-

iments such as the traveling waves and their decay. The

model is used to estimate both the Young’s modulus and

tissue viscosity of C. elegans. Such estimates are used to

characterize motility phenotypes of healthy nematodes and

mutants carrying muscular dystrophy.
EXPERIMENTAL METHODS

Experiments are performed by imaging C. elegans using standard micros-

copy and a high-speed camera at 125 frames per second. We focus our anal-

ysis on forward swimming in shallow channels to minimize three-dimen-

sional motion. Channels are machined in acrylic and are 1.5-mm wide and

500-mm deep; they are sealed with a thin (0.13 mm) cover glass. Channels

are filled with an aqueous solution of M9 buffer (20), which contains 5–10

nematodes. The buffer viscosity m and density r are 1.1 cP and 1.0 g/cm3,

respectively. Under such conditions, the Reynolds number, defined as

Re¼ rUL/m, is less than unity, where U and L are the nematode’s swimming

speed and length, respectively.

In Fig. 1 a, we display nematode tracking data over multiple bending

cycles for a healthy, wild-type nematode. Results show that the nematode

swims with an average speed hUi ¼ 0.45 mm/s and with a beating pattern

of period T ¼ 0.46 s. This periodic behavior is also qualitatively observed

in the motion of the nematode tail (Fig. 1 a; see also Movie S1 in the

Supporting Material). Under such conditions, Re z 0.4. Snapshots of the

nematode skeletons over one beating cycle (Fig. 1 b) reveal an envelope

of well-confined body postures with a wavelength of ~1 mm, which corre-

sponds nearly to the nematode’s body length. The displacement amplitudes
doi: 10.1016/j.bpj.2009.11.010
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FIGURE 1 Motility ½AQ10�of wild-type C. elegans and dys-1;
hlh-1 muscular dystrophic mutant swimming at ½AQ11�low

Reynolds number. (a and c) Visualization of C. elegans

motion illustrating instantaneous body centerline or skel-

eton. Also shown are the nematode’s centroid and tail-tip

trajectories over multiple body bending cycles. (b and d)

Color-coded temporal evolution of C. elegans skeletons

over one beating cycle. Results reveal a well-defined enve-

lope of elongated body shapes with a wavelength corre-

sponding approximately to the nematode’s body length.W
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at the head and tail are similar with 465 mm and 400 mm, respectively.

However, the amplitudes of the curvature at the head and tail differ sharply

with ~6.07 mm�1 and 2.21 mm�1, respectively. The tail/head curvature ratio

of 0.36 suggests that the bending motion is initiated at the head.

Extensive genetic analysis in C. elegans has identified numerous muta-

tions affecting nematode motility. One such mutant, dys-1, encodes

a homolog of the human dystrophin protein, which is mutated in Duchenne’s

and Becker’s muscular dystrophy. Using qualitative observation, dys-1

mutants have an extremely subtle movement defect (21), which includes

slightly exaggerated head bending and time-dependent decay in movement.

The quantitative imaging platform presented here is able to robustly differ-

entiate between wild-type and dys-1 mutants, as shown in Fig. 1 c and

Movie S2.

Results show that the dys-1 mutant swims with an average speed hUi ¼
0.17 mm/s and Re z 0.15; both values are significantly smaller than for the

wild-type nematode. Although the dys-1 mutant suffers from severe motility

defects (21), it still moves in a highly periodic fashion with T¼ 0.63 s. Snap-

shots of nematode skeletons over one beating cycle (Fig. 1 d) also reveal

an envelope of well-confined body postures with a wavelength correspond-

ing to the nematode’s body length. The dys-1 mutant exhibits a tail/head

curvature ratio of 0.23, which is similar to the value found for wild-type

nematodes. However, the corresponding displacement amplitudes of the

mutant are much smaller than those observed for the wild-type (Fig. 1 b).

The displacement amplitudes at the head and tail are 330 mm and 155 mm,

respectively. This observation suggests that the dys-1 mutant body, and in

particular the tail, are becoming inactive because the bending motion is

not able to deliver as much body displacement.

To further characterize the motility of C. elegans, we measure the curva-

ture k(s, t)¼ df/ds along the nematode’s body (Fig. 2 a). Here, f is the angle

made by the tangent to the x axis at each point along the centerline and s is
Biophysical Journal 98(5) 1–10
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the arc-length coordinate spanning the nematode’s head (s ¼ 0) to its tail

(s ¼ L). The spatio-temporal evolution of k for a swimming nematode is

shown in Fig. 2 a. Approximately six bending cycles are illustrated and

curvature values are color-coded; red and blue represent positive and nega-

tive values of k, respectively. The y axis in Fig. 2 a corresponds to the nondi-

mensional body position s/L. The contour plot shows the existence of highly

periodic, well-defined diagonally oriented lines. These diagonal lines are

characteristic of bending waves, which propagate in time along the body

length. Note that as the wave travels along the nematode body, the magni-

tude of k decays from head to tail. Such behavior contrasts sharply with

that observed for undulatory swimmers of the inertial regime (e.g., eel,

lamprey), where amplitudes of body displacement grow instead from head

to tail (22,23).

The body bending frequency (f) is obtained from the one-dimensional

fast-Fourier transform of the curvature field k at multiple body positions

s/L (Fig. 2 b). Here, the body bending frequency is defined as f ¼ u/2p.

The angular frequency u is calculated by first extracting multiple lines

from the curvature field at distinct body positions s/L, and then computing

the one-dimensional fast-Fourier transform. The wave speed c is extracted

from the slope of the curvature k propagating along the nematode’s body;

the wavelength l is computed from the expression l ¼ c/f. A single

frequency peak f ¼ 2.17 5 0.18 Hz (n ¼ 25) is found in the Fourier spec-

trum, where n is the number of nematodes. This single peak is irrespective of

body position and corresponds to a wave speed c ¼ 2.14 5 0.16 mm/s.
MATHEMATICAL METHODS

The swimming ½motion of C. elegans is modeled as a slender

body in the limit of low Reynolds numbers (Re) (24–26).
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FIGURE 2 Spatio-temporal kinematics of C. elegans

forward swimming gait. (a) Representative contour plot

of the experimentally measured curvature (k) along the

nematode’s body centerline for approximately six bending

cycles. Red and blue colors represent positive and negative

k-values, respectively. The y axis corresponds to the

dimensionless position s/L along the C. elegans’ body

length where s ¼ 0 is the head and s ¼ L is the tail. (b)

Nematode’s body bending frequency obtained from fast-

Fourier transform of k at different s/L. The peak is seen

at a single frequency (~2.4 Hz) irrespective of the location

s/L. (c) Contour plot of curvature k-values obtained from

the model. The model captures the longitudinal bending

wave with decaying magnitude, which travels from head

to tail. (d) Comparison between experimental and theoret-

ical curves of k at s/L ¼ 0.1 and s/L ¼ 0.4; dashed lines

correspond to model predictions (root mean-square error

is ~10% of peak-to-peak amplitude).W
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This model is later used to estimate the material properties of

C. elegans. We assume that the nematode is inextensible

(26); the uncertainty in the measured body lengths is <3%.

The nematode’s motion is restricted to the xy plane and is

described in terms of its center-line y(s, t), where s is the

arc-length along the filament (27). The swimming C. elegans
experiences no net total force or torque (moments) such that,

in the limit of low Re, the dynamic equations of motion are

v~F

vs
¼ Ct~ut þ Cn~un; (1)

vM

vs
¼ �

�
FycosðfÞ � FxsinðfÞ

�
: (2)

In Eq. 1,~Fðs; tÞ is the internal force in the nematode, Ci is the

drag coefficient experienced by the nematode, ~ui is the

nematode velocity, and the subscripts t and n correspond

to the tangent and normal directions, respectively. The

drag coefficients Ct and Cn are obtained from slender body

theory (26). Due to the finite confinement of nematodes

between parallel walls, corrections for wall effects on the

resistive coefficients are estimated for slender cylinders

(7,28).

In Eq. 2, M ¼ Mp þ Ma, where Mp is a passive moment

and Ma is an active moment generated by the muscles of

the nematode; the active and passive moments are parts of

a total internal moment (13,14). The passive moment is

given by the Voigt model (15) such that Mp ¼ EIk þ
hpI(vk/vt), where I is the second moment of inertia of

the nematode cross section. The Voigt model is one of the

simplest models for muscle and is extensively used in the

literature (29). Qualitatively, the elastic part of the Voigt

model is represented by a spring of stiffness E whereas the

dissipative part of the Voigt model is represented by
BPJ 12
a dashpot filled with a fluid of viscosity hp (Fig. 3). Here,

we assume two homogeneous effective material properties,

namely 1), a constant Young’s modulus E; and 2), a constant

tissue viscosity hp.

The active moment generated by the muscle is given by

Ma ¼ –(EIka þ haIvk/vt), where ka is a space- and time-

dependent preferred curvature produced by the muscles of

the nematode and ha is a positive constant (30). A simple

form for ka can be obtained by assuming that ka is a sinusoidal

function of time with an amplitude that decreases from the

nematode’s head to its tail (see Appendix). Note that if

h ¼ hp – ha > 0, there is net dissipation of energy in the

tissue; conversely, if h ¼ hp – ha < 0, there is net generation

of energy in the tissue. Experiments have shown that the

force generated by active muscle decreases with increasing

velocity of shortening (29), so that the force-velocity curve

for active muscle has a negative slope (Fig. 3). Such negative

viscosity has been derived by a mathematical analysis of the

kinetics of the mechano-chemical reactions in the cross-

bridge cycle of active muscles (30). For live nematodes,

we expect h ¼ hp – ha < 0 because the net energy produced

in the (muscle) tissue is needed to overcome the drag from

the surrounding fluid.

Equations 1 and 2 are simplified by noting that the nema-

tode moves primarily in the x direction (see Movie S1) and

that the deflections of its centerline from the x axis are small.

In such case, s z x and cos(f) z 1. This results in a linear-

ized set of equations given by

vFy

vx
� Cn

vy

vt
¼ 0; (3)

vM

vx
þ Fy ¼ 0: (4)
Biophysical Journal 98(5) 1–10
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FIGURE 3 Schematic of the analytical model for the total internal

moment M. Muscle tissue is described by a viscoelastic model containing

both passive and active elements. The passive moment (Mp) is described

by the Voigt model consisting of a passive elastic element (spring) of stiff-

ness E (i.e., Young’s modulus) and a passive viscous element (dashpot) of

tissue viscosity hp. The active moment (Ma) is described by an active

muscular element of viscosity ha, and illustrates a negative slope on

a force-velocity plot. As there is a net generation of energy in the muscle

to overcome drag from the surrounding fluid, we expect h ¼ hp – ha < 0.
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Differentiating Eq. 4 with respect to x and combining with

Eq. 3, we obtain

v2M

vx2
þ Cn

vy

vt
¼ 0: (5)

Substituting for M(x, t) in terms of k(x, t) and its time

derivative yields a biharmonic equation for the displacement

y(x, t) of the type

v4y

vx4
þ x

vy

vt
¼ 0; (6)

which can be solved analytically for appropriate boundary

conditions, where x is a constant that depends on the nema-

tode’s material properties and the fluid drag coefficient (see

Appendix).

The boundary conditions are such that both the force and

moment at the nematode’s head and tail are equal to zero.

That is, Fy(0, t) ¼ Fy(L, t) ¼ 0 and M(0, t) ¼ M(L, t) ¼ 0.

Note that the zero moment boundary conditions at the head
Biophysical Journal 98(5) 1–10
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and tail imply that EIk(0, t) þ hI(/vk(0, t)/vt) ¼ EIka(0, t)
and EIk(L, t) þ hI(vk(L, t)/vt) ¼ EIka(L, t).

Experiments show that the curvature k has nonzero ampli-

tudes (Fig. 2 a) both at the head (x ¼ 0) and the tail (x ¼ L).

To capture this observation, we assume that ka(x, t) is a sinu-

soidal wave with decreasing amplitude of the form ka(x, t) ¼
Q0 cos ut þ Q1x cos(ut – B), where Q0, Q1, and B are

inferred from the experiments. Note that if the curvature

amplitude at the head is larger than that at the tail, then the

nematode swims forward. Conversely, if the curvature

amplitude is smaller at the head than at the tail, the nematode

swims backward; if the amplitudes are equal at the head and

tail, then it remains stationary. We note, however, that other

forms of the preferred curvature ka are possible and could

replicate the behavior seen in experiments.
RESULTS AND DISCUSSION

Equation 6 is solved for the displacement y(x, t) to obtain the

curvature k(x, t)¼ v2y/vx2. The solution for y(x, t) is a super-

position of four traveling waves of the general form

Ai expð�bx cos PiÞ cosðbx sin Pi � ut � fiÞ;

where b¼ (Cnu/Kb)1/4 and Pi is a function of the phase angle

j. The amplitude Ai and phase fi are constants to be deter-

mined by enforcing the boundary conditions discussed above

(see Appendix). The solution reveals both the traveling

bending wave and the characteristic decay in k, as seen in

experiments. Note that our formulation does not assume

a wave-functional form for k(x, t). Instead, the wave is

obtained as part of the solution.

Next, the curvature amplitude jk(x)j predicted by the

model is fitted to those obtained from experiment to estimate

the bending modulus

Kb ¼ I
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ u2h2

p
and the phase angle j ¼ tan�1(hu)/E. The nematode is

assumed to be a hollow, cylindrical shell (19,31) such that

I ¼ p((rm þ t/2)4 – (rm – t/2)4)/4, where the mean nematode

radius is rm z 35 mm and the cuticle thickness is t z 0.5 mm

(32). For the population of wild-type C. elegans tested

here (n ¼ 25), the best-fit values are Kb ¼ 4.19 5 10�16
5

0.49 � 10�16 Nm2 and j ¼ –45.3� 5 3.0�. In Fig. 4, the

experimental values of jk(x)j along the body of a wild-type

C. elegans are displayed together with theoretical values of

jk(x)j, which are obtained by using the best-fit value of the

bending modulus for this nematode and by changing

the phase angle from j ¼ 0� to j ¼ –90�. Fig. 4 shows

that the model is able to capture the decay in jkj as a function

of body length and the nematode’s viscoelastic behavior.

The values of Young’s modulus E and tissue viscosity h

can now be estimated based on the values of j and Kb

discussed above. Results show that, for the wild-type nema-

todes, E ¼ 3.77 5 0.62 kPa and h ¼ –860.2 5 99.4 Pa$s.
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FIGURE 4 Typical C. elegans viscoelastic material properties. Typical

experimental profile of the curvature amplitude jkj decay as a function of

body position s/L. Color-coded theoretical profiles of the curvature ampli-

tude jkj decay at fixed value of the bending modulus Kb. Curves vary

from j ¼ 0� (red) to j ¼ –90� (blue), which corresponds to h ¼ 0 and

E ¼ 0, respectively.
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The estimated value of E lies in the range of values of tissue

elasticity measured for isolated brain (0.1–1 kPa) and muscle

cells (8–17 kPa) (33). The values of h for live C. elegans are

negative because the tissue is generating rather than dissi-

pating energy (30,34–36). We note, however, that the abso-

lute values of tissue viscosity jhj are within the range (102–

104 Pa$s) measured for living cells (37,38). To determine

whether the nematode’s material properties can be extracted

reliably from shape measurements alone, experiments in

solutions of different viscosities were conducted (39). The

inferred Young’s modulus and effective tissue viscosity

remain constant for up to a fivefold increase in the

surrounding fluid viscosity (or mechanical load).

The nematode’s curvature k(x, t) is now determined from

the estimated values of E and h. Fig. 2 c shows a typical

curvature k(x, t) contour plot obtained from the solution of
BPJ 12
the above equations using the estimated values of E and h.

Although the influence of nonlinearities is neglected for the

scope of this article, the analytical results show that our line-

arized model, although not perfect, is nevertheless able to

capture the main features observed in experiments (Fig. 2 d).

Next, the method described above is used to quantify

motility phenotypes of three distinct mutant muscular

dystrophy strains (see Table S1): one with a well-character-

ized muscle defect (dys-1;hlh-1); one with a qualitatively

subtle movement defect (dys-1); and one mutant that has

never been characterized with regards to motility phenotypes,

but is homologous to a human gene that causes a form of

muscular dystrophy expressed in nematode muscle (fer-1).

Note that although both fer-1 and dys-1 genes are expressed

in C. elegans muscle, they exhibit little, if any, change in

whole nematode motility under standard lab assays (40).

Fig. 5 displays results of both kinematics (Fig. 5 a) and

tissue material properties (Fig. 5 b) for all nematodes

investigated here. Quantitative results are summarized in

Table S1. We find that all three mutants exhibit significant

changes in both motility kinematics and tissue properties.

For example, fer-1 mutants exhibit defects in motility kine-

matics that are not found with standard assays (40). Specifi-

cally, the maximum amount of body curvature attained in

fer-1 mutants is increased by ~5%, and the rate of curvature

decay along the body is increased by ~5% (Fig. 5 a). These

data show that fer-1(hc24) mutants exhibit small yet note-

worthy defects in whole nematode motility and exhibit an

uncoordinated (unc) phenotype. In comparison, kinematics

data on dys-1;hlh-1 show that body curvature at the head

of such mutant nematodes increases by ~70% compared to

wild-type nematodes, whereas the rate of decay along the

body is increased by ~40%. These results are useful to quan-

tify the paralysis seen earlier in the tail motion of such

muscular dystrophy mutants (Fig. 1 c).

The Young’s modulus (E) and the absolute values of

tissue viscosity (jhj) of wild-type and mutant strains are

shown in Fig. 5 b. Results show that mutants have lower

values of E when compared to wild-type nematodes. In other

words, dys-1, dys-1;hlh-1, and fer-1 C. elegans mutants are

softer than their wild-type counterpart. The values of jhj of

fer-1 mutants are similar to wild-type nematodes, within
FIGURE 5 Kinematics and material properties of wild-

type and three muscle mutants of C. elegans. (a) Measured

kinematic data and (b) estimated Young’s modulus E

and absolute values of tissue viscosity jhj for wild-type,

fer-1(hc24), dys-1(cx18), and dys-1(cx18); hlh-1(cc561)

adult nematodes (n ¼ 7–25 nematodes for each genotype,

and the asterisk indicates p < 0.01).

Biophysical Journal 98(5) 1–10
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experimental error. However, the values of jhj for dys-1
mutants are lower than wild-type C. elegans. Because

muscle fibers are known to exhibit visible damage for dys-1;

hlh-1 mutants (21), we hypothesize that the deterioration

of muscle fibers may be responsible for the lower values of

E and jhj found for dys-1 and dys-1;hlh-1 mutants.
CONCLUSION

In summary, we characterize the swimming behavior of

C. elegans at low Re. Results show a distinct periodic

swimming behavior with a traveling wave that decays from

the nematode’s head to tail. By coupling experiments with

a linearized model based on force and torque balance, we

are able to estimate, noninvasively, the nematode’s tissue

material properties such as Young’s modulus (E) and

viscosity (h) as well as bending modulus (Kb). Results

show that C. elegans behaves effectively as a viscoelastic

material with E z 3.77 kPa, jhj z 860.2 Pa$s, and Kb z
4.19 � 10�16 Nm2. In particular, the estimated values of E
are much closer to biological tissues than previously reported

values obtained using piezoresistive cantilevers (19). We

demonstrate that the methods presented here may be used,

for example, to quantify motility phenotypes and tissue

properties associated with muscular dystrophy mutations in

C. elegans. Overall, by combining kinematic data with a

linearized model, we are able to provide a robust and highly

quantitative phenotyping tool for analysis of C. elegans
motility, kinematics, and tissue mechanical properties. Given

the rapid noninvasive optical nature of this method, it

may provide an ideal platform for genetic and small mole-

cule screening applications aimed at correcting phenotypes

of mutant nematodes. Our method also sheds new light on

our understanding of muscle function, physiology, and

animal locomotion in general.
APPENDIX

Model detail

In this Appendix, we detail the model for the motion of the nematode

C. elegans. The nematode is modeled as a slender filament at low Reynolds

numbers (26). In our experiments, the uncertainty in the measured body

lengths is <3% and we assume inextensibility. The nematode’s motion is

described in terms of its center-line~yðs; tÞ, where s is the arc-length along

the filament and t is time (27). We assume that the nematode moves in the

xy plane. The swimming C. elegans experiences no net total force or torque

(moments) such that, in the limit of low Re, the equations of motion are

v~F

vs
¼ Ct~ut þ Cn~un; (7)

vM

vs
~ez ¼ �bt � ~F; (8)

where btðs; tÞ ¼ v~y=vs is the tangent vector to the center-line, ~Fðs; tÞ is the

internal force, and Mðs; tÞ~ez ¼ ~Mðs; tÞ is the internal moment consisting of

a passive and active part (13,14). Tangential and normal velocities are
Biophysical Journal 98(5) 1–10
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respectively given by~ut ¼ ðv~y=vt$btÞbt ½and~un ¼ ðI�bt5btÞv~y=vt. The drag

coefficients, Ct and Cn, are obtained from slender body theory (26). Due

to the finite confinement of nematodes between the parallel walls, correc-

tions for wall effects on the resistive coefficients are estimated for slender

cylinders (7). The local body position~y, the velocity at any body position

v~y=vt, and the tangent vector bt are all experimentally measured.

The constitutive relation for the moment M(s, t) in our inextensible

filament is assumed to be given by

M ¼ Mp þ Ma; (9)

where Mp(s, t) is a passive moment and Ma(s, t) is an active moment

generated by the muscles of the nematode. The passive moment is given

by a viscoelastic Voigt model (15)

Mp ¼ EIk þ hpI
vk

vt
; (10)

where k(s, t) is the curvature along the nematode. Here, we assume two

homogeneous effective material properties, namely 1), a constant Young’s

modulus E; and 2), a constant tissue viscosity hp. The active moment gener-

ated by the muscle is assumed to be given by

Ma ¼ �
�

EIka þ haI
vk

vt

�
; (11)

where ka ¼ Q0 cos ut þ Q1s cos(ut – B) is a preferred curvature and ha is

a positive constant (30). Q0, Q1, and B must be obtained by fitting to exper-

iments. Q1
2L2 þ 2Q0Q1L cos(B) < 0 means that the curvature amplitudes at

the head are larger than those at the tail and we should expect traveling

waves going from head to tail to cause the nematode to swim forward; simi-

larly, Q1
2L2 þ 2Q0Q1L cos(B) > 0 should produce traveling waves going

from tail to head so that the nematodes swim backward (12). The total

moment M(s, t) can be written as

M ¼ Mp þ Ma ¼ EIðk� kaÞ þ
�
hp � ha

�
I
vk

vt

¼ EIðk� kaÞ þ hI
vk

vt
: (12)

Note that if h ¼ hp – ha > 0, then there is net dissipation of energy in the

tissue; if h ¼ hp – ha < 0, then there is net generation of energy in the

tissue. For live nematodes that actively swim in the fluid, we expect h ¼
hp – ha < 0, because the net energy produced in the (muscle) tissue is needed

to overcome the drag from the surrounding fluid. In other words, the driving

force for the traveling waves seen in the nematode has its origins in the

contractions of the muscle.

We model the nematode as a hollow cylindrical shell with outer radius ro

and inner radius ri (19), such that the principal moment of inertia (second

moment of the area of cross-section) I along the entire length of the nema-

tode is given by

I ¼ p

4

	

rm þ

t

2

�4

�



rm �
t

2

�4
�
;

where rm is the mean radius and t is the cuticle thickness.

Consistent with experimental observations, we assume that the nematode

moves along the x axis and that the deflections of the centerline of the nema-

tode from the x axis are small. This allows us to take s¼ x and write k(x, t)¼
vf/vx ¼ v2y/vx2 where y(x, t) is the deflection of the centerline of the nema-

tode and f(x, t) is the angle made by the tangentbt to the x axis. The equations

of motion can then be written as

vFx

vx
¼ CtVx;

vFy

vx
¼ Cn

vy

vt
; (13)
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vM
vx
þ Fy ¼ 0; (14)

where

~F ¼ Fx~ex þ Fy~ey:

The value Vx is the velocity of the nematode along the x axis and corre-

sponds to the average forward speed U. Combining a linearized formula-

tion of Eqs. 7 and 8 along with the viscoelastic model of Eq. 12 offers

a direct route toward 1), a closed-form analytical solution for the curvature

k(x, t); and 2), an estimate of tissue properties (E and h). Note that due to

the assumption of small deflections (26), the x component of the force

balance becomes decoupled from the rest of the equations. As a result,

we will not be able to predict Vx even if y(x, t) is determined. However,

we can solve Eqs. 12–14 for appropriate boundary conditions on Fy and

M to see if we get solutions that look like traveling waves whose amplitude

is not a constant, but in fact, is decreasing from the head to the tail of the
yðx; tÞ ¼ A01exp

�
bxcos

�
p

8
þ j

4

��
cos

�
bxsin

�
p

8
þ j

4

�
� ut � f01

�
;

þA23exp

�
� bxcos

�
p

8
þ j

4

��
cos

�
� bxsin

�
p

8
þ j

4

�
� ut � f23

�
;

þA45exp

�
bxcos

�
j

4
� 3p

8

��
cos

�
bxsin

�
j

4
� 3p

8

�
� ut � f45

�
;

þA67exp

�
� bxcos

�
j

4
� 3p

8

��
cos

�
� bxsin

�
j

4
� 3p

8

�
� ut � f67

�
;

(19)
nematode (Fig. 2 a). To do so, we observe that the nematode’s body

oscillates at a single frequency irrespective of position x along its centerline

(Fig. 2 b). We therefore assume y(x, t) and M(x, t) to have a form that

involves a single frequency u, so that y(x, t) ¼ f(x) cos ut þ g(x) sin ut,

and

Mðx; tÞ ¼ KbðuÞ
v2f

vx2
cosðut þ jðuÞÞ

þ KbðuÞ
v2g

vx2
sinðut þ jðuÞÞ; (15)

where f(x) and g(x) are as-yet-unknown functions, j(u) is frequency-depen-

dent phase angle, and Kb(u) is a frequency-dependent bending modulus

of the homogeneous viscoelastic material making up the nematode. In

particular,

tanj ¼ hu

E
;

Kb ¼ I
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ u2h2
p

;
(16)
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where the parameter Kb, E, and h correspond to the effective tissue proper-

ties of the nematode. To be consistent with the observation of a single

frequency u and nonzero amplitudes of the curvature k at the head and

tail, we apply boundary conditions

Fyð0; tÞ ¼ 0; Mð0; tÞ ¼ 0; FyðL; tÞ ¼ 0; MðL; tÞ ¼ 0:

(17)

We can make further progress by differentiating the balance of moments

once with respect to x and substituting the y component of the balance of

forces into it to get

v2M

vx2
þ Cn

vy

vt
¼ 0: (18)

Substituting for M(x, t) from Eq. 15 yields a biharmonic equation for the

functions f and g, which can be solved to give the solution for y(x, t),
where

b ¼ ðCnu=KbÞ1=4

and A01, A23, A45, A67, f01, f23, f45, and f67 are eight constants to be

determined from the eight equations resulting from the sin ut and cos ut
coefficients of the boundary conditions. Note that these are four waves

of the type y(x, t) ¼ b(x) cos(2p(x þ Vwt)/l), which is the form originally

assumed by Gray and Hancock based on experiment (26). In contrast, we

have obtained such waves as a solution to the equations of motion. We plot

the amplitude and phase of these waves for a particular choice of param-

eters in Fig. 6. However, the exact solution above is cumbersome to

use. We need simple expressions that can be easily fit to some observable

in the experiment to obtain b and j, or equivalently, E and h. One such

parameter is the amplitude of the traveling waves as a function of position

x along the nematode. We develop a strategy to obtain this amplitude in the

following.

Based on the exact solutions to the equations, we approximate the

displacement y(x, t) as
5 6 7

01 wave
23 wave
45 wave
67 wave

FIGURE 6 Amplitude and phase of traveling waves

obtained from enforcing force and moment boundary con-

ditions at x¼ 0, L. (a) Amplitudes of the A23 and A67 waves

decrease from x¼ 0 to x¼ L, whereas the amplitudes of the

A01 and A45 waves increase from x¼ 0 to x¼ L. The ampli-

tudes of the former two waves are larger than the latter

two. (b) Phases f01, f23, f45, and f67 are all constant

from x ¼ 0 to x ¼ L. The phase difference between the

A67 wave and A23 wave is ~90�. The parameters used to

obtain these plots are u ¼ 4p rad/s, L ¼ 1.0 mm, Kb ¼
5.0 � 10�16 Nm2, Cn ¼ 0.06 Ns/m2, j ¼ –45�, EIQ0 ¼
4.35 � 10�12 Nm, Q1L ¼ –1.054 Q0, and B ¼ 198.4�.
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4
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4
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8
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�
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�
j

4
þ p

8
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�
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For experimental values of ka(L, t)/ka(0, t) ¼ 0.33, we find A1/A2 z 443 so

that A2 is much smaller in comparison to A1. Note that

yð0; tÞ ¼ A1cosut þ A2cosðut � f2Þ

þA2cos
�
ut � f2 þ

3p

4

�
þ A1cos

�
ut þ p

2

�
¼

ffiffiffi
2
p

A1cos
�
ut þ p

4

�
þ 2A2cos

�3p

8

�
cos
�
ut � f2 þ

3p

8

�
:

ð21Þ

The curvature can be calculated as under
kðx; tÞ ¼ v2y

vx2
zb2A1exp

�
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(22)
Note again that
kð0; tÞ ¼ b2A1cos

�
ut þ 3p

4
� j

2

�
þ b2A2cos

�
ut � f2 �

p

4
� j

2

�
;
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�
ut � f2 þ

3p

4
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4
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� (23)
It is possible to determine b and j from Eqs. 21 and 23 alone. If

we recognize that A1 > > A2 at the head, then we see that the ratio

of the amplitude of the curvature to the amplitude of the displace-
A2ðxÞ ¼ b4A2
1exp
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j

4
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8

��
þ b4A2

2exp
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1exp
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ment at the head is simply b2 and the phase difference between

them is�
p

4
� j

2

� �
the phase difference between

vy

vx
and

v2y

vx2

at the head is
19p

16
� j

4

�
:

We find by comparing with the exact solution that an estimate of b using

this method is accurate to within 1% and that of j is accurate to within

2 or 3�.
The curvature is an oscillatory function and we can determine its amplitude

A(x) simply by isolating the coefficients of cos ut and sin ut and then squaring

and adding them. We get the following expression as a result of this exercise:
j

4
þ p
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��
; þ b4A2

2exp
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We can fit the experimental data of curvature as a function of x using

the expression above. There are five fit parameters: A1, A2, b, j, and f2.

The value of f2 mostly affects the curvature profile near the tail. Values

of f2 z p/3 seem to give good fits for the curvature data of the nematodes.

A1 can be determined from the amplitude of the displacement at the head.

This leaves three fit parameters: A2, b, and j. We can use this fit to check

whether the parameters b and j obtained from analyzing the motion of

the head alone are reasonable.
C. elegans strain

All strains were maintained using standard culture methods and fed with the

E. coli strain OP50. The following muscular dystrophic strains were used:

fer-1(hc24ts), dys-1(cx18)I, and hlh-1(cc561)II;dys-1(cx18)I double mutant.

Note that hlh-1 is a myoD mutant that qualitatively reveals the motility

defects of dys-1 mutants. Analysis was performed on hypochlorite-synchro-

nized young adult animals. The fer-1 mutants were hatched at the restrictive

temperature of 25�C and grown until they reach the young adult stage. The

dys-1(cx18) I;hlh-1(cc561) II mutants were grown at the permissive temper-

ature of 16�C. Wild-type nematodes grown at the appropriate temperature

were used as controls.

Strains were obtained from the Caenorhabditis elegans Genetic Stock

Center, National Institutes of Health (Bethesda, MD).
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