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Abstract The mechanics of DNA at length scales of few hundred nanometers is
described by a fluctuating elastic rod model. In this paper we couple the fluctuating
rod model with a variational method for describing plectonemes to unravel the me-
chanics of some recent single molecule experiments. We are able to reproduce some
features seen in these experiments which analyze plectoneme formation in DNA un-
der tension by continuously twisting it and tracking its end-to-end distance, torque,
etc., as a function of the added link. Our model accounts for configurational entropy
and electrostatics in the plectoneme. We find that configurational entropy makes a
significant contribution to the mechanics of the plectoneme while electrostatics (in
the presence of monovalent counterions) plays a relatively minor role.

1 Introduction

It is now well established that double-stranded DNA behaves as a thermally fluctuat-
ing elastic rod at length-scales of a few hundred nanometers [9, 12]. The mechanical
properties of DNA at these length scales have been measured by various techniques,
including single molecule experiments, and it is known that the average bending
modulus of a random sequence of DNA bases is about Kb = 205pNnm2 [9]. Sin-
gle moleucle techniques have also established that the twisting modulus of DNA is
around Kt = 431pNnm2 [12]. The fact that DNA is a twist storing polymer allows
it to form plectonemes when its linking number Lk is large. In fact, bacterial cells
store DNA in the form of plectonemes in order to pack the their long genome into
the small volume within their cell walls. As a result retrieval of genetic informa-
tion from the DNA requires molecular machines to manipulate the plectonemes by
exerting forces and torques on them [14]. The plectonemes themselves have small
radii so that DNA electrostatics can also have an important role in the mechanics.
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This motivates our study of the mechanics of DNA plectonemes with the effects of
configurational entropy and electrostatics.

Plectonemes in elastic rods have been studied by many authors [3, 5, 8, 15, 18].
A brief review of the research in this subject can be found in Purohit (2008) [15]
who show that many of the features seen in recent single molecule experiments of
Forth et al. (2008) [6] on DNA plectonemes can be qualitatively reproduced using an
elastic rod model. In Purohit (2008) [15] plectonemic shapes are obtained by com-
bining helical and localizing solutions of the equations of the balance of forces and
moments for an elastic rod. This approach was first used by Stump et al. (1998) [16]
to describe ‘balanced ply’ structures in rods and extended by various authors to de-
scribe ‘variable plys’ [5], ‘generalized plys’ [18] as well as plectonemes and DNA
plasmids. The approach of Purohit (2008) [15] based on balance of forces and mo-
ments is kinematically constrained since helices of constant radius and pitch are in-
serted into non-planar localizing solutions of rods to obtain plectonemic solutions.
On the other hand, Clauvelin et al. (2008) [3] and van der Heijden et al. (2003) [18]
use a variational formulation to solve for the geometry of the plectoneme, and Clau-
velin et al. (2008) apply their methods to interpret magnetic tweezer experiments on
DNA plectonemes. One of our goals in this paper is to show that both these methods
lead to exactly the same results for the parameters of the plectoneme if the energy
of the helices in the variational formulation is constrained to constant helical radius
and pitch. The variational method is, of course, more general than the method of
Purohit (2008) [15] since it can be applied to plectonemes with a varying helical
pitch, and can also be easily extended to account for entropy and electrostatics. In
fact, we use the variational method to determine the entropic and electrostatic cor-
rections to geometrical parameters of the plectonemes. We show that configurational
entropy has a larger effect on the plectoneme geometry than electrostatics, but both
represent only small deviations from the elastic rod solution.

2 Review of Kirchhoff’s theory of rods

In Kirchhoff’s theory the coordinates of the center-line of a rod are given by a posi-
tion vector P(s) where s is the arc-length along the rod. At each point s of the rod we
attach a coordinate frame called the material frame. The unit vectors of the material
frame are denoted by d1(s), d2(s), d3(s) with d3(s) chosen to be along the tangent
to the rod at every point so that d3(s) = P′(s) = dP(s)

ds . Note that the tangent P′(s)
is a unit vector since the rod is assumed to be inextensible. The derivatives of these
vectors along the arc-length s contain information about the local curvature of the
rod. In particular,

ddi

ds
= κ×di, for i = 1,2,3, (1)

where κ(s) = [κ1(s) κ2(s) κ3(s)] is the curvature vector. The internal moment
M(s) at any point on the rod is given by
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Fig. 1 Constructing a plectoneme. First, the localizing solution is cut at ±s1. Then, the end loop
and the two tails are separated vertically. And finally, two helices with integer number of turns are
inserted in between, so as to ensure continuity of the displacement, tangent and curvature at ±s1.
The torsion of the centerline of the rods is not required to be continuous at ±s1. This figure is
reproduced from Purohit (2008) [15].

M = Kbκ1d1 +Kbκ2d2 +Ktκ3d3, (2)

where Kb and Kt are the bending and twisting moduli of the DNA. The equations
for the balance of forces and moments in the rod are then simply,

dF
ds

= 0,
dM
ds

+d3×F = 0, (3)

where F(s) is the internal force in the rod. A special class of solutions to the balance
equations are helices which have curvature κ = [κ1 κ2 κ3] and Frenet torsion τ

that satisfy a simple vector equation

F = (Ktκ3−Kbτ)[κ1d1 +κ2d2 + τd3], (4)

where d3(s) = P′(s) is the tangent vector and F is a constant force [13]. Note that
the balance equations imply that F(s) is constant along the rod and its value is
determined by the external force applied on the DNA, which in the experiments
considered in this paper, are applied using an optical tweezer setup [6]. Following
Nizette and Goriely (1999) [13] we will assume that the laboratory coordinate frame
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is chosen in such a way as the applied force F is aligned with the z-axis so that
F(s) = Fez. The position vector P(s) is then explicitly written as

P(s) = R(s)cosΦ(s)êx +R(s)sinΦ(s)êy +Z(s)êz, (5)

where we have used a cylindrical coordinate system. Analytical solutions for R(s),
Φ(s) and Z(s) (which are more general than helices) are known in terms of elliptic
functions and elliptic integrals and can be found in Nizette and Goriely (1999) [13].

3 Localizing solutions

A special case of the general solution, the non-planar localizing solution, is appro-
priate for describing some of the equilibria in single-molecule experiments and is
given by

Z(s) = z3s−λ (z3− z1)E(
s
λ
|k), (6)

Z′(s) = z1 +(1− z1)sn2(
s
λ
|k), (7)

M3λ

Kb
=

Mzλ

Kb
=
√

(1+ z1)(1+ z3), (8)

where k2 = 1−z1
z3−z1

, sn(u|k) is an elliptic function (see below) and E(u|k) is the in-
complete elliptic integral of the second kind defined as follows (for details, see
Abramowitz and Stegun (1964) [1]):

E(u|k) =
∫ u

0
(1− k2sn2(x|k))dx, where sn(x|k) = sinϕ,

and x =
∫

ϕ

0

dθ√
1− k2 sin2

θ

. (9)

In the solution given above λ =
√

Kb
F is determined immediately since the force F

is prescribed. The remaining constants z1 and z3 are determined from the known
value of the applied torque M3 (or the linking number ∆Lk) and the condition that
Z′(±L

2 ) = 1 which says that the tangents at the two ends of the rod are aligned with
the z-axis in the laboratory frame. The resulting boundary condition is

1 = z1 +(1− z1)sn2(
L

2λ
|k). (10)

The solution obtained from these equations gives us the bent and twisted shape of the
rod for 2L

√
KbF

Kt
< 2π . Plectoneme formation occurs when 2L

√
KbF

Kt
> 2π and Purohit

(2008) [15] show how to construct these solutions by combining helical solutions
of the rod with the non-planar localizing solutions in such a way that the balance of
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forces and moments is satisfied at each point along the rod. A brief summary of the
procedure is given below since the notation from this section will also be used to
describe the variational formulation.

4 Constructing the plectonemic solution

We assume that the total length of the rod is L and the length eaten up by the
helical region is 2L2 so that L1 = L− 2L2 is the leftover length that (without
the helices) corresponds to a shape described by the non-planar localizing solu-
tion (see figure 1). At present L1 is an unknown and so are ±s1 (with −L1

2 <

−s1 < 0 < s1 < L1
2 ) which are the arclengths at which we cut the rod to insert the

plectonemic helices. The arclength interval [−s1,s1] corresponds to the end loop
while the intervals [−L1

2 ,−s1] and [s1,
L1
2 ] correspond to the tails with the ends

s = ±L1
2 where the tension F is applied. The center-line of the helix is given by

P(s) = [r cos(As+B) Qs+D r sin(As+B)] where A, B, Q, D and r are all con-
stants and we require A2r2 +Q2 = 1 to enforce inextensibility. The length of each of
the helices is L2 = 2πmr secα where α is the pitch angle (tanα = Q

Ar ) and m is the
number of turns in each helix. Fuller (1971) [7] showed that the writhing number for
this plectonemic solution (completed to a closed curve) is 2msinα . Assuming that
κ3 = M3

Kt
is the constant twist rate in the rod in the post-buckled shape, the total link

stored in the rod can be obtained from the Fuller-White-Calugrenau relation which
is equated to the prescribed change in link, ∆Lk, leading to:

∆Lk =
M3L
2πKt

+2msinα, (11)

L = L1 +4πmr secα, (12)

where the second equation merely says that the length in the helices and the local-
izing solution should add up to the total length L.

The Frenet curvature and torsion [13] of the helix are respectively κ = A2r and
τ = AQ = A

√
1−A2r2. s1 is the arclength at which the rod solution intersects the

helix. We require continuity of the tangent at this point. This can be enforced if we
find a point s1 in the rod solution with 0 < s1 < L1, such that

X(s1)X ′(s1)+Z(s1)Z′(s1) =
d
ds

(X2(s)+Z2(s))|s1 = 0. (13)

If there exists such a point s1 in the localizing solution then the parameters A, B, D,
Q and r for the helix can be uniquely determined using

r2 = X2(s1)+Z2(s1), Q = Y ′(s1), A2 =
1−Y ′2(s1)

X2(s1)+Z2(s1)
. (14)
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We also need to satisfy continuity of forces and moments at s1. For a helix the
balance of forces and moments can be summarized by the single vector equation
(4) in the material frame [13]. In writing this equation we assume that there are
no contact or interaction forces (for instance, electrostatic) between the helices in
the DNA plectoneme. This seems like a good assumption if the radius and pitch of
the helices is much larger than the diameter of DNA (about 2nm) and there is no
self intersection. It is difficult to verify these criteria in an experiment. However, we
show in what follows that the calculated helix radii and pitch under the assumption
of no self-contact and no interaction are indeed larger than 4nm for the range of
forces considered in this paper. In other words, the solutions are consistent with the
assumption. For a discussion of the balance equations of rods with self-contact we
refer the reader to an article by van der Heijden et al. [19]. Quantitative treatment
of the contact force in DNA plectonemes has also been peformed by Clauvelin et
al. [3]. Later in this paper we relax the assumption of no interaction between the
helices and consider the electrostatic interaction energy and the entropic cost of
constrained fluctuations due to the helical geometry. Going back to (4) and taking
magnitudes on both sides we get

F = (Ktκ3−Kbτ)
√

κ2
1 +κ2

2 + τ2. (15)

Now, for any equilibrium solution of a Kirchhoff rod we know that M3 and Mz are
constants independent of s. We exploit this fact in the helical solution and note that

|Kbκ1d1 +Kbκ2d2|2 = |M−M3d3(s1)|2 = M2
3 |ez−d3(s1)|2 = 2M2

3(1−Z′(s1)).
(16)

Substituting this result back into (15) and remembering that the force and moment
have to be continuous at s1 we obtain

1 = (
M3λ

Kb
− τλ )

√
2M2

3 λ 2

K2
b

(1−Z′(s1))+ τ2λ 2. (17)

Equations (11), (12), (13) and (17) together with the following are six equations for
the six unknowns – L1, s1, m, z1, z3 and M3 – in the plectonemic solution.

M3λ

Kb
=
√

(1+ z1)(1+ z3),
L1

2λ
= K(

1− z1

z3− z1
). (18)

These six equations are solved using Newton’s method. For a given value of F and
material properties Kb and Kt , the helix parameters A, Q, r etc., can then be obtained
from (14) and L1 and m can be determined using (11) and (12). This completely
determines a plectonemic shape.
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5 Variational method

The shape of the plectoneme in the above method is obtained by solving (4) which
represents the balance of forces and moments in the helix. The helix parameters
can also be obtained by a variational method which is general enough to account
for electrostatic and entropic interactions [10] as well as varying pitch angle α(s)
of the helix [18]. In brief, the electrostatic interaction given by Marko and Siggia
(1995) [10] is obtained by solving the Poisson-Boltzmann (or Debye-Huckel) equa-
tion for two parallel negatively charged cylindrical DNA molecules placed a certain
distance apart in a solution containing monovalent counterions. According to Marko
and Siggia (1995) [10] the electrostatic interaction energy is significant if the dis-
tance between the DNA molecules is in the range of 1-3nm. The entropic cost of
confining the DNA to a helix is obtained by putting a limit on the amplitude of ther-
mal fluctuations so that self-intersection of the helices is not allowed [10]. To see
how to write down the energy in our problem after taking electrostatics and entropy
into account we observe that

κ
2
1 +κ

2
2 = α

′2 +
1
r2 cos4

α, κ3 = φ
′+

1
r

cosα sinα, (19)

where φ is internal twist angle of d2 (or d1) about the tangent d3 [18]. We express
the energy stored in the plectonemic helices as

V =
∫ L2

0
L (α,α ′,φ ,φ ′)ds, (20)

where L2 is the length of each helix in the plectoneme and L is the energy per unit
length of each helix which is given by

L =
Kb

2

(
α
′2 +

1
r2 cos4

α

)
+

Kt

2

(
φ
′+

sin2α

2r

)2

+
kBT

A1/3(πr tanα)2/3

+
kBT

A1/3r2/3 + lBkBT ν
2K0

(
r

λD

)
+ lBkBT ν

2K0

(
πr tanα

λD

)
− M

r
cosα,(21)

where K0(x) is a modified Bessel funtion, A = Kb
kBT is the bending persistence length,

C = Kt
kBT is the twisting persistence length, lB is the Bjerrum length, λD is the Debye

length, ν is the effective charge per unit length [10] and M, the external moment,
is determined by the force F acting on the DNA and the location s1 at which we
make the cut in the localizing solution. In fact, M = FX(s1) where X(s1) is the
x-coordinate of the point at which we cut the localizing solution. In the above ex-
peression the first and second terms represent the elastic energy stored in the helices,
the third and fourth term give the entropic cost of fluctuations of the rod around a
helical shape and the fifth and sixth terms give the energy stored in the electro-
static interactions between the charged helices and ionic solution in which they are
immersed. The Euler-Lagrange equations for equilibrium are
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d
ds

∂L

∂α ′
=

∂L

∂α
,

d
ds

∂L

∂φ ′
=

∂L

∂φ
. (22)

The second of these equations says that φ ′+ sin2α

2r = κ3 = M3
Kt

= const. The equation
for α is obtained from the first of the Euler-Lagrange equations and is as follows:

Kbα
′′ = −2Kb

r2 cos3
α sinα +

Kt

r
(φ ′+

1
2r

sin2α)cos2α− 2
3

πkBTr sec2 α

A1/3(πr tanα)5/3

+
πr sec2 α

λD
lBkBT ν

2K′0

(
πr tanα

λD

)
+

M
r

sinα. (23)

For helices of constant pitch α ′′ = 0 and hence we can rewrite the above equation
as

−2Kb

r
cos3

α sinα +M3 cos2α− 2
3

( r
A

)1/3 kBT
π2/3

sec2 α

tan5/3 α

−lBkBT ν
2
λDK1

(
π

r
λD

tanα

)
πr2

λ 2
D

sec2
α +M sinα = 0, (24)

where we have used the property of Bessel functions that K′0(x) = −K1(x). This
equation replaces eq.17 which was applicable only for the special case in which
there are no interactions between the helices in the plectoneme. In the absence of
any interactions between the helices the equation for α is

−2Kb

r
cos3

α sinα +M3 cos2α +M sinα = 0, (25)

We expect that eq.17 (obtained from the balance of forces and moments) and eq.25
(obtained from the variational principle) should give the same solution for the plec-
tonemic shape. We verify this in figure 2 where we compare the radius, number of
turns and length of the helices in the plectoneme at the critical torque

√
2KbF [12]

for different values of the force F and total length L. The length L is chosen to be
large enough that we can assume z3 = 1 without sacrificing the accuracy of the solu-
tion [15]. It is apparent from figure 2 that indeed both the variational approach and
the balance of forces and moments approach give the same result. Interestingly, the
radius of the plectoneme depends only on the tension F and not the length of the
DNA while the length 2L2 eaten up by the plectonemic helices depends only on the
length L of the DNA and not on the tension F as seen in figure 2(b). Therefore, the
number of turns in the helix (see figure 2(c)) depends both on the tension F and the
length L of the DNA in such a way as to ensure 2L2 is constant.
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Fig. 2 Various parameters of the post-buckling plectoneme plotted as a function of the force F
assuming no thermal fluctuations in a DNA fragment of length L = 1000nm (magenta), 1250nm
(blue) and 1500nm (green). The colored circles are obtained by solving (17) while the solid black
line passing through them is the result of solving (25) together with (13). (a) Radius of the plec-
tonemic helix is independent of the length L. In fact, r ∝ F−1/2 (see Purohit (2008) [15]). (b)
Length of the plectonemic helix is independent of the tension F . (c) The number of turns m in each
of the helices of the plectoneme increases with increasing force. The calculations were performed
assuming Kb = 205pNnm2 and Kt = 431pNnm2 which are typical of double-stranded DNA.

6 Configurational entropy and electrostatics in the plectoneme

At this point we also examine the effect of electrostatics and configurational entropy
on the geometry of the plectonemic helices. The variational method allows us to do
so in a straight forward manner as already illustrated above. We note (see figure 3(a))
that allowing the helices to fluctuate causes them to become shorter than the purely
elastic helices. This is because the decrease of free energy (due to an increase of
entropy) which could have been obtained by a small increase in the length of the
helices is more than offset by the increase in the elastic energy. Since the fluctuations



10 Prashant K. Purohit

become smaller with an increase in the tension we see that the length eaten up by
the helices in the presence of fluctuations approaches the value obtained by the
purely elastic treatment as the force becomes larger. Interestingly, electrostatics has
a neglible impact on the geometry of the helices. The reason for this can be gleaned
from figure 3(c) where we have plotted the elastic, entropic and electrostatic parts
of the free energy density as a function of the radius of the plectonemic helices for
a pitch angle α = 50 degrees. It is evident that electrostatic energy is minuscule in
comparison to the elastic part of the free energy.
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Fig. 3 The effect of electrostatics and thermal fluctuations (entropy) on the geometry of the plec-
tonemic helices. (a) It is evident that electrostatics in 0.14M solution has practically no effect on
the number of turns in the helices. (b) The length of the helices also remains practically unaffected
by electrostatics. Fluctuations have a small effect as seen from the black line in both the figures. (c)
The entropic and electrostatic part of the free energy are negligible in comparison to the elastic part
of the free energy for values of helix radius r > 5nm. The electrostatic energy is larger for small
ion concentrations because of lower screening of the negative charge on the DNA. The calculations
were performed assuming L = 1250nm, Kb = 205pNnm2 and Kt = 431pNnm2 which are typical
of double-stranded DNA.
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We will now use eq.24 which gives equilibria of the plectoneme in the presence
of elastic, entropic and electrostatic effects in conjunction with the equations de-
scribing the equilibria of a straight rod with elastic and entropic effects to obtain the
shapes of the fluctuating DNA observed in the experiments of Forth et al. (2008) [6].
The expressions for the entropic elasticity of a straight twist-storing polymer, such
as, DNA were given by Moroz and Nelson (1998) [12] and are rewritten below:

M3(F,∆Lk) =
2π∆Lk

L
Kt

+ LkBT
4Kb
√

KbF

, (26)

ζ (F,∆Lk) = 1− 1
2

1√
KbF
k2

BT 2 −
M2

3
4k2

BT 2 − 1
32

+
KbkBT

L(KbF− M2
3

4 )
, (27)

where ζ = Z( L
2 )−Z(− L

2 )
L is the non-dimensionalized extension, kB is Boltzmann’s con-

stant and T is the absolute temperature. The above expressions are valid as long as
M3 < 2

√
KbF which, we recall, is the classical critical buckling torque in the zero

temperature limit. We note that the classical expression for the torque M3 = Kt
2π∆Lk

L
in a straight rod is recovered from (26) when we set T = 0 which corresponds to no
fluctuations. To couple the equations describing the plectoneme and those describing
the straight rod we divide it into three regions – two largely straight but highly fluc-
tuating regions each of length L f corresponding to arc-length intervals [−L

2 ,−L1
2 ]

and [L1
2 , L

2 ], a highly curved region corresponding to [−L1
2 , L1

2 ] with negligible fluc-
tuations (Agrawal et al. (2008) [2] show that this is a reasonable assumption) and
the plectonemic helices of length 4πmr secα . We follow exactly the same proce-
dure as explained with the localizing solution for gluing these regions together. This
leads to a system of equations consisting of (13), (24), (18) coupled with

M3L
2πKt

+
M3L f kBT

8πKb
√

KbF
+2msinα = ∆Lk, (28)

L f +L1 +4πmr secα = L. (29)

These are six equations for the seven unknowns – s1, z1, z3, M3, m, L1 and L f . We
need one more condition to ensure that we have as many equations as there are
unknowns. This last equation is obtained from the principle that the free energy of
the equilibrium configuration should be a minimum. The required free energy is:

G = 4πmr secαGhel +L1Grod +L f G f lc−F(Z(+
L
2
)−Z(−L

2
)), (30)

where the free energy densities Ghel , Grod and G f lc are given by

Ghel =
Kb

2

(
α
′2 +

1
r2 cos4

α

)
+

M2
3

2Kt
+

kBT
A1/3(πr tanα)2/3 +

kBT
A1/3r2/3

+lBkBT ν
2K0

(
r

λD

)
+ lBkBT ν

2K0

(
πr tanα

λD

)
− M

r
cosα, (31)
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Grod =
F
2

(1+ z1 + z3− z1z3)+
M2

3
2Kt

+F
Z(+L1

2 )−Z(−L1
2 )

L1
, (32)

G f lc = −kBT
PkBT

Kb
(1− 1

4P
− 1

64P2 )+
M2

3
2Kt

, (33)

where P =

√
KbF−

M2
3

4
kBT . The rest of the calculation is performed as in Purohit (2008) [15].

The resulting dependence of the end-to-end distance Z(L
2 )− Z(−L

2 ) on the link
added at the ends is shown in figure 4(a). The jump in the end-to-end extension at a
critical number of turns is seen here as in the experiment of Forth et al. (2008) [6].
The linear decrease in the end-to-end extension with an increase in the added link
is also reproduced. Furthermore, the torque M3 felt at the ends s = ±L

2 is plotted
in figure 4(b) and its dependence on the number of turns added is similar to that
seen in the experiments. There is a linear rise in the beginning but there is a plateau
after plectoneme formation has occurred. This is similar to the observations in the
experiments of Forth et al. (2008) [6]. Thus all the qualitative features of rotation-
extension curves are reproduced by our theory.

We now turn to a quantitative comparison between theory and experiment. The
slope of the linear rotation-extension plot after plectoneme formation is known to
be independent of the length of DNA in the experiment [11, 3]. We verify that this
is indeed the case in Figure 5(a) by plotting the rotation-extension curve for three
different lengths and the same bending and twisting moduli and electrostatic param-
eters. One of the lengths (L = 1430nm) is the length of DNA used in the experiments
of Forth et al. (2008) [6]. We use the bending and twisting modulus inferred from the
experiments of Forth et al. (2008) [6]. However, the slope of our rotation-extension
curve (61.3nm per turn) is very different from that obtained from the experiments of
Forth et al. (2008) [6] (about 30nm per turn). In order to understand the reason for
this discrepancy we plot the post-plectoneme slope as a function of twisting mod-
ulus keeping all other parameters fixed in figure 5(b) and repeat the exercise with
the bending modulus in figure 5(c). We find that the post plectoneme slope is inde-
pendent of the twisting modulus and decreases with a decreasing bending modulus.
This seems to suggest that there is some softening in the DNA when plectonemes
are formed. The reason for the softening could be a loss of structural integrity in the
DNA due to the small radii of curvature produced in the plectonemes (see figure 2(a)
while remembering that the diameter of DNA is about 2nm). In fact, lower moduli
have been reported by Cloutier and Widom (2005) [4] for cyclization of short DNA
fragments where small radii of curvature are produced.

7 Conclusions

In this paper we have coupled the equations describing the entropic elasticity of a
fluctuating rod with a variational formulation describing plectonemes to understand
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Fig. 4 The end-to-end distance Z(L/2)−Z(−L/2) and the torque M3 are plotted as a function of
the number of turns applied to the DNA. Thermal fluctuations, electrostatics and elasticity are all
included in this calculation. The trends observed in the plots are similar to those in the experiment
of Forth et al. (2008) [6]. The calculations were performed assuming L = 1250nm, Kb = 205pNnm2

and Kt = 431pNnm2 which are typical of double-stranded DNA. The salt concentration is assumed
to be 0.14M.

the mechanics of plectonemes in DNA. We have shown that configurational entropy
plays a more significant role compared to electrostatics (with monovalent counte-
rions) in describing the shapes of twisted fluctuating DNA. We have also shown
that the variational method and a solution to the equations for the balance of forces
and moments in a rod give the same parameters for the plectoneme. The variational
method, however, is more general since it can be easily extended to account for var-
ious types of interactions in the DNA that would be difficult to model in the other
approach. We also found that the slope of the rotation-extension curve is unaffected
by the length of the DNA and its twisting modulus and decreases with a decreasing
bending modulus.
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Fig. 5 Comparison with experiments. (a) The end-to-end distance Z(L/2)− Z(−L/2) at F =
3.0pN is plotted as a function of the number of turns applied to DNA of three different lengths
– 1000nm, 1250nm and 1430nm. Of these L = 1430nm is one of the lengths in the experi-
ments of Forth et al. (2008) [6]. The calculations were performed assuming Kb = 175pNnm2 and
Kt = 411pNnm2 which were deduced from measurements by Forth et al. (2008) [6]. The salt con-
centration is assumed to be 0.14M. We get a slope of about 61.3nm per turn in the post-plectoneme
region irrespective of the length of the DNA. The slope in the experiment is about 30nm per turn.
(b) We keep the bending modulus constant at Kb = 175pNnm2 and plot the post-plectoneme slope
as a function of the twisting modulus. We see that the slope does not depend on the twisting mod-
ulus. (c) Here we keep the twisting modulus constant at Kt = 411pNnm2 and plot the slope as a
function of the bending modulus. We find that low slopes in the rotation-extension plots are a result
of lower bending moduli.
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