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Abstract. This paper reviews sorne recent advances in understanding the mobility of twin

and phase boundaries in martensites, and discusses the design of systematic experiments.

1. INTRODUCTION

Over the last decade, there has been much advance in the understanding of equilibrium marten-

sitic microstructure, its relation to basic crystallography and its consequences on properties (see

[1] for example). Much, however, remains unknown concerning the nucleation and evolution of

microstructure, and the resultant hysteresis. These have been modelled at various levels of detail,

virtually ail models treat crucial aspects phenomenologically. Similarly, experimental studies are
largely limited to macroscopic (stress-strain) hysteresis loops and few have considered the details

of individual twin and phase boundaries. A predictive understanding of the factors that determine

mobilil, y and hysteresis is lacking.

Consider a rod of a martensitic material at rest above the transformation temperature. Suppose

one end is held fixed, while the other is suddenly pulled with a given velocity. If this velocity

is small, the rod behaves elastically with some shock (stress) waves propagating into it. But if

the velocity is sufficiently high, the rod undergoes a phase transformation as martensitic domains

nucleate and propagate. At what critical velocity do they nucjeate ? Where do they nucleate ? How

many nuclei ? And how fast do they propagate ? How is the behavior of single crystals different

from that of polycrystals, NiTi from CuAINi ? Unfortunately, we know very little about these

questions. This paper discusses some of the difficulties, and some recent attempts to overcome
them. We concentrate on perhaps the easiest issue, the propagation velocity of a twin or phase
boundary'iii an isothermal setting.

Let us consider this in the framework of Abeyaratne and Knowles [2]. fo determine the

propagation velocity of the interface, we first define a thermodynamic driving force f acting on
in2. In the quasistatic setting, it is the rate of change of total energy with respect to thé change

in the position of the interface. In the dynamic setting, it is the rate of energy dissipated at the

phase boundary divided by its velocity. This driving force can be calculated by knowing the states

very close to the phase boundary. For example, in one dimension,

f = []]- ( [M] (i)

where [ [W]] denotes the jump in the stored energy across the phase boundary, (c,  denotes the

average stress, and rh]] den otes the jump in strain.

1 henceforth, we refer to both as phase boundary.
2, rll s idea goes back to Eshelby [3] and is now understood in quite some sophisticatiol-i
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Figure 1. Left : Two snapshots ofthe chain when suddenly pulled from the right. Right : The kinetic
relation that emerges from the chain. All in non-dimensional units.
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We then postulate that the velocity of the phase boundary is a given function of this driving

force :
v = K (f) (2)

This relation K between the driving force and the velocity is known as the kinctie relation and

is regarded as a basic material property like the elastic modulus, transformation strain etc. Our

interest is to find what determines the kinetic relation, and how we may measure it.

2. DERIVING KINETIC RELATIONS

A propagating twin or phase boundary involves a host of important physics at the microscopic

scale. At the same time, not all of this microscopic physics is relevant. One can regard the kinetic
relation as the distillation of the microscopic physics that are relevant to the macroscopic scale.

One approach at introducing this microscopic physics is to augment the usual equations of

continuum physics by introducing viscosity and capillarity (strain-gradient correction), and to
regard the phase boundary to be travelling waves or solitons ofthis équation [6, 7, 8, 9]. Abeyaratne
and Knowles [9] have shown that the velocity of a travelling wave depends on the end-states only
through a very spécifie combination which is exactly the driving force. In short, the travelling

waves define a kinetic relation.

A second approach is to study a discrete problem [10, 11, 12]. Purohit and Bhattacharya [13]
recently considered a chain of masses connected through nonlinear bi-stable springs so that there

are two equilibrium interatomic spacings. They found through simulation for a variety of initial
and boundary conditions, that solutions quickly developed a travelling wave structure consisting
of very sharp phase boundaries. Figure 1 (left) shows two snapshots of a simulation where the
chain was initiall. y in the low-strain phase and then subjected to a sudden pull on the right : note
the clear sonic wave and sharp phase boundary. Furthermore, one can calculate the driving force

across this phase boundary and plot it as a function of the phase boundary velocity. The results
of numerous simulations with different potentials, different initial and boundary conditions,
different but small temperatures-are shown in Figure 1 (right) : they all collapse on one curve
which has the form

ci
1-V2

where f is the (non-dimensionalized) driving force and v is the velocity of the phase boundary
non-dimensionalized by the speed of sound. ln short, these simulations again define a kinetic
relation.
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Figure 2. Left : The microscopic (thin line) and macroscopic (bold curve) behavior of a phase boundary
propagating in a medium with defects. Right : Phase boundary propagating past a non-transforming
precipitate.

The kinetic relations that one obtains from either of the approaches above-viscosity-capillarity

and discrete-pass smoothly through the origin. Therefore, the hysteresis is completely rate-
dependent and vanishes as the loading rate decreases to zero. Experiments in martensites strongly

suggest the converse : that the hysteresis has a rate-independent component. Therefore. phase

boundaries must have a'stick slip'character where we need to apply a critical driving force before
they move. The lack of a rate-independent component appears to be an inherent feature of the
viscosity-capillarity models, but appears to be an artifact of one-dimension in the discrete models.
Specifically, in one dimension, one spring can go over the barrier at a time without requiring a
change in any other interatomic spacing. This effectively reduces the barrier to zero. This is not
be the case in higher dimensions.

Defects in the material can also contribue to the rate-independent component of hysteresis.

Bhattacharya [14] studied the (quasi-static) propagation of a phase boundary in a heterogeneous
one-dimensional media subjected to a given load cr. Thé microscopic propagation law had no rate-
independent component as shown by the light line in Figure 2 (left) ; yet averaging the motion over
a region gave rise to a significant'stick-slip'character with a critical force below which there was
no propagation followed by a very fast rise in velocity beyond this critical force as shown by the

bold curve in Figure 2 (left). Roughly, the phase boundary had to go over the highest microscopic
hurdle before it could have any macroscopic propagation, and would go quite rapidly as soon as
it broke through the last hurdle.

The effect of defects can, however, be greatly exaggerated in one dimension as the phase
boundary has no room to loop around it. Figure 2 (left) shows the results of a calculation where a
phase boundary meets a (non-transforming) inclusion, but is able to propagate past it by skirting

0 0
around it. The obstacle slows it down but does not pin it. Craciun and Bhattacharya [1. 5] have
used this model to show why NiTi4 precipitates, which are introduced to precipitate harden NiTi

by pinning dislocations, have only a minimal effect on the motion of twin boundaries.

3. MEASURING KINETIC RELATIONS

It is difficult to isolate a single phase or twin boundary in a situation where the driving
force can be inferred even in carefully designed experiments [16]. Further, boundary effects are
quite significant in multi-dimensional specimens [17]. Dynamic impact experiments avoid these
difficulties [18], but are difficult to perform. Experiments in one-dimensional wires and bars under
extension are a possibility, but it is difficult to observe the boundary.

Purohit and Bhattacharya [19, 20] have proposed some novel experiments using flexural defor-

mations of wires and beams. Figure 3 (left) shows the behavior of a wire which is initially at rest

in a stretched state and suddenly subjected to a downward velocity at one end. We have a shock
i(stress) wave, a kink or tangent discontinuity and a. phase boundary. It turns out [19] that one can
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Figure 3. Left : A string suddenly pulled downward on the left end. Right : A beam made of a single
crystal can have kinks and curvature discontinuities.

infer both the driving force and velocity of the phase boundary simply by measuring the velocity
of the clearly visible kink. Thus this provides a novel experiment to measure the kinetic relation.

Similarly, beams made of martensites behave quite differently from classical beams. They can
have significant stretch and shear ; and discontinuities in them. For example, a beam made of

a suitably oriented single crystal and subjected to a pure moment can deform with a kink and

a discontinuous curvature [20] as shown in Figure 3 (right). Similarly cantilevers deform with a
pronounced kink which can again be exploited to measure the kinetic relation [20].

Apart from designing these experiments, the study of slender structures is important as most
applications of shape-memory alloys are constructed from wires, strips and tubes and rely on
flexural and torsional modes of deformation.
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