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Abstract

This paper presents a theory for the mechanics of beams made of single crystals of shape memory alloys. The be-

havior of such beams can be quite unexpected and complicated due to the presence and propagation of phase

boundaries. It is shown that the usual laws of mechanics do not fully determine the propagation of phase boundaries

and that there is a need for additional constitutive information in the form of a kinetic relation. A simple experiment to

measure this kinetic relation is proposed. Finally, a strategy to use such beams for propulsion at small scales is pre-

sented. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are several technological applications of shape memory alloys including medical devices (such as
stents, guide wires and dental arch-wires) and thermal actuators (such as thermostats and valves in IC
engines and ventilation systems). In fact, the number of innovative products that exploit the unique
properties of shape memory materials is steadily increasing. Most of these devices are constructed from
Nickel–Titanium (NiTi) wire, strips or tubes and they rely on the flexural (as in strips and tubes), torsional
(as in wire springs) and extensional (as in wires and tubes) characteristics of the alloy. Proper design of
these devices requires an understanding of the behavior of these alloys in the form of lower dimensional
structures. However, much of the current literature on shape memory alloys focusses on uniaxial extension
of bars or wires following the landmark paper of Ericksen (1975) or full dimensional continua.

A notable exception is the work of Berg (1994, 1995) who studied bending of a polycrystalline wire of
NiTi. In addition to traditional three and four point bending experiments, he designed and constructed an
innovative device to subject these wires to a pure moment. He observed that phase transformation was
characterized by a dramatic change in the curvature, and a hysteretic moment–curvature relation very
similar to the commonly observed pseudoelastic force–extension curves. Motivated by these experiments,
he proposed a beam theory with a non-monotone moment–curvature relation. In particular, his theory
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followed the Euler–Bernoulli ansatz that the centerline is inextensible and that the shear is zero (plane
cross-sections remain plane normal to the center-line).

More recently, Bhattacharya and James (1999) have been motivated by experimental advances in thin
films to derive directly a theory of thin films starting from a widely accepted three-dimensional theory.
Bhattacharya (in press) has extended this procedure to rods. Their work is in a variational setting and
applicable for films and rods made of single crystals of shape-memory alloys. They find that the leading
term in the energy at small thickness is the energy associated with stretch and shear. Further, this energy
inherits the multi-well structure from the three-dimensional energy. They further find that the energy of
bending (and torsion) are corrections at higher order, and that the energy associated with these are qua-
dratic and therefore do not have a multi-well character.

In this paper, we study the mechanics of beams made of a single crystal of a shape-memory alloy. Of
particular interest is the laws that govern the propagation and evolution of phase boundaries. This issue has
been widely studied in the one-dimensional extensional setting of bars (see for example, Abeyaratne and
Knowles, 1991; Truskinovsky, 1987). It has been found that the usual balance laws do not completely
determine the propagation velocity of phase boundaries, and that this has to be provided from outside the
theory in the form of an additional constitutive relation known as the kinetic relation. While this theoretical
framework has gained wide acceptance, it has proved to be difficult to measure it experimentally (see for
example Escobar and Clifton (1993)). We find that the notion of kinetic relation is relevant even in beams,
and propose a simple experiment to measure this kinetic relation.

The basic theory––the kinematics, the balance laws, dissipation inequality and the constitutive as-
sumptions––are presented in detail in Section 2. We allow our beams to stretch, shear and bend, and as-
sume following Bhattacharya (in press) that the energy is non-convex in stretch and shear, but convex in the
moment. The kinematics which follow a one director or one Cosserat vector formulation and the balance
laws are classical (we refer the reader to Antman (1995) for background and detailed bibliographic notes).
The constitutive relations are not. Therefore a detailed discussion of the motivation and relation of the
constitutive constants to crystallographically measurable quantities is given. Anticipating the role of phase
boundaries, the treatment of the dissipation inequality is more general, and leads to a notion of driving
force on interfaces.

The equilibria of such beams are studied in Section 3. We show that equilibria which involve phase
boundaries are characterized by discontinuities in tangent as well sharp changes in curvature of the cen-
terline of the beam. The role of the kinetic relation in quasistatic evolution of phase boundaries is discussed,
and a simple experiment based on a cantilever to measure the kinetic relation is described. We turn to
dynamics in Section 4, and show that the jump conditions do not uniquely determine the velocity of the
phase boundaries and that there is indeed room for a kinetic relation.

It would be desirable to confirm the need for a kinetic relation through the solution of simple initial-
boundary value problems like Riemann or impact problems. For example, in bars and strings, Abeyaratne
and Knowles (1991) and Purohit and Bhattacharya (in press) respectively have shown that these problems
admit a one parameter family of solutions, and the kinetic relation provides a selection criterion. Unfor-
tunately, even Riemann and impact problems are too complicated to solve explicitly in beams. In partic-
ular, in contrast to bars and strings the solutions are not piecewise constant in strain etc. since the coupling
between the linear and angular momentum equations does not allow us to reduce them to wave equations.
We have been able to identify some special boundary conditions in impact problems when this coupling
vanishes, and one is able to write a one-parameter family of solutions (see Purohit (2001)). Unfortunately,
these boundary conditions are physically difficult to achieve, and hence the calculations are not included
here.

Note that our constitutive assumptions are quite different from those of Berg: his non-convexity is in the
bending, while ours is in the stretch and shear. We show in Section 3 that our model reproduces some
aspects of his experiments but not others. We suspect that this is due to fact that his experiments are in
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polycrystals, while our theory addresses single crystals. It would therefore be very interesting to repeat his
experiments, and those suggested in Section 3 here in single crystal specimens. It remains an interesting and
open question, whether non-convexity in shear and stretch in single crystals can give rise to a non-convexity
in bending in a polycrystal made of multiple grains.

Section 5 examines if such beams can be used for propulsion in a viscous medium. Various microbes use
flagella and cillia to propel themselves through fluids. They propagate bending waves through the flagellum,
and the resulting resistance from the fluid results in the propulsion. We propose a similar mechanism by
propagating a large number of phase boundaries through the beam.

2. Basic equations

2.1. Kinematics

Consider a beam of length L and constant cross-sectional area A in the reference configuration. Let x be
a typical point on the centerline ð0; LÞ of the reference configuration and t denote an instant of time. We
assume that the diameter of the cross-section is much smaller than the length of the beam. Therefore, we
assume that during any deformation of the beam, planar cross-sections of the beam remain planar (but not
necessarily normal to the centerline). We further assume in this paper that the deformation of the center-
line is planar. Therefore we use a one-director Cosserat description where the deformation is described by
two vector fields: yðx; tÞ which describes the deformation of the centerline of the beam and b̂bðx; tÞ, jb̂bj ¼ 1
which describes the orientation of the cross-section.

Above, both y and b̂b are two-vectors. This is illustrated in Fig. 1. We note that the assumption jb̂bj ¼ 1
does not mean that the cross-sectional area of the beam is assumed to be constant as it deforms. Instead, it
is assumed that the cross-sectional area is completely determined by the axial stretch and shear and thus no
independent kinematic variable is necessary to describe it. Since b̂b is a planar unit-vector, it can be described
uniquely by the angle h it makes with the horizontal:

b̂bðx; tÞ ¼ cosðhðx; tÞÞ̂iiþ sinðhðx; tÞÞ̂jj:

We use the notations b̂b and h interchangeably.
A super-posed dot denotes material time derivative, i.e., partial derivative with respect to t holding x

fixed. Therefore the velocity of a particle on the center-line is _yyðx; tÞ while the rate of rotation of the director
is _hhðx; tÞ. We denote the stretch and the tangent to the centerline respectively as

Fig. 1. Reference (bottom right) and deformed (top left) configuration of the beam.
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k ¼ oy

ox

����
����; t̂t ¼ 1

k
oy

ox
; so

oy

ox
¼ k̂tt:

It is useful to write this with respect to the orthonormal basis fb̂b?; b̂bg:

k̂tt ¼ ab̂b? þ cb̂b:

Clearly k ¼ ða2 þ c2Þ1=2 is the stretch and c is the shear. We also introduce the angle b as the angle
between b̂b and t̂t (cos b ¼ t̂t 	 b̂b). We have

a ¼ k cos b; c ¼ k sin b:

Finally we define j ¼ oh=ox to be the material or inherent curvature. We note that this may be different
than the curvature of the centerline of the beam (which is equal to j=k) due to the stretch. Henceforth, we
use curvature to mean material or inherent curvature unless specifically noted otherwise. The primary
measures of strain in the beam are a, c and j. The reason for this choice will be clear when we study the
balance laws and the dissipation inequality.

We are interested in studying shocks and phase boundaries. We therefore consider deformations yðx; tÞ
and hðx; tÞ that are not smooth, but only continuous in x and t with possible discontinuities in the velocities
_yy and _hh, the stretch k, the tangent t̂t and the curvature j at a finite number of points. Continuity of yðx; tÞ
and hðx; tÞ implies that these jumps cannot be arbitrary but satisfy some jump conditions. If we have
discontinuities in the quantities listed above at the point sðtÞ in the reference configuration, then


_ss½jk̂ttj� ¼ ½j _yyj�; ð1Þ


_ss jjj½ � ¼ ½j _hhj�; ð2Þ
where _ss is the velocity of the discontinuity in the reference configuration.

2.2. Conservation laws

The balance of linear momentum for a part of the beam occupying the interval ðx1; x2Þ requires
d

dt

Z x2

x1

qA _yydx ¼ Tðx2; tÞ 
 Tðx1; tÞ þ
Z x2

x1

f dx; ð3Þ

where q is the density of the beam in the reference configuration, A is its cross-sectional area in the reference
configuration, Tðx; tÞ is the force acting at material point x at time t, and fðxÞ is the body force per unit
reference length at material point x.

For future use, we denote T? ¼ T 	 b̂b? and Tb ¼ T 	 b̂b to be the components of T with respect to the
orthonormal basis fb̂b?; b̂bg.

If there are no discontinuities in the interval ðx1; x2Þ then (3) can be localized to

qA€yy ¼ oT

ox
þ f: ð4Þ

If there is a discontinuity in the interval ðx1; x2Þ then we also need a jump condition. If we have a dis-
continuity at x ¼ sðtÞ in the reference configuration then the required jump condition may be easily derived
by dividing each integral in (3) into two: one from x1 to sðtÞ and the other from sðtÞ to x2. We obtain,


_ss½jqA _yyj� ¼ ½jTj�:
We assume henceforth that q and A are constant and therefore we conclude that


_ssqA½j _yyj� ¼ jTj½ �: ð5Þ
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Similarly, the balance of angular momentum for the part of the beam in the interval ðx1; x2Þ requires
d

dt

Z x2

x1

y
 qA _yydxþ d

dt

Z x2

x1

b̂b
 qI _̂bb̂bbdx ¼ Mðx2; tÞ 
Mðx1; tÞ þ yðx2; tÞ 
 Tðx2; tÞ 
 yðx1; tÞ 
 Tðx1; tÞ

þ
Z x2

x1

y
 f dxþ
Z x2

x1

ldx;

where I is the second moment of area of the cross-section of the beam about an axis that causes the first
moment to vanish, Mðx; tÞ is the moment acting at material point x at time t, and lðxÞ is the body moment
per unit reference length of the beam at material point x.

Note in the above expression that we write the cross-product as a scalar since we are working in two
dimensions. We use this convention through out this paper. The statement above can be localized in the
absence of discontinuities to

y
 qA€yyþ b̂b
 qI €̂bb̂bb ¼ oM
ox

þ o

ox
ðy
 TÞ þ y
 f þ l:

Recalling the definition of h and using (4), this can be simplified to obtain

qI €hh ¼ oM
ox

þ oy

ox

 Tþ l;

or

qI €hh ¼ oM
ox

þ k̂tt
 Tþ l: ð6Þ

When we have a discontinuity at x ¼ sðtÞ, we also obtain the following jump condition,


_ssqI ½j _hhj� ¼ jM j½ �: ð7Þ
In summary, the Eqs. (4) and (6) along with the jump conditions (5) and (7) describe the balance of linear

and angular momentum in the beam.
We now turn to the dissipation inequality. Since we are considering a purely mechanical theory, we

cannot write a balance of energy, but can write a dissipation inequality: rate of work being done by external
forces (and moments) on any part of the body is greater than or equal to the rate of change of kinetic and
potential energy in the same part of the body. Consider a portion of the beam in the interval ðx1; x2Þ. The
rate of work being done by external forces (and moments) on this part of the body is

P ext ¼
Z x2

x1

_yy 	 f
n

þ lðb̂b
 _̂
bb̂bbÞ
o
dxþ _yyðx2; tÞ 	 Tðx2; tÞ 
 _yyðx1; tÞ 	 Tðx1; tÞ þMðx2; tÞb̂bðx2; tÞ 
 _̂

bb̂bbðx2; tÞ


Mðx1; tÞb̂bðx1; tÞ 
 _̂
bb̂bbðx1; tÞ: ð8Þ

Similarly, the rate of change of kinetic and potential energy in the same part of the body is given by

P int ¼ d

dt

Z x2

x1

q
2
j _yyj2

�
þ qI

2
jb̂b
 _̂

bb̂bbj2 þ U

�
dx; ð9Þ

where U ¼ Uðx; tÞ is the energy stored in the beam per unit reference length. We define the power dissipated
as

P diss ¼ P ext 
 P int: ð10Þ
The dissipation inequality states that

P diss P 0 or P ext P P int: ð11Þ
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For smooth motions,

P int ¼
Z x2

x1

_yy 	 q€yy
n

þ ðb̂b
 _̂
bb̂bbÞðb̂b
 qI €̂bb̂bbÞ þ _UU

o
dx:

Therefore

P diss ¼
Z x2

x1

_yy 	 ðf
n


 q€yyÞ þ ðb̂b
 _̂
bb̂bbÞðl
 b̂b
 qI €̂bb̂bbÞ 
 _UU

o
dxþ _yyðx2; tÞ 	 Tðx2; tÞ 
 _yyðx1; tÞ 	 Tðx1; tÞ

þMðx2; tÞb̂bðx2; tÞ 
 _̂
bb̂bbðx2; tÞ 
Mðx1; tÞb̂bðx1; tÞ 
 _̂

bb̂bbðx1; tÞ:

Using the balance of momenta, (4) and (6), this can be rewritten as

P diss ¼ 

Z x2

x1

oT

ox
	 _yy

�
þ oM

ox

�
þ k̂tt
 T

�
ðb̂b
 _̂

bb̂bbÞ þ _UU

�
dxþ _yyðx2; tÞ 	 Tðx2; tÞ 
 _yyðx1; tÞ 	 Tðx1; tÞ

þMðx2; tÞb̂bðx2; tÞ 
 _̂
bb̂bbðx2; tÞ 
Mðx1; tÞb̂bðx1; tÞ 
 _̂

bb̂bbðx1; tÞ:

We can now integrate by parts to obtain

P diss ¼
Z x2

x1

T 	 o _yy
ox

(
þ M

o

ox
ðb̂b
 _̂

bb̂bbÞ 
 ðk̂tt
 TÞðb̂b
 _̂
bb̂bbÞ 
 _UU

)
dx;

or

P diss ¼
Z x2

x1

T 	 o _yy

ox

 (

 ðb̂b
 _̂

bb̂bbÞk̂tt?
!

þ M
o

ox
ðb̂b
 _̂

bb̂bbÞ 
 _UU

)
dx

since T
 k̂tt ¼ 
T 	 k̂tt? for k̂tt? ¼ 
cb̂b? þ ab̂b. Further, since b̂b
 _̂
bb̂bb ¼ _hh, the above expression can be re-

written as

P diss ¼
Z x2

x1

T 	 o _yy

ox

 (

 _hhk̂tt?

!
þ M _jj 
 _UU

)
dx: ð12Þ

We now show that

o _yy

ox

 _hhk̂tt? ¼ _ccb̂bþ _aab̂b?: ð13Þ

First,

Similarly,

Therefore,

which is (13).
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Using (13), we can rewrite (12) as

P diss ¼
Z x2

x1

Tb _cc
n

þ T? _aa þ M _jj 
 _UU
o
dx: ð14Þ

Therefore the dissipation inequality for smooth motions after localization says

Tb _cc þ T? _aa þM _jj 
 _UU P 0: ð15Þ
We now consider a deformation with a discontinuity at sðtÞ. Starting from (11), we obtain the following

condition in addition to (15).


_ss½jUj� 
 qA_ss½j _yyj� 	 h _yyi 
 qI _ss½j _hhj�h _hhiP ½jTj� 	 h _yyi þ hTi 	 ½j _yyj� þ ½jM j�h _hhi þ hMi½j _hhj�:
Using the jump conditions (5) and (7) we get


_ss½jUj�P hTi 	 ½j _yyj� þ hMi½j _hhj�: ð16Þ
Finally using the kinematic conditions (1) and (2) we get

_ss ½jUj�




 hTi 	 ½jk̂ttj� 
 hMi½jjj�
�

P 0: ð17Þ

We thus notice that the term in parenthesis is the force conjugate to the velocity of the discontinuity.
Therefore, following Abeyaratne and Knowles (1990) and Eshelby (1956, 1975) we define it to be the
thermodynamic driving force:

f ¼ ½jUj� 
 hTi 	 ½jk̂ttj� 
 hMi½jjj�: ð18Þ
Therefore, the dissipation inequality becomes:

f _ssP 0: ð19Þ

2.3. Constitutive assumptions

We now make the following constitutitve assumptions.

U ¼ Uða; c; jÞ
T ¼ Tða; c; jÞ
M ¼ Mða; c; jÞ

Substituting these into (15), we write it as

T?

�

 oU

oa

�
_aa þ Tb

�

 oU

oc

�
_cc þ M
�


 oU
oj

�
_jjP 0:

Following Coleman and Noll (1963), we can argue that this inequality has to be true for all smooth
motions (since we can arbitrarily choose the body forces and moments). In particular, we can choose a class
of motions where ðc; a; jÞ are the same, but ð _cc; _aa; _jjÞ take arbitrary values. The above inequality has to hold
for each of these motions. Therefore we conclude that

T? ¼ oU
oa

; Tb ¼
oU
oc

; M ¼ oU
oj

: ð20Þ

Therefore, we only need to specify a constitutive relation for U. We note that this also implies that the
dissipation is zero for any smooth motion, and that the only possible source of dissipation in these beams is
at the discontinuities.
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We now specialize to a specific constitutive relation, appropriate for beams made of single crystals of
materials undergoing martensitic phase transformation. We will argue shortly that it is appropriate in such
situations to assume that the energy is a non-convex function of the stretch and the shear, but a convex
function of the curvature. We assume that there are two natural or stress-free states for the beam:

low strain state a ¼ al; c ¼ cl; j ¼ 0;
high strain state a ¼ ah; c ¼ ch; j ¼ 0:

Above, al and ah are the axial transformation stretches, stress-free stretches or eigen-stretches in the two
phases and cl and ch are the transformation strains, stress-free strains or eigen-strains in shear. We assume
that the moment-free curvature of both states is zero. The free energy U has local minima at these states and
grows away from it. In order to keep things simple, we assume that U is quadratic near these states. We
assume therefore that

U ¼

1
2
EAða 
 alÞ2 þ 1

2
lAðc 
 clÞ

2 þ 1
2
EIj2 in the low strain phase;

Uuðc; aÞ þ 1
2
EIj2 in the unstable phase;

1
2
EAða 
 ahÞ2 þ 1

2
lAðc 
 chÞ

2 þ 1
2
EIj2 þ U0 in the high strain phase;

8>><
>>: ð21Þ

for a suitable Uu. Above, E is the Young’s modulus, l the shear modulus and U0 the difference in the
ground state energies of the two phases. Note that we have assumed that both phases have the same moduli.
This is not true in actual materials, but it simplifies many subsequent calculations. U0 determines which
phase would be more stable in a completely stress-free situation. We have not explicitly specified the regions
of validity of the expressions for the low strain phase and high strain phase, neither have we given any
explicit expression for the unstable phase Uu. We note that it is possible to specify these in such a manner
that U is smooth and has no additional local minima. The details are cumbersome and omitted.

The expressions for the force T and the moment M follow immediately from (20). Omitting the ex-
pressions in the unstable phase, we can write

T ¼ EAðk̂tt 	 b̂b? 
 a�Þb̂b? þ lAðk̂tt 	 b̂b
 c�Þb̂b; ð22Þ
where

a� ¼ al low strain phase;
ah high strain phase;

�

c� ¼ cl low strain phase;
ch high strain phase;

�

and

M ¼ EIj: ð23Þ
We now discuss the justification for choosing an energy that is non-convex in stretch and shear but

convex in the curvature. This follows from the work of Bhattacharya (in press), where a theory for rods
made of martensitic material has been derived starting from a fully three-dimensional theory without the
use of any a priori ansatz about the deformation. This derivation is in a variational setting appropriate for
the study of equilibria, and follows the methods of Bhattacharya and James (1999).

In martensitic materials, we have a high temperature austenite phase, and a low temperature martensite
phase. Typically, the symmetry of the austenite is greater than that of the martensite and this gives rise to
multiple variants of martensite. There is now a well-developed continuum framework for modeling such
materials (see for example, Ball and James (1992), Bhattacharya (1991)), where one describes different
configurations of the crystal as deformations of some fixed reference configuration. It is conventional to
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choose the austenite phase as the reference, so the identity corresponds to the the austenite. Each variant of
martensite can be obtained by an affine deformation of the austenite, and therefore we can describe the
variants through fixed transformation stretch Uj which takes the austenite lattice to the martensite lattice.
We assume that these are positive-definite and symmetric.

For example, there are three variants of martensite in a material undergoing cubic to tetragonal
transformation, with

U1 ¼
g2 0 0
0 g1 0
0 0 g1

0
@

1
A; U2 ¼

g1 0 0
0 g2 0
0 0 g1

0
@

1
A; U3 ¼

g1 0 0
0 g1 0
0 0 g2

0
@

1
A;

where the measured values in NiAl are g1 ¼ 0:9392, g2 ¼ 1:1302. Similarly there are six variants of mar-
tensite in a material undergoing cubic to orthorhombic transformation, with

U1 ¼
g1þg3

2

g1
g3
2

0
g1
g3

2

g1þg3
2

0
0 0 g2

0
@

1
A; U2 ¼

g1þg3
2

g3
g1
2

0
g3
g1

2

g1þg3
2

0
0 0 g2

0
@

1
A;

and the rest obtained by symmetry where the measured values in CuAlNi are g1 ¼ 1:0619, g2 ¼ 0:9178,
g3 ¼ 1:0231.

Suppose we make a beam of the material in the austenite phase, and pick an orthonormal basis
fêe1; êe2; êe3g with êe1 the axis of the beam and êe2 the transverse direction. Now suppose the beam goes through
a phase transformation (say due to cooling) and transforms completely to a variant whose stress-free
configuration is described by an affine deformation with gradient Ui. The directions fêeig now are deformed
to fUjêeig. Suppose further that Uj and the directions fêeig were chosen such that this deformation is planar
except for a uniform stretch in the êe3 direction, i.e.,

êe1 	U2
j êe3 ¼ êe2 	U2

j êe3 ¼ 0: ð24Þ

We can treat this now as a beam in the Ujêe1 
Ujêe2 plane. The stress-free configuration is described by

k ¼ jUjêe1j; b ¼ arc cos
êe2 	U2

j êe1

jUjêe1jjUjêe2j

 !

or equivalently

a ¼ 1

jU
T
j êe1j

; c ¼
êe2 	U2

j êe1

jUjêe2j
:

Note that rigid body rotations of this beam Uj ! QUj do not change these quantities. Finally the moment-
free curvature of this beam is zero.

Suppose we have a beam where only the austenite and the first variant of martensite are active. Then, we
have to choose fêeig such that (24) holds for j ¼ 1. We now have two phases with

al ¼ 1; ah ¼
1

jU
T
1 êe1j

; cl ¼ 0; ch ¼
êe2 	U2

1êe1

jU1êe2j
;

and U0 depends on temperature. Similarly, if we have a beam where only the first two variants are active.
Then, we have to choose fêeig such that (24) holds for both j ¼ 1 and j ¼ 2. We now have two phases with

al ¼
1

jU
T
1 êe1j

; ah ¼
1

jU
T
2 êe2j

; cl ¼
êe2 	U2

1êe1

jU1êe2j
; ch ¼

êe2 	U2
2êe1

jU2êe2j
;
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and U0 is zero. In either case, we have two distinct values for the stress-free values of a and c. At the same
time, the moment-free curvature is zero in each of these states. Therefore, it is natural to assume non-
convexity of the energy in stretch and shear, but convexity in curvature.

We conclude by noting that even in one given material, one can freely change the stress-free values of a
and c by simply changing the crystallographic orientation of the beam fêeig. Consider for example the
material undergoing cubic to orthorhombic transformation as in CuAlNi. Note that the following choice of
fêeig satisfies (24) for both variants 1 and 2:

êe1 ¼
cos n
sin n
0

0
@

1
A; êe2 ¼


 sin n
cos n
0

0
@

1
A; êe3 ¼

0
0
1

0
@

1
A:

It is easy to verify that

al ¼
ffiffiffi
2

p
g1g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
1 þ g2

3 þ 2 sin n cos nðg2
1 
 g2

3Þ
p ; ah ¼

ffiffiffi
2

p
g1g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
1 þ g2

3 þ 2 sin n cos nðg2
3 
 g2

1Þ
p ;

and

cl ¼
4
ffiffiffi
2

p
g2
3 sin n cos nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
1 þ g2

3 þ 2ðg2
1 
 g2

3Þ sin n cos n
p ; ch ¼ 
 4

ffiffiffi
2

p
g2
1 sin n cos nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
1 þ g2

3 þ 2ðg2
3 
 g2

1Þ sin n cos n
p :

2.4. Kinetic relations

In addition to the constitutive assumptions above, we need to prescibe a kinetic relation that governs the
propagation of phase boundaries (discontinuities in which the two end states are in different phases). This is
necessary in quasistatic situations since the velocity of the phase boundary is indeterminate from the
balance laws or equilibrium conditions as we will presently see in Section 3. This is exactly analogous to the
situation in bars as pointed out by Ericksen (1975). Similarly in dynamics we shall soon see in Section 4 that
unlike classical shocks, the jump conditions alone are not sufficient to uniquely determine the propagation
velocity of phase boundaries. This information has to be provided from outside. We do so in the form of a
kinetic relation: we assume that the propagation velocity of the phase boundary is a constitutive function of
the driving force:

_ss ¼ V ðf Þ:

This notion of a kinetic relation was introduced by Abeyaratne and Knowles (see Abeyaratne and
Knowles (1990, 1991)) in their study of bars. We see that the dissipation inequality (19) imposes a re-
striction on the function V:

fV ðf ÞP 0:

For future use, we calculate the driving force for our two-phase material. Substituting (21) and (22) in
(18), a long but straightforward calculation shows that the driving force on a phase boundary with the high
strain phase on the right is given by

f ¼ EA ja�j½ � ha�ið 
 haiÞ þ lA jc�j½ � hc�ið 
 hciÞ þ U0: ð25Þ

Note that we have contributions from the stretch and shear, but none from the curvature.
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3. Quasistatics

We now explore the behavior of these beams by studying their equilibrium shapes. We find that the
equilibrium shapes are characterized by sharp discontinuities in the tangent and jumps in curvature of the
centerline at phase boundaries. We also find that the equilibrium conditions are insufficient to determine
the position of the phase boundary, and this provides room for a kinetic relation. We propose a very simple
experiment to verify this theory and determine the kinetic relation.

To obtain the equilibrium or quasistatic equations we drop terms associated with inertia in Eqs. (4) and
(6) and jump conditions (5) and (7). We obtain

T0 þ f ¼ 0; M 0 þ k̂tt
 Tþ l ¼ 0; ð26Þ

jTj½ � ¼ 0; jM j½ � ¼ 0; ð27Þ

where (0) denotes partial differentiation with respect to x. We however allow the phase boundaries to
propagate and therefore the kinematic jump conditions (1) and (2) hold unchanged.

3.1. Beam subjected to pure moments

Consider a beam subjected to a momentM at its two ends. We assume that there are no forces applied at
the ends, and that the body force as well the body moment are zero. Then we see that T ¼ 0 satisfies (26
part 1) and (27 part 1) automatically. Invoking the moment–curvature relation (23), we see that (2), (26 part
2) and (27 part 2) reduce to

h00 ¼ 0; ½jh0j� ¼ 0; jhj½ � ¼ 0;

irrespective of whether the beam is entirely in the low strain phase or in the high strain phase, or whether
the beam contains a phase boundary at some point s. Clearly the solution is

h ¼ M
EI

xþ c

for some constant c. Therefore, the (inherent) curvature in j ¼ h0 is constant through out the beam.
If this beam is entirely in the low strain phase, then we infer from T ¼ 0 and (22) that

k ¼ kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
l þ c2l

q
; b ¼ bl ¼ arc tan

cl
al

:

Since b is the angle between the tangent and the director, we see that the angle f between the tangent and
the horizontal is given by f ¼ ðM=EIÞxþ c
 bl. Recalling that y0 ¼ k̂tt, we see that

y ¼ kl

EI
M

sin
M
EI

x
��

þ c
 bl

�
i
 cos

M
EI

x
�

þ c
 bl

�
j

�
þ d

for some constant d. Clearly, the centerline is deformed into a circular arc of radius ðEI=MÞkl.
Similarly if the beam is entirely in the high strain phase, we can follow the arguments above to see that

y ¼ kh

EI
M

sin
M
EI

x
��

þ c
 bh

�
i
 cos

M
EI

x
�

þ c
 bh

�
j

�
þ d

for some constant d. Clearly, the centerline is deformed into a circular arc of radius ðEI=MÞkh.
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Now assume that we have a phase boundary at s so that the left part ð0; sÞ of the beam is in the low strain
phase while the right part ðs; LÞ of the beam is in the high strain phase. Then arguing as above, we see

y ¼
kl

EI
M sin M

EI xþ c
 bl

� �
i
 cos M

EI xþ c
 bl

� �
j

� �
þ d
 0 < x6 s;

kh
EI
M sin M

EI xþ c
 bh

� �
i
 cos M

EI xþ c
 bh

� �
j

� �
þ dþ s < x < L;

(

for some constants d
, dþ chosen to satisfy jyj½ � ¼ 0 at s. Clearly, the centerline of the left portion of the
beam deforms to circular arc of radius ðEI=MÞkl while the centerline of the right portion deforms to a
circular arc of radius ðEI=MÞkh. This is shown in Fig. 2. While the inherent curvature is uniform, the
centerline of the beam––which is the experimentally observable quantity––has two distinct curvatures.

Further, notice that the tangent is discontinuous across the interface (with an angle of bh–bl between
them). In fact, this angle is independent of the applied moment and is present even at zero moment. Thus,
we always expect a kink at the phase boundary.

Finally, we can verify from (25) that the driving force across this interface is exactly equal to U0, and thus
independent of the applied moment. This means that the propagation of the phase boundary, if any, would
be independent of the applied moment.

Berg (1994, 1995) designed a clever device to subject polycrystalline wires of NiTi to a pure moment. He
observed that the deformed shape of the wire was very much like the predictions above with two distinct
curvatures, and modelled it using the Euler–Bernoulli beam theory (which is based on an ansatz of zero
stretch and shear) with a non-monotone moment–curvature relation. In other words, he assumed that the
energy was convex with infinite modulus in the stretch and shear, while it is non-convex in curvature. This is
exactly the opposite of what we have done here. We wonder whether the observations of different curva-
tures were mediated by different stretch as we have proposed here, or that the polycrystalline wires truly
have a non-monotone moment–curvature relation.

There is evidence for the latter in Berg’s experiments. First there is no pronounced tangent discontinuity.
Second, he could drive the phase boundary by increasing the applied moment in variance with the con-
clusions above. We note, however, that the phase boundary could have a non-zero driving force even if the
moment–curvature relation were convex if the moduli of the two phases were different as in actual mate-
rials. It would be very interesting to repeat Berg’s experiments with single crystal wires so that these issues
can be probed in detail.

3.2. Cantilever with end load

Consider a cantilever with the end x ¼ 0 fixed and with a dead load 
F ĵj applied to the end x ¼ L
as shown in Fig. 3 (inset). We assume that there are no body forces or moments. The balance of forces

Fig. 2. A beam with a phase boundary subjected to a constant moment.
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((26 part 1) and (27 part 1)) then requires that T is constant. Therefore, we conclude from the constitutive
relation (22) that

EAða 
 a�Þ sin h þ lAðc 
 c�Þ cos h ¼ 0; ð28Þ


EAða 
 a�Þ cos h þ lAðc 
 c�Þ sin h ¼ 
F : ð29Þ
Solving these simultaneously, we obtain

a ¼ a� þ F
EA

cos h; c ¼ c� 
 F
lA

sin h: ð30Þ

In preparation for writing the balance of moments, we use the above to see that

k̂tt
 T ¼ ð
cb̂b? þ ab̂bÞ 	 ð
F ĵjÞ ¼ 
F a�
��

þ F
EA

cos h

�
sin h þ c�

�

 F

lA
sin h

�
cos h

�
:

We use this in the balance of moments (26 part 2) and obtain

EIh00 
 F a�
��

þ F
EA

cos h

�
sin h þ c�

�

 F

lA
sin h

�
cos h

�
¼ 0: ð31Þ

We have to solve this ordinary differential equation subject to the following boundary conditions if the
beam is entirely in one phase:

hð0Þ ¼ h0; h0ðLÞ ¼ 0;

and the following boundary and jump conditions if the beam is in two phases

hð0Þ ¼ h0; h0ðLÞ ¼ 0; ½jhj� ¼ 0; ½jh0j� ¼ 0:

Above, h0 6¼ 0 depends on the experimental setup and is fixed for a given setup. In either case (one phase
or two phases), this equation can be easily solved numerically by a shooting method. Fig. 3 shows the
deformed shape of a beam (centerline) with the following parameters: E ¼ 200:0 GPa, l ¼ 80:0 GPa,
al ¼ 1:0, ah ¼ 1:043, cl ¼ 0:0, ch ¼ 
0:28, L ¼ 0:5 m, A ¼ 0:01 m2, I ¼ 8:333
 10
6 m4 and F ¼ 
50:0 N
with a phase boundary at s ¼ 0:3 separating the low strain phase on the left from the high strain phase on

Fig. 3. Typical deformed centerline of a cantilever with a phase boundary subjected to an end load.
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the right. Furthermore, unlike the case of pure moments we find that the phase boundary is subjected to a
driving force that is linear in F. It also depends on the position of the phase boundary but only slightly (as
shown in Fig. 4).

This cantilever then provides a simple experiment to determine the kinetic relation. The phase boundary
is characterized by a kink and is thus clearly visible. Thus the measurement of the propagation velocity is
relatively easy. At the same time we can easily control the driving force through the applied load F. Further
ah, al, ch, cl can be controlled through sample preparation and h0 by the clamping condition. This could
enable detailed parametric studies.

We now discuss a few limiting cases. If the beam is very slender, (i.e., I=L2 � A), then we see that (31) is
meaningful if and only if F ¼ OðEI=L2Þ, or if F � EA, lA. Therefore, a ¼ a�, c ¼ c�, and (31) reduces to

EIh00 
 F a� sin hð þ c� cos hÞ ¼ 0:

We have to solve this subject to the same boundary and jump conditions above.
If on the other hand, the beam is stubby (i.e., if I=L2 � A), then a, c become too large to be meaningful

unless F ¼ OðEAÞ ¼ OðlAÞ. Then, (31) with the appropriate boundary and jump conditions reduces to
h ¼ h0. Therefore, (30) yields,

a ¼ a� þ F
EA

cos h0; c ¼ c� 
 F
lA

sin h0:

Suppose, now, that this beam has a phase boundary at point x ¼ s with the low strain phase on the left
and the high strain phase on the right. The driving force on this interface is given by (25) as

f ¼ F ð 
 ðah 
 alÞ cos h0 þ ðch 
 clÞ sin h0Þ þ U0:

Therefore, the experiment proposed above would be much simpler in this limit.
Finally, if the beam is stubby, and if the force is small, i.e., if I=L2 � A, F =EA � a� and F =lA � c� then

we have piecewise rigid deformation,

a � a�; b � b�; h � h0:

This deformation would be trivial in case the beam was made of a single phase. For example, if the beam
was made of the low strain phase, the centerline is straight with an angle f ¼ h0 
 bl from the horizontal.

Fig. 4. Driving force on the phase boundary.
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The deformation is non-trivial in case the beam has a phase boundary at point x ¼ s with the low strain
phase on the left and the high strain phase on the right. The centerline would then have a kink at x ¼ s with
the left side making an angle f ¼ h0 
 bl from the horizontal and the right an angle f ¼ h0 
 bh. Further,
there is a non-trivial driving force on the phase boundary. The formula (25) cannot be applied here; instead
we have to go back to the more fundamental (18). We obtain,

f ¼ U0 
 ð
F ĵjÞ 	 ja�j½ �b̂b?



þ jc�j½ �b̂b
�
¼ U0 
 F ja�j½ � cos h0 þ F jc�j½ � sin h0:

We see that there is a non-trivial driving force on the interface and that this depends on the applied load.
James and Rizzoni (in press) and James (in press) have discussed the use of the piecewise rigid approxi-
mation in the modelling of active materials.

4. Shocks and phase boundaries

We now turn to dynamics and study the restrictions imposed by the jump conditions on the propagation
of discontinuities in a two phase material. We call a discontinuity a shock if there is no phase change across
it and a phase boundary if there is. We show again that there is room for a kinetic relation.

We begin by combining the kinematic and momentum jump conditions. Eliminating ½j _yyj� between (1)
and (5) we obtain,

jTj½ � ¼ qA_ss2½jk̂ttj�:
Substituting for T from (22), we expand this to be

EAðb̂b? � b̂b?Þ½jk̂ttj� 
 EA½ja�j�b̂b? þ lAðb̂b� b̂bÞ½jk̂ttj� 
 lA½jc�j�b̂b ¼ qA_ss2½jk̂ttj�:
Dividing by qA yields,

_ss2




 c21b̂b
? � b̂b?

�
½jk̂ttj� ¼ c21½ja�j�b̂b? þ c22ðb̂b� b̂bÞ½jk̂ttj� 
 c22½jc�j�b̂b; ð32Þ

where c1 ¼ ðE=qÞ1=2 is the bar wave speed and c2 ¼ ðl=qÞ1=2 is the shear wave speed.
We deal similarly with the terms involving curvature and moment. Eliminating ½j _hhj� between (2) and (7)

we obtain

½jM j� ¼ qI _ss2½jh0j�:
Substituting for M from (23), and dividing by qI , we obtain

_ss2




 c21
�
½jh0j� ¼ 0: ð33Þ

This clearly implies that discontinuities in the curvature h0 necessarily travel at the bar wave speed. This is
true irrespective of whether the discontinuity is a shock (in either phase) or a phase boundary. Conversely, a
discontinuity travelling at any other speed does not allow the curvature to jump.

There is a far richer class of discontinuities allowed by (32), as we presently see.

4.1. Shocks

We first look at discontinuities where both states are in the same phase so that ja�j½ � ¼ jc�j½ � ¼ 0. Sub-
stituting these in (32) reduces it to

_ss2½jk̂ttj� ¼ c21ðb̂b? � b̂b?Þ½jk̂ttj� þ c22ðb̂b� b̂bÞ½jk̂ttj� ð34Þ
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in both the low strain and the high strain phase. Since we may assume without loss of generality
that jk̂ttj

� �
6¼ 0 (else, we would have no discontinuity), we obtain _ss2 and jk̂ttj

� �
as the eigenvalue and

eigenvector of

c21ðb̂b? � b̂b?Þ þ c22ðb̂b� b̂bÞ: ð35Þ
We have two possible solutions,

_ss2 ¼ c21 with jk̂ttj
h i

jjb̂b? and _ss2 ¼ c22 with jk̂ttj
h i

jjb̂b: ð36Þ

We can thus have shocks which propagate at either the bar or the shear wave speeds, but with constraints in
the jump on oy=ox ¼ k̂tt.

To understand these a little more, let us specialize to the case when the tangent is continuous. Then, the
first solutions tells us that arbitrary jumps in the stretch k with no change of phase necessarily have no shear
(since the tangent is necessarily perpendicular to the director b̂b) and travel at the bar wave speed. These are
exactly the shock waves that one has in bars. The second solution requires the tangent to be parallel to the
director and thus requires an unphysically large amount of shear. Therefore, we believe that this solution is
unphysical when the tangent is continuous.

It is interesting to compare these with the case of strings. There, shocks with discontinuous tangent
necessarily have no discontinuity in stretch k, and propagate at a velocity equal to ðT ðkÞ=kÞ1=2 (see Purohit
and Bhattacharya (in press)). There appears to be no direct analog of these in beams. We wonder if such
solutions would appear as limits of certain travelling waves when the bending modulus goes to zero, or if
such solutions are dispersive in beams.

4.2. Phase boundaries

We now consider discontinuities in which the two end states are in two different phases. We now
have to study (32) in all generality. We rewrite it as two scalar equations (components with respect to b̂b?

and b̂b):

ð_ss2 
 c21Þ½jk̂ttj� 	 b̂b? ¼ 
c21½ja�j�; ð37Þ

ð_ss2 
 c22Þ½jk̂ttj� 	 b̂b ¼ 
c22½jc�j�: ð38Þ
Clearly these equations do not uniquely determine the velocity of the phase boundary. In fact, it can take
a range of values depending on jkj½ � and ĵttj

� �
. It therefore appears that the jump conditions alone are

insufficient to determine the phase boundary velocity and that we need to invoke a kinetic relation.
There is an interesting exception, when we a priori know that the tangent is continuous. Then (37) and

(38) reduce to

ð_ss2 
 c21Þ½jkj�̂tt 	 b̂b? ¼ 
c21½ja�j�; ð39Þ

ð_ss2 
 c22Þ½jkj�̂tt 	 b̂b ¼ 
c22½jc�j�: ð40Þ
We can solve these simultaneously for _ss2 and ½jkj�. In particular,

_ss2 ¼ c21c
2
2

cos b jc�j½ � 
 sin b ja�j½ �
c22 cos b jc�j½ � 
 c21 sin b ja�j½ � :

The formulas for jkj½ � are omitted for brevity. Thus, the velocity of a phase boundary would be completely
determined by the jump conditions if we knew a priori that the tangent is continuous. This appears to be in
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contradiction to the behavior of bars, where the jump conditions do not determine the velocity of the phase
boundary. However, a bar is a beam with zero transformation strain in shear jc�j½ � ¼ 0 and infinite shear
modulus l ¼ 1. Taking the limits jc�j½ � ! 0, l ! 1 in (40), we see that it reduces to the equation t̂t 	 b̂b ¼ 0,
and we are now required to find both _ss2 and jkj½ � from the Eq. (39) which reduces to

_ss2




 c21
�
jkj½ � ¼ 
c21 ja�j½ �:

This is exactly the situation in bars. Thus we see that the additional degree of freedom in shear that beams
possess, breaks the degeneracy in bars and provides exactly the additional information to determine the
phase boundary velocity.

Another noteworthy point here is that when the transformation shear strain c� � 0 we obtain _ss2 � c22.
This means that phase boundaries with continuous tangent in such materials would travel at nearly the
shear wave speed.

5. Propulsion through a viscous medium

Various micro-organisms propel through viscous media by beating flagella or cilia. In particular, a
flagellum in eucaryotic cells is a slender structure (tens of microns long and tenths of microns wide) that
achieves propulsion by actively deforming in a bending wave propagating from one end to the other (see for
example Bray (1992)). This deformation is resisted by the viscous motion, and this in turn propels the
organism. We saw in the last section that phase boundaries in beams are accompanied by a kink across
which one has a large shear. Therefore, by creating and moving the phase boundaries in a particular se-
quence, the beam can be deformed to mimic these wave like motions.

We assume that the deformation of the beam is piecewise rigid so that h is uniform (i.e., hðx; tÞ ¼ hðtÞ).
Consequently the angle that the tangent to the centerline makes with the horizontal is fðtÞ þ f0 in the high
strain phase and fðtÞ 
 f0 in the low strain phase. The stretch is kh in the high strain phase and kl in the low
strain phase. We assume that the position and evolution of the phase boundaries is a given input, and try
to determine the overall motion of the beam. We do not discuss how one may generate such phase
boundaries but refer the reader to Purohit and Bhattacharya (in press). Finally, we only consider quasi-
statics.

As the beam moves, the viscous medium resists this motion, and we model this resistance as a body force
per unit reference length

f ¼ dtð _yy 	 t̂tÞ̂ttþ dnð _yy 	 n̂nÞn̂n ð41Þ

where dt and dn are the tangential and normal drag coefficients respectively (see, for instance, Brennen and
Winet (1977)).

Suppose we have a beam with two phase boundaries moving periodically in a prescribed manner. Let
s1ðtÞ and s2ðtÞ denote the positions of the phase boundaries in the reference configuration, and let the
leftmost part of the beam be in the low strain phase. Then given the position y0ðtÞ of the leftmost
point x ¼ 0, and fðtÞ, we can use the piecewise rigid assumption to write down the position of the centerline
as

yðx; tÞ ¼
y0ðtÞ þ klx̂tt
 06 x6 s1;
y0ðtÞ þ kls1 t̂t
 þ khðx
 sÞ̂ttþ s1 6 x6 s2;
y0ðtÞ þ kls1 t̂t
 þ khðs2 
 s1Þ̂ttþ þ klðx
 s2Þ̂tt
 s2 6 x6 L;

8><
>: ð42Þ
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where t̂t
 ¼ cosðf 
 f0Þ̂iiþ sinðf 
 f0Þ̂jj and t̂tþ ¼ cosðf þ f0Þ̂iiþ sinðf þ f0Þ̂jj respectively. Differentiating with
respect to t, we obtain the particle velocity

_yyðx; tÞ ¼
_yy0ðtÞ þ _ffklxp̂p
 06 x6 s1;
_yy0ðtÞ þ kl _s1s1 t̂t
 þ _ffkls1p̂p
 
 kh _s1s1 t̂tþ þ _ffkhðx
 s1Þp̂pþ s1 6 x6 s2;
_yy0ðtÞ þ kl _s1s1 t̂t
 þ _ffkls1p̂p
 þ khð _s2s2 
 _s1s1Þ̂ttþ þ _ffkhðs2 
 s1Þp̂pþ 
 kl _s2s2 t̂t
 þ _ffklðx
 s2Þp̂p
 s2 6 x6 L;

8><
>:

ð43Þ
where p̂p
 ¼ 
 sinðf 
 f0Þ̂iiþ cosðf 
 f0Þ̂jj and p̂pþ ¼ 
 sinðf þ f0Þ̂iiþ cosðf þ f0Þ̂jj are perpendicular to t̂t


and t̂tþ respectively. We seek to obtain the unknowns _yy0ðtÞ and _ffðtÞ using the balance of forces and
moments,

0 ¼
Z L

0

dtð _yy 	 t̂tÞ̂tt
n

þ dnð _yy
 ð _yy 	 t̂tÞ̂ttÞ
o
dx ð44Þ

and

0 ¼
Z L

0

ðyðxÞ 
 yð0ÞÞ 
 dtð _yy 	 t̂tÞ̂tt
n

þ dnð _yy
 ð _yy 	 t̂tÞ̂ttÞ
o
dx: ð45Þ

A long and cumbersome but unenlightening calculation then yields

AðsÞRðfÞv ¼ BðsÞ_ss; ð46Þ

where AðsÞ is a 3
 3 matrix, s ¼ fs1; s2gT, RðfÞ is a 3
 3 rotation matrix of angle f about the axis per-
pendicular to the plane of the beam, v ¼ f _yy1ð0; tÞ; _yy2ð0; tÞ; _ffðtÞgT, BðsÞ is a 3
 2 matrix and _ss ¼ f_ss1; _ss2gT.
Assuming that A is invertible 1 this equation can be solved to obtain

v ¼ RTA
1B_ss: ð47Þ

Since the phase boundary motion is periodic with period t we integrate this from time 0 to t to see if
there is any propulsion. This integration becomes a contour integration on the ðs1; s2Þ-plane. The pres-
ence of R makes it impossible to do the integrations explicitly. The integrations are therefore per-
formed numerically over contours that avoid the singular curve of A. It is possible to integrate the
equations even if one chooses a trajectory that crosses (non-tangentially) the singular curve at a finite
number of points by requiring the continuity of y0 and f. The results from one of these calculations are
shown in Fig. 5.

We see that we have significant tumbling, but very little linear motion. While we have not made any
systematic attempt to optimize the propulsion by proper choice of trajectory, our numerical experiments
suggest that this behavior is typical. The relatively short length of the beam makes it easy to tumble unless
the phase boundaries are perfectly symmetric; and any propulsive gains made in one part of the period are
reversed in the other part as the phase boundaries reset. It will be interesting to study this in greater detail,
perhaps using the framework of geometric phases developed by Kelly and Murray (1995) and Marsden and
Ostrowski (1998).

We now propose a strategy to overcome the difficulties above. We show that it is possible to generate
linear propulsion with little tumbling by having multiple phase boundaries moving from one end of the
beam to the other. Suppose we have a long beam, and we periodically nucleate a phase boundary on the left

1 A is invertible except on a certain curve in the ðs1; s2Þ-plane. We call this curve the singular curve of A.
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(x ¼ 0), and have them propagate to the right with a propagation velocity v till they traverse through the
entire beam and exit at the right (x ¼ L). Clearly we have to alternately nucleate a low/high and a high/low
phase boundary. Then at any instance of time t, the beam is composed of alternating segments of the
low and high strain phase separated by phase boundaries which have an uniform spacing. This is shown
in Fig. 6. Suppose at the instant t, the beam has N phase boundaries at the positions s1ðtÞ, s2ðtÞ; . . . ; sN ðtÞ
with

si 
 si
1 ¼ d; i ¼ 2; . . . ;N :

We refer to the segment of the beam ð0; s1Þ the first segment, and the segment ðsi
1; siÞ to be the ith
segment for i ¼ 2; . . . ;N .

Fig. 5. Positions in space of a beam with two phase boundaries.
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Let us first assume that the first segment is in the high strain phase; subsequent segments alternate
between the low and high strain phases. Therefore,

kðx; tÞ ¼ ki; fðx; tÞ ¼ fi si
1 < x < si;

where

ki ¼
kh i odd;
kl i even;

�
fi ¼

fh ¼ f þ f0 i odd;
fl ¼ f 
 f0 i even:

�

The tangent and the normal to the centerline of the beam are

t̂ti ¼ cos fîiiþ sin fîjj; n̂n ¼ 
 sin fîiiþ cos fîjj

in the ith segment. Note that . For future use, we set

aij ¼ t̂ti 	 t̂tj ¼ n̂ni 	 n̂nj ¼
1 iþ j even;

 sin 2f0 iþ j odd;

�

bij ¼ t̂ti 	 n̂nj ¼ n̂ni 	 t̂tj ¼
0 iþ j even;
sin 2f0 iþ j odd:

�

The position of the centerline of the beam is given by

yðx; tÞ ¼ y0ðtÞ þ k1s1 t̂t1 þ
Xk
i¼2

kiðsi 
 si
1Þ̂tti þ kkþ1ðx
 sk Þ̂ttkþ1

¼ y0ðtÞ þ k1s1 t̂t1 þ
Xk
i¼2

kid t̂ti þ kkþ1ðx
 sk Þ̂ttkþ1 ð48Þ

for sk < x6 skþ1. Therefore, the velocity of a point on the centerline is given by

_yyðx; tÞ ¼ _y0y0ðtÞ þ _ff k1s1n̂n1

 
þ
Xk
i¼2

kidn̂ni þ kkþ1ðx
 skÞn̂nkþ1

!
þ v k1 t̂t1




 kkþ1 t̂tkþ1

�
ð49Þ

for sk < x6 skþ1.
We first use the balance of angular momentum to show that if N is large, then _ff ¼ 0, or that the tumbling

is eliminated by putting a large number of interfaces. To that end, we calculate

Fig. 6. Beam with multiple phase boundaries.
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lf ðx; tÞ ¼ ðyðx; tÞ 
 y0ðtÞÞ 
 f

¼ ðy





 y0Þ 	 t̂t
�
t̂tþ ðy




 y0Þ 	 n̂n
�
n̂n
�

 dtð _yy 	 t̂tÞ̂tt



þ dnð _yy 	 n̂nÞn̂n
�

¼ dn ðy




 y0Þ 	 t̂t
�
ð _yy 	 n̂nÞ 
 dt ðy




 y0Þ 	 n̂n

�
ð _yy 	 t̂tÞ

¼ dn k1s1a1 kþ1

 
þ
Xk
i¼1

kidai kþ1 þ kkþ1ðx
 skÞ
!

_yy 	 n̂nkþ1

 
þ _ff k1s1a1 kþ1

 
þ
Xk
i¼1

kidai kþ1 þ kkþ1ðx
 skÞ
!

þ vk1b1 kþ1

!


 dt k1s1b1 kþ1

 
þ
Xk
i¼1

kidbi kþ1

!

_yy 	 t̂tkþ1

 
þ _ff k1s1b1 kþ1

 
þ
Xk
i¼1

kidbi kþ1

!
þ vðk1a1 kþ1 
 kkþ1Þ

!

¼ _ffd2 dn
Xk
i¼1

kiai kþ1

 !2
0
@ 
 dt

Xk
i¼1

kibi kþ1

 !2
1
A

þ dn
Xk
i¼1

kidai kþ1

 !
akþ1ð þ bkþ1ðx
 skÞÞ 
 dt

Xk
i¼1

kidbi kþ1

 !
ckþ1

þ ekþ1 þ fkþ1ðx
 skÞ þ gkþ1ðx
 skÞ2

for sk < x6 skþ1. Therefore,Z skþ1

sk

lf dx ¼ _ffd3 dn
Xk
i¼1

kiai kþ1

 !2
0
@ 
 dt

Xk
i¼1

kibi kþ1

 !2
1
A

þ dn
Xk
i¼1

kidai kþ1

 !
akþ1d
�

þ bkþ1

d2

2

�

 dtd

Xk
i¼1

kidbi kþ1

 !
ckþ1

þ dekþ1 þ fkþ1

d2

2
þ gkþ1

d3

3
: ð50Þ

Now note that

kiai kþ1 ¼

kh i odd k þ 1 odd;

kh sin 2f0 i odd k þ 1 even;

kl sin 2f0 i even k þ 1 odd;
kl i even k þ 1 even;

8>><
>>:

so that

Xk
i¼1

kiai kþ1 �
k
4

khð1ð 
 sin 2f0Þ þ klð1
 sin 2f0ÞÞ
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for k large enough and averaged over k odd and even. Similarly,Xk
i¼1

kibi kþ1 �
k
4

kh sin 2f0ð þ kl sin 2f0Þ

for k large enough and averaged over k odd and even. Substituting these in (50), we see that

Z skþ1

sk

lf dx ¼
_ffd3hk�i
16

k2 dnð1
�


 2 sin 2f0 þ sin2 2f0Þ 
 dt sin
2 2f0

�
þOðkÞ:

Therefore, if the number of phase boundaries N is large enough,Z L

0

lf dx �
XN
k¼1

Z skþ1

sk

lf dx �
_ffd3N 3hk�i

48
dnð1
�


 2 sin 2f0 þ sin2 2f0Þ 
 dt sin
2 2f0

�
þOðN 2Þ:

Therefore we see that if N is large enough, the balance of angular momentum,Z L

0

lf dx ¼ 0

implies that

_ff ¼ 0:

Now, according to (41) and (49), the body force per unit length,

f ¼ dtð _y0y0 	 t̂tkþ1Þ̂ttkþ1 þ dnð _y0y0 	 n̂nkþ1Þn̂nkþ1 þ v dt k1a1 kþ1ð




 kkþ1Þ̂ttkþ1 þ dnk1b1 kþ1n̂nkþ1

�
for sk < x6 skþ1. Therefore for N large enough,Z L

0

f dx ¼
XN
k¼1

Z skþ1

sk

f dx � A _yy
 vah;

where

A ¼ dtĥtt� t̂ti þ dnhn̂n� n̂ni;

ah ¼
1

2
dtðkh sin 2f0



þ klÞ̂ttl 
 dnkh sin 2f0n̂nl
�
:

Therefore, the balance of forces gives us

_yy ¼ vA
1ah:

This gives the velocity as long as the first segment is in the high strain phase.
We can do a similar calculation when the first segment is in the low strain phase. We obtain

_yy ¼ vA
1al;

where

al ¼
1

2
dtðkl sin 2f0



þ khÞ̂tth 
 dnkl sin 2f0n̂nh
�
:

Therefore, we obtain a propulsion with overall velocity

v
2
A
1ðah þ alÞ:
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Two aspects were crucial above. First, that the beam was long with a large number of interfaces. This
seems important for preventing tumbling. Second, all the phase boundaries moved in one direction. This is
consistent with the behavior observed in flagella.
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