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A new generation of single-molecule experiments has opened up
the possibility of reexamining many of the fundamental processes
of biochemistry and molecular biology from a unique and quan-
titative perspective. One technique producing a host of intriguing
results is the use of optical tweezers to measure the mechanical
forces exerted by molecular motors during key processes such as
the transcription of DNA or the packing of a viral genome into its
capsid. The objective of the current article is to respond to such
measurements on viruses and to use the theory of elasticity and a
simple model of charge and hydration forces to derive the force
required to pack DNA into a viral capsid as a function of the fraction
of the viral genome that has been packed. The results are found to
be in excellent accord with recent measurements and complement
previous theoretical work. Because the packing of DNA in viral
capsids occurs under circumstances of high internal pressure, we
also compute how much pressure a capsid can sustain without
rupture.

In rapid succession over the last several years, a number of new
experimental insights into the way DNA in viruses is packaged

and ejected have been garnered. For example, the structure of
both the portal motor (1) as well as an example of the membrane
puncturing device that leads to the delivery of the viral genome
have been determined (2). At lower resolution, results of cryo-
electron microscopy experiments have revealed the structure of
certain viruses at various stages during self-assembly (3) and the
ordered arrangements of DNA in concentric circles within viral
capsids (4–6). These insights have recently been complemented
by single-molecule experiments in which the force exerted by the
portal motor is measured during the process of viral packing
itself (7).

The problem of DNA packing is intriguing not only on the
grounds of sheer geometric crowding, but also because of the
recognition that the regions within which DNA is packaged
(such as in a viral capsid) have linear dimensions that are
comparable to the persistence length of the DNA, resulting in a
steep elastic energy cost to be paid to effect such packing. The
aim of this article is to take stock of the mechanical forces that
come into play during viral packing and to reckon these forces
explicitly in closed form in a simple model of DNA elasticity and
interactions. These forces are then compared to those measured
in fascinating recent single-molecule experiments on such pack-
ing (7). Because one of the conclusions to emerge from exper-
iments, as well as models of the energetics of viral packing (8, 9),
is that the viral capsid may be under pressures as high as 60
atmospheres, we also estimate the maximum pressure that such
a capsid can sustain without rupturing.

For the purposes of evaluating DNA packing forces, we take
our cue from the structural insights into viral packing described
above, cognizant, however, that the structural story is likely to be
more complicated than the picture adopted here. In particular,
we consider three capsid geometries meant to mimic features of
real bacteriophage capsids as shown in Fig. 1. Further, we assume
that the DNA adopts a configuration we will refer to as an
inverse spool that features concentric hoops packed from the
outside of the capsid towards the center as shown in Fig. 1. These
structural insights are gleaned not only from a variety of
different experiments (4–6), but also emerge from theoretical

analysis and simulations of viral packing that take into account
the relevant competing energies (8, 9).

In addition to the structural insights that have emerged
concerning the ordered arrangements of DNA within viral
capsids, there has been enormous progress in assessing the
atomic-level structures of the capsids themselves (10). These
structures will prove important for our estimates of the critical
pressure that such capsids can sustain without rupture. We note
that, as can be seen at the Viper website (11), many of the key
viral capsids of interest are icosahedral, though the �29 bacte-
riophage for which the actual packing forces were measured has
a structure more like a capped cylinder (12). Below we evaluate
the packing forces and critical rupture stresses for simplified
models of both capped cylinders and icosahedral capsids.

The Energetics of Viral Packing
As already elucidated by Riemer and Bloomfield (13) and others
(8, 9, 14), the energetics of viral packing is characterized by a
number of different factors including: (i) the entropic-spring
effect that causes the DNA in solution to adopt a more spread-
out configuration than that in the viral capsid, (ii) the energetics
of elastic bending that results from inducing curvature in the
DNA on a scale that is smaller than the persistence length of �p �
50 nm, and (iii) those factors related to the presence of charge
both on the DNA itself and in the surrounding solution. As
shown by Riemer and Bloomfield (13), the entropic contribution
is smaller by a factor of 10 or more relative to the bending
energies and those mediated by the charges on the DNA and the
surrounding solution, and hence we make no further reference
to it. As a result, just like in earlier work (8, 9, 13), we examine
the interplay of elastic and interaction forces, though we neglect
surface terms originating from DNA–capsid interactions. Our
strategy is to construct analytic estimates of the elastic and
interaction energies separately and then to assemble them to
obtain a complete estimate of the internal force within the
capsid. These analytical results are then compared to measure-
ments made on the �29 bacteriophage (7).

The estimate that we obtain for the elastic forces associated
with viral packing is predicated upon the most naive usage of the
linear elastic theory of beams. In particular, we neglect the
accumulation of stored elastic energy as a result of twist and

§To whom correspondence should be addressed. E-mail: phillips@aero.caltech.edu.

Fig. 1. Three simplified models of the viral capsid used to illustrate the
calculation of the packing energy. These models are a cross-sectional cut
through the capsid and the shaded circles represent the strands of DNA that
point into and emerge from the page.
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concentrate instead only on the contribution of the bending
energy. Within this approximation, the elastic energy is given as

Eel �
k
2�dsR�2�s�, [1]

where R(s) is the radius of curvature of the DNA at a position
on the molecule parametrized by the arclength s, and k � �pkBT
is the flexural rigidity.

Though we imagine the viral DNA to be packed in the form
of a helix, from the perspective of our elastic energy functional,
the geometry may be thought of as a stacking of hoops of radius
R. The key point is that although the actual radius of curvature
is given by R(1 � p2�4�R2), where p is the helical pitch, for the
geometries of interest here p � 3 nm while R � 20 nm and hence
the parameter p2�4�R2 �� 1 and can be neglected without loss
of any important insights. One might worry that at later stages
of packing the radius of curvature becomes comparable to the
pitch of the helix, but we find that the effect of including the pitch
is quantitatively insignificant even in this limit. In light of this
approximation the elastic energy can be written as

Eel � ��pkBT �
i

N�Ri�

Ri
, [2]

where N(Ri) is the number of hoops that are packed at the radius
Ri (13). The presence of N(Ri) reflects the fact that because of
the shape of the capsid as the radius gets smaller the DNA can
pack higher up into the capsid, thus increasing the number of
allowed hoops. N(R) for the three capsid geometries considered
here is shown in Table 1.

To make analytic progress with the expression for the stored
elastic energy given above, we convert it into an integral of the
form

Eel �
��pkBT

�3ds�2 �
R

Rout N�R��

R�
dR�. [3]

The summation 	i has been replaced by an integral 
R
Rout [dR��

(�3ds�2)] where the integration bounds are the inner and outer
radius of the inverse spool, and �3ds�2 is the horizontal spacing
between adjacent strands of the DNA packed in a hexagonal
array, as shown in Fig. 1. The replacement of the sum by an

integral is a quantifiable approximation, the significance of
which will be described elsewhere.

The calculation described above will yield the elastic energy in
terms of the inner radius (R in Fig. 1) of the packed DNA. On
the other hand, for the purposes of comparing with the exper-
iments of Smith et al. (7), we want to express the energy and force
in terms of the fraction of the genome packed. The length packed
is generally given as

L �
2

�3ds
�

R

Rout

2�R�N�R��dR�. [4]

With this expression in hand we can solve for R(L) and substitute
it into our expression for the energy, yielding Eel(L). The elastic
contribution to the packing force as a function of length packed
can then be evaluated as Fel(L) � dEel�dL.

To illustrate how to explicitly reckon the elastic energy we first
consider this energy for the simplest (and perhaps unrealistic)
case of a cylindrical capsid, with DNA in the inverse spool
configuration. Such a geometry may be obtained, for instance, by
neglecting the caps of the �29 virus. In particular, a cylinder
(compare Fig. 1a) is characterized by the geometric parameters
z (the height) and Rout (the capsid radius). In this case, the
number of hoops at a radius R� is given by N(R�) � z�ds because
the vertical spacing between two adjacent DNA strands is ds. The
corresponding elastic energy obtained by using Eq. 3 is

Eel�R� �
2��pkBTz

�3ds
2 log�Rout

R �. [5]

From Eq. 4 it follows that the packed length is given by

L�R� � �2�z��3ds
2��Rout

2 � R2� [6]

or equivalently, R � Rout(1 � �3ds
2L�2�zRout

2 )1/2. The elastic
energy may now be rewritten as a function of the packed length
of DNA, namely,

Eel � �
��pkBTz

�3ds
2 log�1 �

�3ds
2L

2�zRout
2 �. [7]

This result may be used in turn to compute the force associated
with the accumulation of elastic energy. In particular, differen-
tiating the energy obtained above with respect to the length of
packed DNA, we find

Table 1. Number of strands at distance R from the central axis (N), the packaged length (L), the bending energy (Eel), and the related
force (Fel) for various capsid geometries

Geometry N(R) L(R) Eel(R) Fel(L)

Cylinder z
ds

2�z

�3ds
2 �Rout

2 � R2�
2��pkBTz

�3ds
2 log�Rout

R � �pkBT

2�Rout
2 � �3ds

2L�2�z�

Capped
cylinder

zRout � 2h�Rout � R�

dsRout

2�

�3ds
2 �z � 2h��Rout

2 � R2�

�
8�h

3Rout�3ds
2 �Rout

3 � R3�

2��pkBT

�3ds
2 ��z � 2h�log

Rout

R

�
2h

Rout
�Rout � R��

2��pkBTh

�3ds
2 � 2 � �z�h�

A�1 �
B

A
�

L

A
�

�
1

�1 �
B

A
�

L

A
�

Sphere 2�Rout
2 � R2�1/2

ds

8�

3�3ds
2 �Rout

2 � R2�3/2
�

4��pkBT

�3ds
2 ��Rout

2 � R2

� Routlog�Rout � �Rout
2 � R2

R
��

�pkBT

2�Rout
2 � �3�3ds

2L

8�
�2/3�

The constants A and B for the capped cylinder are given by A � 2�(z � 2h)Rout
2 ��3ds

2 and B � 8�hRout
2 �3�3ds

2.
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Fel�L� �
��pkBT�2Rout

2 �

1 � �3ds
2L�2�zRout

2 . [8]

Though the algebra is somewhat more involved for other
capsid shapes, these same basic steps may be imitated in each
case to obtain the elastic contribution to the energy. The results
for various geometries are compiled in Table 1.

Thus far, our model does not do justice to all of the competing
energies in the problem. In particular, the elastic contributions
must be supplemented by interaction terms related to the
presence of charges both on the DNA and in the surrounding
solution. Measurements (15–17) suggest that the interaction
energy per unit length is given by a potential e(ds), where ds is
the spacing between neighboring strands of the DNA packed in
the capsid. The explicit form of this potential depends on the
conditions of the solvent. For example, in a solvent that contains
only monovalent or divalent cations the potential is purely
repulsive, but in a solvent that contains sufficient quantities of
trivalent or tetravalent cations there is a preferred spacing
between the DNA strands. In the latter case the potential is
attractive, if the distance is greater than the preferred spacing,
and repulsive if it is smaller. These conclusions are drawn from
experiments that make use of osmotic stress to compress DNA
in solution (15–17). We note that in the experiments of Smith et
al. (7), the conditions are such as to dictate a purely repulsive
interaction between adjacent DNA segments, whereas the con-
ditions assumed in the theoretical analysis of Kindt and cowork-
ers (8, 9) result in an repulsive-attractive interaction between
neighboring DNA segments. One of the outcomes of the present
work is the prediction of substantive measurable effects during
the packaging process that depend critically on the ionic char-
acter of the solution.

Following Rau et al. (16), e(ds) is obtained by relating the
osmotic pressure to the total energy of a hexagonal array of
parallel DNA strands. In the purely repulsive regime the force
per unit length between adjacent DNA strands with spacing ds is

f�ds� �
F0

�3
dsexp��ds�c�, [9]

where F0 and c are constants that characterize the strength and
decay length of the interaction, respectively. For a repulsive-
attractive potential the force is given by

f�ds� �
F0

�3
ds�exp�d0 � ds

c � � 1�, [10]

where d0 is the preferred spacing. In what follows we will
explicitly treat the purely repulsive regime because we want to
make a comparison with the experiments of Smith et al. (7). We
note, however, that the methods of analysis carry over entirely
to the repulsive-attractive regime, and that the differences
between these two regimes suggest interesting new experiments.

We determine the interaction energy by observing that the
work per unit length needed to bringing the strands to separation
ds is given by

e�ds� � 3�
�

ds

f�x�dx � �3F0�c2 � cds�exp��ds�c�, [11]

the factor of 3 accounting for six (times 1�2 to avoid double
counting) nearest neighbor DNA strands. According to Parse-
gian et al. (17) F0 � 55,000 pN�nm2 and c � 0.27 nm are the
values of the parameters appropriate for a solution containing
500 mM NaCl at 298 K. The solution in the experiment of Smith
et al. (7) is 50 mM Tris�HCl buffer (pH 7.8), 50 mM NaCl, 5 mM

MgCl2, conditions that correspond to the repulsive regime.
Unfortunately, we are not aware of any direct experimental
measurements of the repulsive parameters for the case of
interest here. For this reason we view c and F0 as fitting
parameters that we will tune to fit the data from the experiment,
though we note that the values of the two parameters obtained
from such a fit are entirely consonant with those found by
Parsegian et al. (17).

The interaction energy for a circular strand of radius R� is
given by

Eint�ds, R�� � 2�R��3F0�c2 � cds�exp��ds�c�. [12]

The energy spent in bending the same length of DNA to a radius
R� is

Eel�R�� �
��pkBT

R�
. [13]

It is of interest to compare the magnitudes of these two energies.
For ds � 2.8 nm and R� � 10 nm the interaction energy is 155
pNnm, while the bending energy is 64 pNnm. They are compa-
rable, and the interplay between these energies determines the
geometry of packing, which in turn figures in the total energy (8,
9). As a result, the first step in calculating the total energy is to
determine the dependence of the DNA spacing ds on the length
packed. This was computed numerically by Kindt and coworkers
(8, 9) though in the context of a solution for which there are
attractive interactions between neighboring DNA segments.

To address the question of how ds varies as a function of the
length packed we minimize the total energy of the packed DNA,

E�R, ds� � L�3F0�c2 � cds�exp��
ds

c �
�

2��pkBT

�3ds
�

R

Rout N�R��

R�
dR�, [14]

where the length packed L is given by the expression

L�R, ds� �
4�

�3ds
�

R

Rout

R�N�R��dR�. [15]

Our goal is to find the appropriate ds for a given L noting that
the DNA spacing within capsids, as a function of length of DNA
packed, is accessible experimentally (5, 18). We do this by
insisting that �E��ds � 0 under the constraint that L is constant,
being mindful of the fact that N(R�) has explicit ds dependence.
The result of this minimization is:

�3F0exp��ds�c� �
�pkBT
R2ds

2 �
�pkBT

ds
2


R
Rout N�R��

R� dR�


R
RoutR�N�R��dR�

.

[16]

Note that this equation depends on the geometry of the capsid
through the second term on the right side. Note also that the
simultaneous solution of Eq. 16 and Eq. 15 yields ds and R for
a given L. In other words, given the genome length L the value
of R and ds are fixed for given capsid geometry. We call the
reader’s attention to the fact that in the repulsive-attractive case
our analysis goes through except for a slight change of the left
side of Eq. 16. For a cylinder N(R) � z�ds, and Eq. 16 leads to

�3F0exp��ds�c� �
�pkBT
R2ds

2 �
2�pkBT

ds
2

log�Rout�R�

Rout
2 � R2 , [17]
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while for a sphere this equation reads

�3F0exp��ds�c� �
�pkBT
R2ds

2 �
3�pkBT

ds
2

�� 1
Rout

2 � R2 �
Rout

�Rout
2 � R2�3/2log�Rout � �Rout

2 � R2

R ��. [18]

Though these equations can be solved analytically in the small
packing fraction limit, over the entire range of packing they have
been solved by using the Newton–Raphson method. The result-
ing spacing as a function of fraction packed is shown for F0 � 2 
55,000 pN�nm2 and F0 � 4.1  55,000 pN�nm2 in Fig. 2.
Interestingly, measurements of ds in fully packed �29 report a
value of 2.75 nm (18), which compares well to the calculated
value of 2.79 nm. Moreover, the model predicts interesting
dependence of the DNA spacing on the parameter F0, suggesting
that measurements of ds in viruses for various repulsive solvent
conditions would be an interesting test of the ideas presented
here.

Once the DNA spacing as a function of length packed is in
hand we can plot the energy E as a function of the length packed.
The slope of this curve yields the force as a function of the length
packed. The final result is

F�R�L�, ds�L�� � �3F0�c2 � cds�exp��
ds

c � �
�PkBT
2R2 . [19]

The result of these calculations is shown in Fig. 3. Note that
though we show results for a cylindrical model of the capsid, we
have also considered the case of capped cylinders and spheres
and find that the force is rather insensitive to the capsid
geometry. We have used c � 0.27 nm and various multiples of
F0 � 55,000 pN�nm2, the value obtained in earlier work in the
fully repulsive case. The value of F0 leading to a best fit to the
data of Smith et al. (7) is larger in comparison to the one cited
earlier following the work of Parsegian et al. (17). However, this
is not surprising because the solvent used in the experiment has
a much smaller concentration of cations that should lead to a
larger F0. The value of c is in the range of those suggested by
Parsegian et al. and this, too, is expected because the decay
length does not vary too much with the solvent concentration.

We note that F0 has the effect of controlling the relative
importance of the repulsive and elasticity contributions to the
total energy. For the F0 that is in best accord with the experi-
ments of Smith et al., the late stages of packing are dominated
by the repulsion of adjacent strands. This is evident in Fig. 2
because in the late stages of packing the DNA spacing satisfies
the scaling ds � 1��L that corresponds to the loosest possible
packing. It is interesting to note that this scaling is also evident
in data obtained from experiments on deletion mutants of
�-phage DNA (19).

In addition to the mechanics issues concerning the DNA itself,
there are intriguing questions related to the response of the
capsid as a result of the packing process. Smith et al. (7) speculate
that the �29 capsid is subjected to a pressure of �60 atm when
fully packed. Similar estimates emerge from the theoretical
analysis of Kindt and coworkers (8, 9). Here we obtain an
expression for the pressure inside the capsid by using the relation
pi � ��E��V, where E is the total energy of the DNA in the
completely filled capsid, and V is the volume of the capsid. Note
that pi and the maximum packing force are not simply related:
the former is a measure of the change in total energy of the DNA
packed due to a change in volume of the capsid, whereas the
latter pertains to the energy change associated with a change in
the length of the DNA packed. As discussed in some detail
below, in the case of the �29 virus we find pi � 60.3 atm, which
confirms previous estimates.

For the case of the spherical capsid, differentiating the total
energy (Eq. 14) with respect to the volume (V � 4�Rout

3 �3) while
keeping L fixed, leads to:

pi � �
1

4�Rout
2

dE
dRout

� �
1

4�Rout
2

�Eel

�Rout
. [20]

The term proportional to �E��ds vanishes, because �E��ds � 0
is the condition that sets the equilibrium value of the strand
separation ds. Using the result for Eel from Table 1, and the
numbers relevant for �29, Rout � 22.03 nm, ds � 2.792 nm, and
L � 6.584 	m, we obtain the earlier quoted value of 60.3 atm
for the internal pressure. Here we approximate the �29 capsid
as a sphere whose radius is set by the volume of the capsid.

As remarked above, our estimate for the internal pressure is
insensitive to the strength of the repulsive interactions. This

Fig. 2. Spacing between DNA strands as a function of the percent of genome
packed for cylindrical and spherical capsid geometries. We assume repulsive
solvent conditions with F0 � 2  55,000 pN�nm2 (a) or F0 � 4.1  55,000
pN�nm2 (b). The capsid dimensions are chosen so their volumes coincide with
the �29 virus. Curve c is the spacing between strands assuming a uniform
packing of the capsid.

Fig. 3. Force as a function of the percent packed for a cylindrical capsid under
purely repulsive solvent conditions. The dimensions of the capsid and the
length of genome packed were chosen to correspond to the �29 phage:
Rout � 19.4 nm, z � 37.9 nm, and L � 6.58 	m. Curve b shows the
experimental results of Smith et al. (7), while theoretical curves a, c, and d are
given by Eq. 19, with F0 � 2 
 55,000, 4.1 
 55,000, and 6  55,000 pN�nm2,
respectively.
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somewhat counterintuitive state of affairs follows from the fact
that we have so far neglected the surface contribution to the total
energy. Namely, the DNA strands on the surface of the inverse
spool are surrounded, on average, by three neighboring strands,
as opposed to six in the bulk. This gives a negative contribution
to the total energy of ��3F0(c2 � cds) exp(�ds�c)A�2ds (8, 9),
where A is the area of the surface of the inverse spool. For a fully
packed spherical capsid A � 4�Rout

2 , to a good approximation.
If we compute the surface contribution to the total energy for the
�29 virus we find that it is about a factor of 10 smaller than
the bulk repulsive energy and will have a small effect on the
maximum packing force. On the other hand, when estimating
the internal pressure, the bulk interaction term makes no
contribution while the surface term contributes due to its explicit
Rout dependence. Still, for the maximally repulsive conditions we
have considered above (ie., F0 � 6  55,000 pN�nm2) the
surface energy contribution to the internal pressure is only 2.5
atm.

Given the possibility of high pressures within the fully packed
viral capsids, and in light of the fact that such capsids are
generally not held together by covalent linkages, it is of interest
to examine the maximum pressure sustainable by such a capsid.

Structural Mechanics of Viral Capsids
In the previous section we made an estimate of the pressure in
a spherical capsid on the basis of an underlying model for DNA
packaging. Presently, we complement that calculation by exam-
ining the maximum pressure a capsid can sustain based on the
strength of the weak bonds between the proteins that make up
the capsid. We do not confine our attention to the �29 capsid
alone; rather our calculation applies to any capsid that is
approximately spherical. Our calculational strategy involves two
ideas. First, we use continuum mechanics to estimate the stresses
within the capsid walls. These stresses are then mapped onto
atomic-level forces by appealing to the details of the protein
structure of the monomers making up the capsid and a knowl-
edge of the forces that link them. By relating the continuum and
atomistic calculations we then determine the maximum sustain-
able internal pressure.

We imagine the capsid to be a hollow sphere loaded by a
pressure pi from inside and a pressure po from the outside. The
inner and outer radii are Ri and Ro, respectively. As a repre-
sentative example, bacteriophage GA is characterized geomet-
rically by Ri � 12.3 nm and Ro � 14.5 nm. Evaluation of a
number of different capsid types suggests that treating capsids as
though they have a mean thickness of �1.5 nm suffices for the
level of model being considered here. For the purposes of
computing the internal stresses within the capsid we begin with
a statement of equilibrium from continuum mechanics which
requires that at every point in the capsid,

��� � 0, [21]

where � is the stress tensor comprising three normal stresses and
three shear stresses. For a problem with spherical symmetry, like
that considered here, the stresses reduce to a radial stress �R and
a circumferential stress �T; see Fig. 4. Solution of the equilibrium
equations results in stresses of the form

�R �
C
r 3 � D, �T � �

C
2r3 � D. [22]

Using the boundary conditions �R�r�Ri
� �pi and �R�r�Ro

� �po
the constants C and D can be determined with the result

�R �
poRo

3�r3 � Ri
3�

r3�Ri
3 � Ro

3�
�

piRi
3�Ro

3 � r3�

r3�Ri
3 � Ro

3�
, [23]

�T �
poRo

3�2r3 � Ri
3�

2r3�Ri
3 � Ro

3�
�

piRi
3�2r3 � Ro

3�

2r3�Ri
3 � Ro

3�
. [24]

The stress �T is our primary concern because it acts so as to tear
the sphere apart. By looking at the expressions above we can see
that this stress is maximum at r � Ri and the maximum value is
given by

�T
max �

3poRo
3 � pi�2Ri

3 � Ro
3�

2�Ri
3 � Ro

3�
. [25]

We note that elasticity theory in and of itself is unable to
comment on �T

max because this is effectively a material parameter
that characterizes the contacts between the various protein
monomers that make up the capsid. As a result, we first examine
how the rupture strength depends on capsid dimensions in
abstract terms and then turn to a concrete estimate of �T

max itself
from several complementary perspectives. If Eq. 25 is rewritten
with pi � po � �p and Ro � Ri � �R and further, it is realized
that for typical capsid dimensions �R�Ri �� 1, it can be shown
by rearranging Eq. 25 that the maximum sustainable pressure
difference is of the form

�pmax �
2��T

max � po��R
Ri

. [26]

For the case in which �T
max is much larger than po, this further

simplifies to

pi
max �

2�T
max�R
Ri

, [27]

where pi
max is really the quantity of interest, namely, the maxi-

mum sustainable internal pressure.
To estimate the rupture stress we consider capsids for which

the structure is known and for which the bonds between the
monomers making up the capsid are understood at least approx-
imately. We note that in the language of fracture mechanics,
what we seek is a cohesive surface model that provides a measure
of the energy of interaction between two surfaces as a function
of their separation (20). There are a number of different ways to
go about estimating the effective interaction between the mono-
mers making up the capsid, one of which is by appealing to
atomic-level calculations like those made by Reddy et al. (21).

Fig. 4. Rupture pressure as a function of capsid radius for x* � 0.3 nm (upper
curve) and x* � 0.4 nm (lower curve). The width of the capsid walls was set
to �R � 1.5 nm, while V0 � 125 pN�nm. CCMV, cowpea chlorotic mottle virus.
(Inset) The radial and circumferential stress on a capsid wall element.
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The Viper web site (11) has systematized such information for
a number of capsids and one of the avenues we take to estimate
�T

max is to appeal directly to their calculations. To that end, we
assume that the energy of interaction per unit area, as a function
of separation x between adjacent monomers making up the
capsid can be written in the form

E�x� � V0�1
4�x*

x �
12

�
1
2�x*

x �
6� . [28]

The motivation for this functional form is the idea that the
energy of interaction between adjacent monomeric units making
up the capsid is the result of van der Waals contacts. Hence, our
cohesive surface law has inherited the properties of the under-
lying atomic force fields. To proceed to an estimate of �T

max itself,
we must determine the parameters V0 and x* in Eq. 28. To that
end, we note that Reddy et al. (21) have computed the associ-
ation energies of various inequivalent contacts throughout a
number of different icosahedral capsids. Their calculations result
in a roughly constant value of ��45 cal�mol Å2 for the
association energy, which in the language of our cohesive
potential results in V0 � 125 pN�nm. This may be seen by noting
that the association energy is given by E(x*) � �V0�4. [Note
that this estimate for the protein–protein association energy is
roughly a factor of 2 larger than the �25 cal�mol Å2 (22)
sometimes used as a rule of thumb. This value will result in an
overall downward shift by roughly a factor of 2 in the curves
shown in Fig. 4.]

Once we have chosen a particular x* that amounts to choosing
the equilibrium separation between two monomers, then the
material parameter �T

max is obtained by evaluating �E(x)��x at
a value of x corresponding to the point of inflection [�2E(x)�
�x2 � 0] in the cohesive surface function. For the cohesive
surface function used above, this results in a maximum stress of
the form

�T
max �

77/6�18
1313/6

V0

x*
. [29]

With �T
max in hand, the maximum sustainable pressure is ob-

tained from Eq. 27 and the results are shown in Fig. 4. These
estimates suggest that the pressures within capsids as a result of
packed DNA, while large, are still substantially smaller than our
estimated rupture stresses.

We note in passing that we have used a second strategy similar
to that described here in which we explicitly count the van der
Waals contacts between adjacent monomers on the assumption
that adjacent monomers are connected by parallel �-strands, and
that such strands each contribute �10 van der Waals contacts.
Such bond counting arguments result in �T

max � 107 MPa for x*
� 0.4 nm whereas for x* � 0.3 nm we find �T

max � 280 MPa. The

estimates for the maximum sustainable internal pressure in this
case are roughly a factor of 2 lower than the ones obtained from
the cohesive model that is likely to be the more reliable estimate
because of its reliance on all-atom calculations. In any case, it
appears that typical viral capsids are packed in a way that brings
them in the vicinity of their strength limits. To more completely
examine this question we have undertaken finite element elas-
ticity calculations to examine the stresses in capsids exhibiting
irregularities in both shape and thickness. In addition, further
atomistic analysis of �T

max is needed with special reference to its
dependence on distance between protein units. It would also be
of interest to examine mutant versions of the monomeric units
making up the capsid to see the implications of such mutations
for �T

max.

Concluding Remarks
Recent single-molecule experiments have quantified various
features of the packing of DNA in bacteriophage. The aim of the
current work is to respond to this experimental data in the form
of analytic models of the DNA packing process. In particular, we
have computed the internal force within the capsid for several
representative capsid shapes and found that the force vs. packing
fraction curve is in excellent accord with experimental data.
However, when considered in conjunction with the work of
Kindt and coworkers (8, 9), these models reveal several intrigu-
ing features of the problem of DNA packing in bacteriophage.
We find that in the repulsive conditions characteristic of exper-
iments by Smith et al. (7), the mean spacing between parallel
segments of DNA is larger than the �2.5-nm spacing seen in
earlier work (5, 18) (compare Fig. 2). Furthermore, our argu-
ments suggest that experiments using the same solvent as that
used by Smith et al. but instead with � phage would require a
maximum packing force in excess of that found in �29, suggest-
ing either (i) that � would not be able to package to completion
or (ii) that � has a more powerful motor than does �29. In either
case, there are clearly interesting experiments to be done to
measure the DNA spacing in �29 under the repulsive conditions
considered here and to examine the packing forces in viruses
other than �29.
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