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This work focuses on modeling the rate-sensitive stiffening-to-softening transition in fibrous

architectures mimicking crosslinked fibrous actin (F-actin) networks induced by crosslink unbinding.

Using finite element based discrete network (DN) modeling combined with stochastic crosslink scission

kinetics, we correlate the microstructural damage evolution with the macroscopic stress–strain

responses of these networks as a function of applied deformation rate. Simulations of multiple DN

realizations for fixed filament density indicate that an incubation strain exists, which characterizes the

minimum macroscopic deformation that a network should accrue before damage initiates. This

incubation strain exhibits a direct relationship with the applied strain rate. Simulations predict that the

critical damage fraction corresponding to colossal softening is quite low, which may be ascribed to the

network non-affinity and filament reorientation. Furthermore, this critical fraction appears to be

independent of applied strain rate. Based on these characteristics, we propose a phenomenological

damage evolution law mimicking scission kinetics in an average sense. This law is embedded within an

existing continuum model that is extended to include non-affine effects induced by filament bending.
1 Introduction

Fibrous networks are often found to be structural motifs over

a wide range of length-scales in both natural and artificial

structural systems. Of particular interest are those that exist at

the microscopic length-scales. Examples of such microscopic

fibrous networks include biopolymers, elastomers, hydrogels,

paper, carbon nanotube architectures and many more.1–5 These

micro-architectures render mechanical robustness to the struc-

tural systems they constitute. F-actin filament networks in

biological cells are an important class of such fibrous architec-

tures that play key role in various cellular functions like

mechanotransduction, mitosis and cell-migration.6–12 From

a mechanics perspective, such fibrous networks are exciting

micro-architectures that provide avenues to devise efficient

functional solutions for a variety of engineering

applications.13,14

The mechanical behavior of biopolymeric networks ensues

from the rich dynamics that arise from the properties and

topological arrangements of their constituents. They exhibit an

initial soft response followed by a rate-dependent nonlinear

stiffening that may culminate in a precipitous drop in the

overall stiffness beyond a critical strain.15–19 The nonlinear

stiffening has been attributed to entropic elasticity and/or

a bending-stretching transition of the semiflexible filaments that

is modulated by crosslink [actin binding proteins (ABP)]
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behavior.3,17,18,20–29 While much of the modeling focus has been

on networks with rigid crosslinks, recent efforts have been on

understanding the role of crosslink deformability15,16 and

molecular motors30 on the overall transient network response.

Experiments indicate that networks may soften reversibly

through filament buckling,31,32 or irreversibly as crosslinks

dissociate under local tensile forces.19,33 There seem to be

compelling reasons to develop a mechanism-based failure

description of such soft, fibrous architectures as they may signal

plasticity or failure of the network architecture, which in turn

relate to important functional consequences.15,19 However, the

irreversible softening mechanics are not accounted for in most

works or are largely phenomenological.28,34

In this paper, we investigate the mechanics of fibrous archi-

tectures mimicking semi-flexible F-actin networks. We develop

a finite element (FE) based DN approach incorporating topo-

logical randomness and stochastic crosslink scission kinetics. We

demonstrate that the kinetics of the crosslink scission process

give rise to a rate-dependent stiffening and failure of these

discrete, fibrous networks. The DN approach is rendered

particularly useful, because the failure mechanics is governed by

local details of a microstructure rather than just the average

characteristics. The stochastic approach to modeling the cross-

link dissociation process coupled with the topological variations

of networks (for the same nominal parameters, e.g. filament

density) introduce statistical effects in their mechanical behavior.

The rate-dependent stiffness evolution and the peak stiffness

obtained through DN calculations corroborate reasonably with

experimental observations. Importantly, the DN simulations

provide the rate-dependent evolution of crosslink scission as
This journal is ª The Royal Society of Chemistry 2012
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a function of the applied strain. This information is valuable in

constructing continuum damage models for such microstruc-

tures. We demonstrate one such example of a homogenized

continuum model with an evolutionary internal variable repre-

senting the crosslink scission process.
2 Discrete network model of F-actin networks

Real in vitro F-actin networks are random architectures of

undulated F-actin filaments connected by crosslinking proteins

and surrounded by a fluid medium.35 Apart from the filament

length L, another important length-scale in such networks is lp,

the filament persistence length which is in the range of �10 to 20

mm.36 When lp [ L, undulated filaments act as if they were

straight. Van der Giessen and co-workers showed that the

macroscopic responses of networks assuming straight filaments

is qualitatively similar to those modeled using undulated fila-

ments;27,37 initial undulations tend to postpone the transition

from flimsy to stiff behavior. Therefore, we model the networks

with straight filaments with individual filaments designed to be of

length L z lp. For a prescribed line (filament) density �r, our in-

house MATLAB� code generates a 2D network of randomly

oriented straight filaments that intersect each other at discrete

points within the computational window (Fig. 1). These inter-

section points are considered as crosslinks and are modeled as

springs with finite stiffness. We perform a topological analysis to

check the randomness of the initial average orientation of

a generated network (see Appendix A for a brief discussion). The

code automatically generates an FE mesh on the topology and

records the necessary information in a manner that can be

seamlessly read into ABAQUS/CAE�.38

The unfolding characteristics of the crosslinks are approximated

by a bi-linear constitutive relationship comprising an initial

compliant regime followed by a highly stiff behavior.16,34,39,40 The

unbinding characteristic of a crosslink is tantamount to the
Fig. 1 Initial configuration of a typical network. Dangling ends are

removed and the boundary of the computational window (red dashed

lines) along with the kinematic boundary conditions (b.c.’s) are shown.

This journal is ª The Royal Society of Chemistry 2012
scission process beyond which it is incapable of supporting any

load. Interestingly, the critical force Fcr for scission exhibits a rate-

effect that depends logarithmically on the applied loading rate.41,42

Another equally striking experimental observation is the vari-

ability of Fcr for a fixed loading rate.42,43 This variability, even at

the single crosslink level, is expected to play a role in the overall

network response. A noteworthy feature incorporated in the

present work is that it explicitly accounts for this rate-dependent

stochastic crosslink dissociation process. This is achieved by

combining the Bell model,44 which gives an exponential relation to

the applied force and the dissociation rate, with a kinetic Monte

Carlo (KMC) algorithm.45 The crosslink dissociation rate is

given by

koff ¼ k0
off e

ðFa=kBTÞ (1)

where k0
off is the characteristic dissociation rate in the absence of

applied force, F is the induced local tensile force on a crosslink,

a is the interaction distance,46,47 kB is the Boltzmann constant and

T is the temperature. The stochastic crosslink scission is intro-

duced as a KMC step in that the crosslink life-time is given by

t ¼ � 1

koff
logðrÞ (2)

where 0 < r < 1 is a uniformly distributed random number. A

crosslink may potentially dissociate if it satisfies the criterion

t # t̂ (3)

where t̂ ¼ 3c/_3 with _3 being the local axial strain rate and 3c ¼ a/l0
being the critical axial dissociation strain for a crosslink of length

l0.

The time-scales associated with the crosslink dissociation

kinetics may interact with the time-scale pertaining to the

macroscopic deformation rate, producing an overall rate-

dependent network response including stiffening and failure.18,46

In the model system adopted here, we consider that �r ¼ 10 that

translates to an actin concentration of �0.8 mg ml�1.48 From

a numerical viewpoint, we model a square computational

domain of fixed size,W ¼ 40 mm. From this, the total number of

filamentsN in the computational domain is obtained through the

relationship �r ¼ NL2/W2, where L ¼ 10 mm.21 Filaments are

meshed using 2D Euler–Bernoulli beam finite elements and each

crosslink is modeled using a spring element having both axial and

transverse degrees of freedom while the rotational degree of

freedom is unconstrained. We adopt the parameters that

resemble networks crosslinked by filamin, which is a relatively

compliant ABP among the myriad crosslinkers that have been

reported in the literature.19 The parameters used in the crosslink

scission algorithm are k0
off ¼ 0.1 s�1, a ¼ 0.5 nm and l0 ¼ 160

nm.47,49 Note that at every time-step there may be multiple

crosslinks that satisfy eqn (3), but we choose to break only the

one with the smallest t. The reader is referred to Appendix B for

the implementation of KMC algorithm in FE framework.45

We note here that similar to the scission process, crosslink

reformation is also an important phenomenon that ascertains

that the network remains structurally viable, e.g. thermally

activated crosslink scission. However, the scission rate is

enhanced exponentially in the presence of tension F in a cross-

link. More generally, the equilibrium constant of the reaction is
Soft Matter, 2012, 8, 7004–7016 | 7005
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given by k̂(F) ¼ (koff/kon) ¼ k̂0e
(Fa/kBT), where kon is the rate of

crosslink formation, k̂ is the equilibrium constant and k̂0 is the

value of k̂ at zero force.46 If the tensile force in a filament is large

then the reaction is biased toward crosslink scission and may

prevail over the relinking process, although the former may

provide sites for the latter. The crosslink rebinding phenomenon

is rich with complexities50 and is beyond the scope of this paper.
Fig. 3 Plot of stress, stiffness and damage as a function of strain for _g ¼
1 s�1. The dotted curves indicate the response of pristine networks.
3 Discrete network simulation results

For the given �r, Fig. 1 shows the initial configuration of one of

the many realizations considered in this work. The kinematic

boundary conditions (b.c.’s) prescribed on the edges of the

computational domain are as follows: the bottom edge is fixed

while the top edge is sheared horizontally with a constant

velocity �v, simulating simple shear condition with a nominal

shear strain rate _g ¼ �v/W. Periodic b.c.’s are applied to the left

and right edges so that the microstructure can be considered as

representative of an infinitely long slab in the horizontal

direction.

In order to investigate the rate effects, we shear a given

network at _g ¼ 0.01, 0.1 and 1.0 s�1. Fig. 2 shows snapshots of

the final configurations of the network for these shear rates. The

flexibility of the crosslinks is evident from the extensive defor-

mation at the filament intersections (blue springs). The crosslink

dissociation is more severe at low rates due to the low critical

breaking force. It is interesting to note the tendency of the

network to form stress fibers, which may be construed as a set of

aligned filaments that are closely bundled together, traversing the

principal tensile axis. These stress fibers are more commonly

observed at higher rates (e.g. Fig. 2c) compared to lower rates.

In what follows, we first discuss the deterministic mechanics of

one network topology (Fig. 2) in order to provide an insight into

the macro-micro nexus. A deterministic analysis implies that the

stochastic step (eqn (2)) is not activated in the simulations. Then,

we discuss the rate-dependent behavior of the networks in terms

of the stiffness and the evolution of crosslink scission. Following

that, we discuss the stochastic effects arising from the KMC

procedure and the variability arising from topological random-

ness (for fixed �r). Finally, we present a homogenized continuum

model with damage. The damage evolution in a network with

applied strain is characterized the by crosslink scission fraction f.
Fig. 2 Deformed configurations of the network in Fig. 1 experiencing a macr

are dissociated crosslinks.

7006 | Soft Matter, 2012, 8, 7004–7016
fðtÞ ¼ Number of crosslinks broken at time t

Total initial number of crosslinks
(4)

3.1 Deterministic network response

Fig. 3 shows the evolution of the average shear stress s, tangent
shear stiffness K ¼ vs/vg and damage fraction f as a function of

shear strain g for the network in Fig. 1 subjected to _g ¼ 1 s�1. In

the initial flimsy regime the stress is low owing to the low bending

rigidity of the filaments and the low initial stiffness of the

crosslinks. This is the regime of filament reorientation that aligns

them along the principal stress directions. The damage is also low

in this regime, which indicates that at this stage the lifetime of

most of the crosslinks is larger than the time-scale associated with

the imposed local strain rate.

At g z 0.2 the stress begins to increase at a faster rate due to

preferential alignment of some fraction of the filaments along the

axis of principal tension together with the fact that the initially

flimsy crosslinks get fully stretched to l0 (eqn (3)) and lock. As
oscopic shear strain of 50% under three different shear rates. Blue springs

This journal is ª The Royal Society of Chemistry 2012
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these filaments become taut, their stretching stiffness, which is

orders of magnitude larger than the bending stiffness, comes into

play and determines the overall network response.21 Conse-

quently, the damage process also occurs faster because the larger

forces experienced by the crosslinks dramatically reduce their

lifetime (eqn (1)) resulting in an increased likelihood of satisfying

the dissociation criterion. As damage develops, the average

network stress and tangent stiffness increasingly deviate from

their pristine counterparts (shown by the dotted curves).

Although the stress continues to rise, the rate of increase slows

down over a short strain range (g z 0.4–0.42) that manifests as

a temporary drop in the network stiffness. As the crosslink scis-

sion process starts dominating the response (g z 0.45) the

stiffness drops precipitously. The stress and stiffness do exhibit

some recovery, which is due to reorganization of the intact

crosslinked filaments into aligned bundles (stress fibers). It is

worth noting that there may be situations where a network may

soften temporarily, but it may not necessarily lead to a colossal

loss of load carrying ability. This indicates a competition

between the stiffening mechanism, driven by the tendency of

a network to reorient the majority of the filaments along the

principal tensile axis in order to maximize the stretching stiffness,

and the scission-based softening mechanism. As long as there are

a sufficient number of intact crosslinks, the overall system

redundancy helps retain dominance of the stiffening process.

Eventually, the softening mechanism prevails over the stiffening

mechanism due to increasing force. In fact, to some extent, it is

a self-cascading process. Each crosslink dissociation brings

about an increased tendency of reorientation of the intact

network filaments, because these filaments experience weaker

constraint from their surroundings. This results in higher forces

on the intact crosslinks, which further increases their probability

of dissociating even more rapidly. Concomitantly, the damage

evolves with strain rapidly beyond g z 0.5 (Fig. 3).

We now discuss the rate-dependent mechanical response of the

network. Fig. 4 shows evolution of the normalized tangent
Fig. 4 Rate-dependent stiffness and damage evolution for three applied

rates. Stiffness degradation of networks coincides with the rapid increase

in the damage (marked by circles). Inset shows the softening regime at

small strains due to filament buckling.

This journal is ª The Royal Society of Chemistry 2012
stiffness, K/K0 (K0 is the initial stiffness), and damage for the

three shear rates. In each case, the network stiffness has an initial

flimsy regime as depicted earlier in Fig. 3. It is evident that the

network stiffness shows an initial gradual reduction, which exists

even in the absence of crosslink scission, before it begins to

increase (see inset in Fig. 4). This happens because filaments

reorient toward the principal stress direction, a certain propor-

tion experience tension while the remainder undergo compres-

sion. Given the high flexibility of filaments, compression induces

buckling—a structural softening mechanism—which is not

necessarily irreversible.21,31 Consequently, the entire stress is

carried by the filaments under tension after they are fully taut. As

noted in the preceding section, the filament straightening is

concomitant with the nonlinear increase in the overall network

stiffness. Importantly, Fig. 4 shows that the degree of nonlinear

stiffening is rate-dependent. With increasing applied rate, the

overall network response increases; higher stiffening and a higher

peak before the loss of stiffness occurs. The rate-dependent

stiffening and the peak stiffness are a direct result of the inter-

action between the loading rate and crosslink scission rate (eqn

(1)). At slow strain rate the dissociation criterion (eqn (3)) is more

likely to be satisfied even at small strains. Therefore, damage

initiates early for lower _g and extends over the entire strain range

up to the point of collapse. With increasing strain rate the

damage initiates later, but it evolves more rapidly as can be

deduced from the steeper jumps on the damage–strain curves. At

higher applied strain rates the induced local rate may exceed the

dissociation rate resulting in the crosslink not having sufficient

time to break before the force has changed. Naturally, such

a delay means that the network remains intact for larger strain

values and, therefore, exhibits an overall higher stiffness at

a given strain compared to those deformed at lower strain rates.

Interestingly, this situation is akin to the dislocation kinetics in

metals that exhibit rate-sensitivity at the elastic to plastic

transition.51

Of the three shear rates considered here, the maximum peak

normalized stiffness obtained is �50 for _g ¼ 1 s�1 and the

minimum is �2 for _g ¼ 0.01 s�1. Soon after the point of

maximum stiffness, the network collapses. We characterize this

loss of structural functionality of the network by the failure

strain, gf, at which the s–g curve crosses the K–g curve (Fig. 3).

Although the simulations may continue beyond this point, we

consider gf as the measure of structural failure, because the

subsequent stiffening effect is usually much weaker than the one

before the colossal stiffness drop. From a microstructural view-

point, at the failure strain there is a substantial deterioration of

the network integrity brought about by scission of a critical

fraction of the total crosslink population.
3.2 Stochastic network response

The results presented in the preceding section are for a fixed

network topology with deterministic scission kinetics. However,

there are at least two sources through which variability may arise

in the responses, even in the case of fixed �r. First, it is evident

from experiments that the crosslink scission is a stochastic

process.42,43 Thus, at a given deformation rate, Fcr for crosslink

scission may be scattered about a mean value. Second, one may

be able to generate myriad topological realizations for a given
Soft Matter, 2012, 8, 7004–7016 | 7007
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Fig. 6 Peak normalized stiffness obtained from experiment and the

simulation results. The results shown above are for networks formed by

various crosslinkers. Triangles correspond to the crosslinker filamin,

circles are for fascin and diamonds for rigor heavy meromyosin (rigor-

HMM) bonds. Colors indicate that the data is from different experi-

ments.15,18,28,52–54 The present simulation results are shown by the rect-

angular boxes with error bars.

Fig. 7 Damage evolution for three applied shear rates. Each curve is an

average of 25 simulations. The solid circle on each curve indicates incu-

bation strain gin for that particular rate.

Fig. 5 Stochastic rate-dependent response of networks. Solid lines

indicate mean response and error bars indicate one standard deviation.
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orientation distribution function. In this section, we investigate

the stochastic effects in the rate-dependent behavior of networks

arising from these sources of variabilities. We consider five

different realizations of the networks corresponding to �r ¼ 10.

For each realization, the stochastic nature of crosslink scission is

captured through the KMC procedure (Section 2), which is

invoked for every crosslink in a given network. The crosslinks are

ranked in an ascending order of their lifetimes, t, and the one

with the minimum lifetime, tmin, is compared with the critical

lifetime, t̂. We perform five such simulations for each network

realization. Thus, for a given _g we simulate twenty-five cases. We

note in passing that the variability arising from the latter is also

expected to depend on the size of the computational window,W.

A discussion about the topological variability due to the filament

density and size of the computational window is presented in

Appendix A.

Fig. 5 shows the network stiffness evolution with strain for

three different applied strain rates. Each curve is an average of 25

simulations and the error bars indicate the variability due to the

aforementioned sources of randomness. The responses indicate

rate-sensitive stiffening and failure, but also exhibit significant

variability as indicated by error bars. The variability is low at

small strains (g z 0.05), but it increases beyond that. Although

not shown here, our simulations indicate that topological vari-

ations, which are mediated by the computational domain size,

play a bigger role than the stochastic scission and some of this

can be reduced by sampling larger regions (Appendix A).

However, microstructural characteristics also mediate this vari-

ability. This is primarily due to the fact that as each network

topology accrues damage due to crosslink scission, the local

rearrangements of the filaments can vary significantly.

A quantitative comparison with experiments is challenging

due to the large number of parameters involved: actin concen-

tration, actin-ABP ratio, filament length, distance between

crosslinks, rate of loading etc. Fig. 6 summarizes experimental

data on the peak normalized network stiffness for F-actin

networks crosslinked with various ABPs.15,18,28,52–54 It also

superposes the present simulation results (square boxes with

error bars). It should be noted, however, that the different
7008 | Soft Matter, 2012, 8, 7004–7016
experimental results in the figure may not be directly comparable

as the concentration of actin and ABP are not the same; also, the

filament lengths may differ. For the data shown in Fig. 6, the

concentration of F-actin varies from 0.4–0.8 mg ml�1. The

concentration ratio of ABP to actin varies from 0.003 to 0.01.

The experimental result that compares well with our simulation

results are from Kasza et al.52 (black triangle in Fig. 6), where the

F-actin concentration is�0.5 mgml�1 with Lz 10 mm, similar to

the parameters used here.
This journal is ª The Royal Society of Chemistry 2012
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Fig. 9 Schematic showing the formation of stress fibers at large defor-

mation due to the preferential alignment of the filaments along the

loading direction and its failure due to crosslink scission. Scission of

a small fraction of crosslinks may result in the failure of stress fibers

which in turn results in the network failure. The view on the left shows

a broken stress fiber and the right view shows the intact one.
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Fig. 7 shows the average rate-dependent evolution of the

damage, f, with strain corresponding to the stiffness evolution in

Fig. 5. The trend is similar to the one in the deterministic simu-

lations (Fig. 4) and given that this result stems from a sizable

number of simulations, we identify two universal features: (a)

incubation strain, gin, which characterizes the minimum

macroscopic deformation that a network should accrue before

crosslinks begin to dissociate, and (b) rate of growth, _f, beyond

incubation. As can be noted, gin has a direct relationship with the

applied rate: networks subjected to lower rates of loading possess

a propensity to early initiation of damage, while at higher rates,

damage initiation takes place only at large strains. Such infor-

mation is not available in experimental literature as it may not be

possible to isolate the damage incubation characteristics in an

experiment. However, one may be able to reconcile it in an

indirect fashion. In the works of Broedersz et al.55 and Lieleg and

Bausch,33 for example, networks subjected to lower applied shear

rates start to stiffen at higher strains compared to those sheared

at higher rates. This could be attributed to the fact that the

damage (crosslink scission) is more severe in the former, which

implies lower incubation strain while the latter shows a delayed

damage initiation i.e. higher incubation strain. Another inter-

esting observation is that, irrespective of the applied rate, the

damage evolution appears to converge to a single value of �4%

with gz 0.45, beyond which a runaway growth occurs especially

for higher strain rates.

Fig. 8a and b show the rate-dependent gin and the critical

damage for stiffness collapse, fcr, with their corresponding

variability. Whereas the former clearly indicates a rate-depen-

dent behavior, the same cannot be said about the latter owing to

a large scatter. Another important observation in the damage

evolution process is that the fcr ranges between �0.5% and 3%,

while the loading rate and corresponding peak stiffness vary by

three orders of magnitude. This low critical damage is ascribed to

the non-affine nature of the network response. It can be observed

from Fig. 8b that the variation in fcr is minimum for the shear

rate _g¼ 0.1 s�1. For the lower rates, crosslink scission is vigorous

starting at a very small strain and for higher rates the crosslink

scission is very rapid after incubation, which brings in substantial

variability in fcr. Given that fcr is relatively rate insensitive, from
Fig. 8 Shear strain rate effects on damage incubation strain gin and critical d

This journal is ª The Royal Society of Chemistry 2012
a variability consideration, one may posit that there is an

optimum rate that provides more deterministic information

about critical damage irrespective of the computational window

size. At the point where the network collapses, the main load-

carrying components are the filaments that have already aligned

in the principal tensile direction. In this scenario, although there

may be several intact crosslinks that connect the filaments, the

effective system redundancy is governed by stress fibers. These

stress fibers are like a system of springs in parallel where each of

the stress fibers comprises several filament-spring combinations

connected in series, supporting the applied deformation. When

one crosslink within any of these stress fibers dissociates, it

corresponds to loss of an entire stress fiber thereby reducing the

effective stiffness dramatically (Fig. 9). In other words, rear-

rangement of filaments lowers the effective redundancy of the

network, which would otherwise help maintain its structural

integrity over a larger deformation.
amage fcr. (a) Damage incubation strain. (b) Critical damage for failure.
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4 A continuum model with damage

In this section, we present a phenomenological, homogenized

continuum model that incorporates the effect of non-affinity and

deformation-induced damage evolution due to crosslink scission.

The main objective is to show that the damage kinetics can be

introduced within an existing homogenized model and to

demonstrate that such an enriched model qualitatively mimics

the DN simulation results.56 The model is based on the work of

Planas et al.57 that accounts for the filament orientation evolu-

tion in an average sense, but unlike their work that ignores non-

affine effects, we approximately incorporate the influence of non-

affine deformations.58

4.1 Affine deformation model

F-actin filaments crosslinked by ABPs are assumed to be

uniformly distributed in the unloaded configuration.59 Filaments

are assumed to be isotropic and homogeneous with crosslinks at

the end points. The initial filament orientation q is accounted for

using a distribution function. A uniform probability density

function for a continuous distribution is given by57

GðxÞ ¼
1

b� a
if a # q # b

0 if q\a or q. b

8<
: (5)

where a and b denote the limits of q. In the present 2D scenario with

0 # q # p the initial spatial distribution function is given by57

Gðn; xÞ ¼ ff

2p
(6)

where ff is the volume fraction of the filaments. In this homog-

enized theory, information about �r is embedded through ff. For

the 2D case, we equivalently define it as the area fraction, i.e. ffz
NLd/W2 ¼ 0.007 where d is the diameter of filaments. n is the unit

vector in the reference configuration x, where the filament

distribution is uniform, and is given by

n ¼ e1cos q + e2sin q. (7)

where e1 and e2 are unit vectors in Cartesian coordinates. During

deformation, filaments continually align with the loading direc-

tion and the overall orientation distribution deviates from its

initial uniform state.

Consider a filament connected with two crosslinks in series.

The stress in this filament–crosslink system is described by

sf(l) ¼ EA
f (l � 1) (8)

where l is the axial stretch in this system. EA
f is the equivalent elastic

modulus of the filament–crosslink system, ignoring the non-affine

and damage effects. Note that EA
f may itself be a function of l

depending upon the constitutive behaviors of the filament and the

crosslinks. At any time t, a macroscopic simple shear g (¼ _gt)

applied to the network results in the following deformation gradient.

F ¼
�
1 g

0 1

�
(9)

With the affine deformation assumption, the stretch, l, in an

individual filament–crosslink system due to g is57
7010 | Soft Matter, 2012, 8, 7004–7016
lðqÞ ¼ jFnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 sin2

qþ 2g sin q cos q

q
(10)

and the corresponding Cauchy stress (in 2D) is

s ¼
ðp

0

sfðlÞ
�
Fn5Fn

jFnj � 1

2
jFnjI

�
Gðn; xÞdq� pI (11)

where 5 denotes a tensor product, I is the identity tensor and |

a| indicates the magnitude of a vector a. To account for the

effect of all the filaments, eqn (11) is integrated over the

entire range of angles considered. For an initial uniform

distribution, filaments are present in all orientations and eqn

(11) becomes

s ¼ �pIþ
ðp

0

EA
f ff

p

�
Fn5Fn� 1

2
jFnj2I Fn5Fn

jFnj þ 1

2
jFnjI

�
dq:

(12)

In determining the equivalent modulus EA
f , the filaments are

modeled as linearly elastic while the crosslinks are assumed to

follow worm-like chain (WLC)-model.16,60 With this, EA
f in

eqn (12) becomes

EA
f ¼

KfL

A

�
l̂
�3

2
þ 1

�

1þ l̂
�3

2
þ 2Kf l0lp

kBT

(13)

where l̂¼ (1� (l� 1)), and Kf and A are the stiffness and area of

the filaments, respectively.

As discussed later, the initial response is determined by the

crosslink behavior as it is the more compliant of the two.

However, gradually, as the macroscopic strain increases, the

crosslink stiffens and the filament starts playing a dominant role.

This is further aided by the filament reorientation process.
4.2 Effect of non-affinity

The simple springs-in-series model describing EA
f leads to affine

deformations, whereas a network may deform in a non-afffine

manner triggered by filament bending.26,61 In this work, we do

not attempt to rigorously formulate this effect. However, it is

important to account for it and, to that end, we refer to the work

of Zaccone and Scossa-Romano58 who elegantly showed that in

amorphous solids,

m ¼ mA � mNA ¼ mA(1 � z0) (14)

where m is the actual network shear modulus, mA is the modulus

assuming affine deformations while mNA is the non-affine

contribution that softens the overall response. In other words,

the term inside the bracket describes the magnitude of non-

affinity through z0 that is related to the coordination number

indicating nearest neighbor particles in contact and dimension-

ality of the problem. While eqn (14) is only valid for central force

systems, it is used here as guidance for writing a similar form for

biopolymeric networks where bending energy can stabilize the

floppy (soft) modes.62,63 Motivated by the elegance of eqn (14),

we write
This journal is ª The Royal Society of Chemistry 2012

http://dx.doi.org/10.1039/c2sm25450f


Fig. 10 Rate-dependent stiffness response of the network from the

homogenized model.
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Ef ¼ EA
f (1 � z0) (15)

where z0 is a dimensionless quantity (<1) that characterizes the

network non-affinity induced by bending deformations. For

a given filament density, it is expected to depend on an effective

coordination number, �z, at a crosslink (determined by whether it

is an X, an L or a T type junction),64,65 the effective filament

length, lc, between the crosslinks and a length-scale, l, describing

the propensity of a filament to bending.26,66 Although not derived

here in detail, we suggest that z0 would be directly proportional

to łc, but would depend inversely on �z and l. Finally, using

continuum damage mechanics, we superpose the effect of scis-

sion-induced damage and write the effective elastic modulus, Ee,

of the filament–crosslink system as

Ee ¼ EA
f (1 � z0 � z1f) (16)

where z1 is a is a phenomenological sensitivity parameter that

accounts for the effect of enhancement of degradation due to

reduced redundancy of the network as stress fibers form (Fig. 9).

Eqn (16) indicates that the softening of the network brought

about by bending induced non-affinity (characterized by z0) is

accentuated by the damage induced from crosslink scission. The

modulus EA
f in eqn (12) is substituted by eqn (16). The resulting

expressions for the network stress components are complicated

functions of g and are solved using MAPLE� to obtain the

overall differential shear stiffness.
4.3 Damage evolution

Reiterating the characteristic features of damage evolution, we

have rate-dependent incubation strain and damage growth but

a rate-independent strain, ge z 0.45, at which the runaway

damage growth occurs. From these characteristics we propose

the following evolution law for the crosslink scission fraction

_f ¼
0 if g#gin

_f0

�
_g

_g0

��
g

ge � g

�n

if g.gin

8><
>: (17)

where _f0 is the characteristic scission rate obtained at a charac-

teristic macroscopic deformation rate, _g0, and n indicates its

dependence on the applied and runaway strains. In the equation,

the rate-dependent incubation strain, gin ¼ a( _g/ _g0)
p, is charac-

terized by the parameters a and p. Damage evolves only after gin

is reached. These parameters are obtained form the damage

evolution curves (Fig. 7) and the values are given in Table 1.
4.4 Network response: continuum modeling results

Fig. 10 shows the rate-dependent stiffness and damage evolution

with macroscopic shear strain obtained from the homogenized

model. The result reproduces qualitative trends that were obtained

from the DN results (Fig. 4). As both the crosslink and the filament
Table 1 Constituent parameters used in the continuum model

a p _f0 (s
�1) _g0 (s

�1) ge n z0 z1

0.25 0.4 0.067 1 0.45 0.4 0.8 50

This journal is ª The Royal Society of Chemistry 2012
are connected in series, at small strains the response is mediated by

the crosslink due to low stiffness. With continued deformation the

crosslink stiffens and the filament starts contributing to the overall

stiffness, because it now assumes the role of the weakest link in the

filament–crosslink series system. Yet, the network stiffness

increases by several orders of magnitude owing to the reasonably

large stretching stiffness of the filament.

Using the parameters in Table 1, the peak stiffness values

obtained are in the same range as those obtained from experi-

mental observation52 and our DN model. Importantly, the

underlying microstructural evolution, damage evolution and the

resulting rate sensitivity of the biopolymer networks are captured

using the current model in an average sense without the necessity

to delve into the specifics of a given network. The microstructural

evolution of a network through filament reorientation causes

stiffening of the overall response. In the model of Planas et al.,57

the current average network orientation without considering the

damage is described by b as

bðxÞ ¼ 1

p

ðp

0

cos qþ gsin q

jFnj dq; (18)

i.e. b is the ratio of the projected length of filaments on the

reference axis to the total length of the filaments. Evolution of

b depends on the type of deformation and the reference axis.

Fig. 11 shows the process of filament reorientation in a network,

obtained by numerically integrating eqn (18) for the simple shear

case. For simple shear deformation, the initial principal axes are

at �45�. During deformation, filaments get oriented towards the

principal axes. The reference axis considered for the calculation

of b remains fixed at 45� while the principal axis for the simple

shear case start with 45� and tends towards 0� at very large

strains. For a 2D uniform distribution, the initial value of b is 2/p

and the limiting value when q tends to be 0� is 1=
ffiffiffi
2

p
(not shown

in Fig. 11). For the uniform distribution, filaments are oriented in

all directions in the undeformed state, but during deformation

they tend to be oriented to 45� at small strains, reflected as

initial increase in b, and then progressively to 0�, reflected as the

drop in b.
Soft Matter, 2012, 8, 7004–7016 | 7011
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Fig. 11 Evolution of filament orientation for shear loading with respect

to the 45� axis. At small strains, the principal loading direction coincides

with the 45� axis and later it deviates, evident from the initial increase and

then decrease in the orientation parameter.
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Although not explored here, another important feature of this

model is that the variability in the damage evolution could be

incorporated into the continuum model by adopting distribution

functions for the parameters in Table 1, as those are based on the

variability obtained from the DN calculations. In such

a scenario, the values in Table 1 could be mean values.
5 Conclusions

In this work, we developed microstructurally informed models to

gain insights into the rate-dependent mechanical behavior of

soft, fibrous networks. An F-actin network crosslinked with fil-

amin was chosen as a model system for this investigation. The

DN approach was enriched with crosslink scission kinetics,

which renders the response rate-sensitive. The stochastic nature

of the scission process is embedded in the approach by inte-

grating a KMC procedure into the FE framework. We addressed

the variability of responses that arise from sampling effects,

which enabled us to understand statistical aspects of the network

mechanics. We also developed a homogenized damage model

that was merged with an existing continuum model and

phenomenologically accounted for network non-affinity.

Although not explored here, an important feature of this

homogenized model is that the variability in the scission-induced

damage could be incorporated in a seamless manner by adopting

distribution functions for the parameters in its evolution

function.

In this work, the sole mechanism for rate-dependent behavior

is rate-dependent damage evolution. Factors such as viscoelas-

ticity, reformation of crosslinks and active rearrangement of the

network architectures are not accounted for. Another mecha-

nism which is not accounted for is the strain–rate hardening of

crosslinks.41 In the case of a strain–rate hardening type of

crosslink, both gf and peak stiffness could be modulated due to

the higher forces experienced by the crosslink. It is seen that the
7012 | Soft Matter, 2012, 8, 7004–7016
mechanical response is inextricably linked to topological factors

such as filament density, crosslink density and network archi-

tecture.65 The dependency on the last factor is not well under-

stood and strong connections have to be made between the

topology and mechanical response to fully understand behaviors

of filamentous networks. The results presented here are based on

2D filamentous networks whereas real biopolymeric networks

are three-dimensional. The lower constraint effect offered by the

latter27,37 and the resulting extended non-affinity may affect the

damage evolution quantitatively, although the qualitative

behavior should still hold. Finally, we have not addressed the

role of the fluid medium that surrounds these networks. To the

lowest order, this will result in a shear stress that varies linearly

with the strain rate, with solvent viscosity being the pro-

portionality constant. This may be effectively construed as

dashpots embedded within the network and this may also

influence the damage evolution, especially if the viscous time-

scales compare with the dissociation time-scales and applied

loading rate.

The research problem addressed in this paper lies at the nexus

of mechanics and chemistry. A broad class of phenomena in

cellular and molecular biophysics are in this arena, including

force induced unfolding or conformational change of proteins,

force induced activation of ion channels, chemical to mechanical

energy conversion in muscles and polymerization-induced force

generation in actin filaments.67 In all these problems, the effect of

force on equilibria and rates of chemical reactions is treated using

variants of the Bell and Eyring models at the level of single

molecules or single fibers. Our treatment of the breaking of

crosslinks follows along these lines but we have gone further by

constructing a damage model at the continuum level that is

informed by thermal activation theories at the scale of single

crosslinks. As such, our evolution laws are written for tensorial

quantities such as stresses and strains (not just forces or exten-

sions) even though they have their origins in one-dimensional

ideas at the single molecule level. We expect that our methods

that combine deterministic and stochastic elements will be

applicable to a variety of filamentous network architectures

where there is continuous interplay of mechanical and chemical

forces.
Appendices

A Topological variability

The issue of sampling size is important in constructing artificial

microstructures. For example, from the viewpoint of computa-

tional cost it may not be possible to simulate large-scale speci-

mens (Fig. 12). Instead, one may need to choose smaller windows

from the large specimen. While on an average, such a windowing

procedure is expected to retain global features of the larger

architecture, e.g. filament and crosslink density, the local details

could vary significantly as shown in Fig. 12. In turn, this vari-

ability in the local architectures is deemed to influence the

mechanical responses. We briefly discuss these statistical aspects

with reference to the topological isotropy as a function of

computational window size, W, and filament density, �r.

To begin with, we assumed a uniform filament distribution for

a given window size,W, and placed the filaments randomly in the
This journal is ª The Royal Society of Chemistry 2012

http://dx.doi.org/10.1039/c2sm25450f


Fig. 14 Variability in filament distribution decreases as theW increases.

Increasing theW beyond 200� 200 mm does not reduces the variability in

filament distribution.

Fig. 12 Idealization of the actual network by smaller computational

windows. Depending on the location, filament distribution inside

windows could be different. Though nominal network parameters like �r

and number of crosslinks are the same, responses could vary for different

filament realizations.
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window until the desired �r was obtained. In order to quantify the

filament orientation distribution of a given network, filaments

were grouped into ten bins of orientations ranging from 0� to

180� with each bin of width 18�. The number of filaments in each

bin was normalized by the total number of filaments and this

filament fraction was used in rest of the calculations. For a given

�r or W, we considered five network realizations to obtain the

average, x, and the standard deviation, S, of the filament frac-

tion. Given that the range of angles considered was from 0� to

180� and the distribution was uniform, the average value

is always �10% and we calculated the coefficient of variation
Fig. 13 Filament distribution with �r¼ 10 for two window sizes,W, are show

distribution becomes more uniform.

This journal is ª The Royal Society of Chemistry 2012
(Cov ¼ S/x). In the following sections, we discuss the statistical

aspects arising from computational window size,W, and filament

density, �r.

A.1 Increasing the computational window size. One of the

approaches to get the idealized uniformly distributed filament

networks is to increase theW for a given �r. We considered a case

with �r ¼ 10 and increased the window size, W, to find the

optimum size at which the filament distribution becomes

uniform. Starting with a W of 30 mm, networks were generated

with uniform filament distribution and filaments of length L¼ 10
n with the mean (red line) and standard deviation. As theW increases, the

Soft Matter, 2012, 8, 7004–7016 | 7013
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Fig. 16 Variability in the filament distribution decreases as �r increases.

Increasing �r above 1000 brings no change in filament distribution.
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mm and the largestW was 1000 mm (Fig. 13). As theW increases,

distributions tend to be more uniform, reflected as a drop in the

value of S.

Fig. 14 gives a summary of the parametric study with W

ranging from 30 mm to 1000 mm. From the m and S of each

realization, Cov was calculated. Using the Cov of five realizations

for a given W, m and S of the Cov of each W were calculated.

From the limited number of realizations considered here, we

deduce that the variability is very high when the W is 30 mm and

there is a limitation for the lowest value for W that can be

considered due to the fixed filament length of 10 mm and the

rigidity percolation requirement. It can be noted that increasing

W beyond 200 mm does not yield any substantial increase in the

convergence of numerical approximations of uniform distribu-

tions (shown by the blue zone in Fig. 14). Increasing W is offset

by the cost of computation. From a computational cost stand

point, for a given �r, it would be necessary to consider a large

number of realizations to obtain accurate bounds on the

response variability, if one chose to use small W. For the present

work, we chose 25 realizations to obtain the variability due to

topological effects. The accuracy could be further improved with

more realizations. The value of W used in the current study is

marked in Fig. 14.

A.2 Increasing filament density. An allied question that arises

is: how would �r affect the variability ifW is fixed. As the filament

location and orientation are randomly generated, the greater the

number of filaments, the better the chance of approximating the

prescribed distribution function. Fig. 15 shows the filament

distribution for two typical realizations with limiting values of �r.

At �r ¼ 10, the distribution shows large variability and the

standard deviation, S, is high. As �r increases, the distribution

becomes more uniform and the standard deviation drops by an

order of magnitude, but only at the very high filament density of

�r ¼ 8000. However, this is a reasonable choice only if the global

responses also tend to be independent of �r, e.g. in networks

mimicking highly crosslinked synthetic polymers. In problems
Fig. 15 The filament distribution for �r¼ 10 and 8000 is shown with the mean

more uniform. W remains fixed at 40 � 40 mm.

7014 | Soft Matter, 2012, 8, 7004–7016
concerning low density networks, e.g. biopolymers, increasing �r

would not be a natural option, because the responses tend to be

a strong function of �r. In such cases, using reasonably large W

with fewer realizations or small W with a large number of real-

izations would be the options. To find a good choice of �r for

a given W ¼ 40 mm, so that the filament distribution approaches

theoretical uniform distribution, networks were generated with �r

ranging from 5 to 8000 and five different realizations for each �r.

Using the similar procedure as in Section A.1, Fig. 16 shows the

variability of Cov with �r, for a fixed W. It shows that Cov

decreases as �r increases and that there is a saturation value; the

blue zone shown in Fig. 16. Increasing �r beyond 1000 does not

change the distribution any further. It implies that multiple

realizations of networks with �r $ 400 would tend to yield nearly
(red line) and standard deviation. As �r increases the distribution becomes

This journal is ª The Royal Society of Chemistry 2012
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Fig. 17 Implementation of the crosslink scission algorithm within

ABAQUS�.
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identical global responses. Therefore, it seems that the variability

arising from topological differences can be mitigated by choosing

a �r for a given W.

B KMC algorithm and implementation in finite element model

In bio- as well as synthetic-polymeric networks the length-scales

of interest introduce stochastic effects due to the presence of

thermal energy that superposes the mechanical energy. The

KMC algorithm implemented in this work addresses this

stochastic nature as a first-order reaction. This description is

appropriate for an ensemble of similar bonds whose kinetics can

be modeled deterministically by a first order ordinary differential

equation (ODE) even though the breaking of each bond is

a stochastic process. In particular, the probability density func-

tion corresponding to the time required to break the jth bond can

be written as

pj(t) ¼ kje
�kjt (A1)

where kj is dissociation rate of a bond and is given by eqn (1).

Dissociation of crosslinks is based on the criterion given in eqn

(3). In our FE implementation within ABAQUS�, we used

a random seed that depends on the physical time at which the

simulation was performed. This largely ensured that, for a given

network topology, no two sequences of random numbers were

identical.

Fig. 17 shows the schematic implementation of this procedure

within ABAQUS�. Specifically, we wrote two user subroutines,

which determine the kinetics of each crosslink modeled as
This journal is ª The Royal Society of Chemistry 2012
a bi-linear spring: (a) UFIELD to incorporate the Bell model

that gives a crosslink dissociation rate—using this subroutine, we

related the crosslink stiffness as a function of an appropriate field

variable (axial force, F, in a crosslink)—and (b) URDFIL: to

enable reading and storing those field variables for each crosslink

so that they can be used by UFIELD.
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