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Abstract

We describe and solve a two-state kinetic model for the forced unfolding of proteins. The protein oligomer is modeled as a hetero-
geneous, freely jointed chain with two possible values of Kuhn length and contour length representing its folded and unfolded config-
urations. We obtain analytical solutions for the force–extension response of the protein oligomer for different types of loading
conditions. We fit the analytical solutions for constant-velocity pulling to the force–extension data for ubiquitin and fibrinogen and
obtain model parameters, such as Kuhn lengths and kinetic coefficients, for both proteins. We then predict their response under a linearly
increasing force and find that our solutions for ubiquitin are consistent with a different set of experiments. Our calculations suggest that
the refolding rate of proteins at low forces is several orders larger than the unfolding rate, and neglecting it can lead to lower predictions
for the unfolding force, especially at high stretching velocities. By accounting for the refolding of proteins we obtain a critical force below
which equilibrium is biased in favor of the folded state. Our calculations also suggest new methods to determine the distance of the tran-
sition state from the energy wells representing the folded and unfolded states of a protein.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last two decades atomic force microscopy
(AFM) has established itself as a valuable experimental
technique to probe the structure and energetics of proteins
[1–11]. Force–extension measurements obtained via AFM
have shown that the mechanics and chemistry of proteins
are intimately linked [3,12]. The data emerging from
AFM experiments are interpreted using steered molecular
dynamics (SMD) and Monte Carlo (MC) simulations
[1,10,13,14]. The SMD simulations complement AFM
experiments by providing information about short-lived
and metastable intermediate states that could not be
gleaned from experiments alone. However, the unfolding
forces predicted by SMD simulations are much larger than
those obtained in AFM experiments since the rates of pull-
ing in the SMD simulations are constrained (due to limita-
tions on the time step) to be orders of magnitude larger
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than realistic AFM pulling rates [13]. The MC simulations
are based on the two-state model of Rief et al. [14] and they
reproduce the AFM data quite well [1,9,10]. These meth-
ods, however, suffer from the limitation that the kinetic
parameters have to be determined by trial and error. In
general, the refolding rate is set to zero in these simulations
and only one persistence length is used for both the folded
and unfolded states of the protein. This reduces the dimen-
sionality of the parameter space to be searched [1,3] but is
unrealistic since refolding is dominant at low forces and
unfolded proteins are expected to be floppier than their
folded counterparts. Furthermore, MC simulations have
been used primarily to fit the data from AFM experiments
where the protein is pulled at a constant velocity, and we
are not aware of any attempt to use MC methods to deter-
mine the response of proteins under other pulling condi-
tions, such as a force linearly increasing with time.

Our goals in this paper are: (i) to unify the description of
protein unfolding under different types of pulling condi-
tions within a single model; (ii) to account for refolding
and explain the consequences of neglecting it; and (iii) to
vier Ltd. All rights reserved.
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Fig. 1. Illustration of the two-state kinetic model. (a) A chain of mixed
folded and unfolded proteins is modeled as a heterogeneous freely jointed
chain. A single folded (unfolded) protein is represented by a Nf -segment
(Nu-segment) subchain with Kuhn length lf ðluÞ. In this illustration, two
folded and one unfolded proteins are represented by the two red and one
blue subchains, respectively. Note that, in reality, the actual number of
segments in each subchain may be much larger. Also, lu is expected to be
smaller than lf since an unfolded protein is expected to be floppier than a
folded protein. (b) Energy landscape of the two-state model. The ordinate
is the Gibbs free energy and the abscissa is the reaction coordinate. The
two wells, representing the folded and unfolded states of a protein, are
separated by an energy barrier with transition distances Dxu and Dxf . At
zero force, the folding rate and the unfolding rate are b0 and a0,
respectively, with b0 � a0. An applied force can lower the energy barrier
and thus change the folding and unfolding rates.
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predict the response of proteins under different pulling con-
ditions from a knowledge of their kinetic and mechanical
properties. We begin with a version of the two-state model
of Rief et al. [14] and obtain analytical expressions for the
force–extension profile that can be directly fitted to the
experimental data. Unlike many of the MC simulations,
we do not set the refolding rate to zero. In fact, we show
that there is a critical value of the applied force under
which the equilibrium in the folding/unfolding reaction is
biased towards folding. We demonstrate the applicability
of our model by fitting it to published AFM experimental
data on two different proteins: ubiquitin and fibrinogen.
For ubiquitin we show that the kinetic and mechanical
parameters obtained from fitting our expressions to a con-
stant-velocity pulling experiment can be used to predict its
response in an experiment where the force is linearly
increasing with time. After validating our model with ubiq-
uitin, which has been extensively studied under various
types of loading conditions, we apply the same procedure
to fibrinogen and obtain predictions for its response under
a linearly increasing force.

2. Results

2.1. Three equations governing the forced unfolding of

proteins

In the problem of sequentially unfolding a protein oligo-
mer, we have three unknown functions of time t: xðtÞ; F ðtÞ
and Nf ðtÞ, which are, respectively, the extension, force and
the number of folded proteins. The total number of pro-
teins N is a constant throughout the experiment, so that,
Nf þ Nu � N . Therefore, NuðtÞ, the number of unfolded
proteins, is not viewed as an unknown function. The three
equations that close the system are: (1) the equilibrium
force–extension relation, x ¼ xðF ;N f Þ, obtained from
either the freely jointed chain (FJC) model or the worm-
like chain (WLC) model of polymer elasticity [15,16]; (2)
the kinetic equation, which measures the rates of unfolding
and refolding, obtained from either Bell’s model [17], or
other more sophisticated kinetic models based on Kramer’s
rate theory [18]; (3) the equation which determines the
manner of applying the external constraint, e.g., for con-
stant-velocity pulling, it is dx=dt ¼ vc, where vc is the pull-
ing speed, and for constant-force pulling, it is dF =dt ¼ 0.
This system of equations unifies problems of protein unfold-
ing under different kinds of loading conditions into a single
mathematical framework. By merely changing the last
equation, one can obtain the unfolding behavior of proteins
under constant-velocity pulling, constant-force pulling,
pulling with a force linearly increasing with time, etc.

2.2. Equilibrium force–extension relation

The mechanical properties of a protein in the folded and
unfolded states are expected to be different—a folded pro-
tein is stiff, whereas an unfolded protein is floppy. Hence,
Please cite this article in press as: Su T, Purohit PK. Mechanics of f
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we model the protein oligomer as a heterogeneous FJC
with two possible values of Kuhn length lf and lu for the
folded and unfolded states, respectively (Fig. 1a). For such
a heterogeneous FJC, the total extension can be rigorously
shown to be the sum of the extensions of the homogeneous
subchains [19,20]:

x ¼ N f Lfs coth
Flf

kBT

� �
� kBT

Flf

� �
þ N uLus coth

Flu

kBT

� �
� kBT

Flu

� �
ð1Þ

where Lfs and Lus are the contour lengths of a single folded
and unfolded protein, respectively, kB is the Boltzmann
constant, T is the absolute temperature and the meanings
of the symbols x; F ;Nf , Nu; lf and lu have been discussed
above. Note that, in reality, there is only one contour
length Lus that associates with the fully unfolded proteins.
The other contour length Lfs in Eq. (1) is meant to repre-
sent the maximum length of the proteins if unfolding is
somehow prevented.

This model implies that the equilibrium force–extension
behavior of a protein chain is governed only by four
parameters, Lfs; lf , Lus and lu, regardless of the number of
copies in the oligomer. However, if the chain is modeled
as homogeneous, we need N Kuhn lengths and N contour
lengths to fit the N curves obtained in a constant-velocity
pulling experiment (e.g., [21]).

In order to demonstrate the applicability of our model, we
consider force–extension measurements on ubiquitin
(N-C linked) and fibrinogen. For ubiquitin (experimental
orced unfolding of proteins. Acta Biomater (2009), doi:10.1016/
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data from Ref. [7]), we know that the last curve in the force–
extension profile (see Fig. 2a) corresponds to six unfolded
proteins and zero folded proteins, so we apply the homoge-
neous FJC model to fit this curve and obtain
Lus ¼ 25:37 nm, lu ¼ 0:33 nm. The other two parameters
can be obtained by fitting one other curve using the heteroge-
neous FJC model. Here we use the first curve and get
Lfs ¼ 6:29 nm and lf ¼ 0:60 nm. We similarly determine
the parameters for fibrinogen using the first and last curves
(Fig. 2b, experimental data from Ref. [9]) and get
Lfs ¼ 11:39 nm, Lus ¼ 44:62 nm, lf ¼ 0:57 nm and lu ¼
0:31 nm. These results are not significantly different if we
use any other two curves for the fitting. Without any more
free parameters, we then predict the intermediate curves
for both proteins using Eq. (1) and compare the predictions
with the experimental data. The results are shown in Fig. 2
(red curves) and the predictions of the heterogeneous FJC
model match the experimental data quite well for both
proteins.

Our results show that lu � lf=2 for both proteins, which
agrees with our intuition that unfolded proteins should be
floppier than folded ones. Furthermore, our estimates for
the contour lengths of the fully unfolded proteins Lus agree
well with published results (27.4 nm for ubiquitin [5,22] and
40 nm for fibrinogen [11]), which shows that our fitted
parameters are indeed physically relevant. However, it is
worth pointing out that Lfs is the maximum length of a sin-
gle folded protein if unfolding is somehow prevented,
therefore, it will be different from the end-to-end distance
of the protein in its native state. In fact, the contour length
of ubiquitin in its native state is about 3.8 nm [5], and sim-
ulations have shown that this number increases to 4.7 nm
under a constant force of 200 pN while the protein remains
in a native-like state [22].
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2.3. Kinetic equation

It has been shown by both experiments and simulations
that, at least for ubiquitin, most (�95%) of the unfolding
events follow a two-state pathway [8,22]. Therefore, follow-
ing Bell’s theory [17], we propose that the change in the
number of folded proteins is given by:

dN �f
dt
¼ �kuNf þ kf Nu ð2Þ

where ku ¼ a0 expðF Dxu=kBT Þ; kf ¼ b0 expð�F Dxf =kBT Þ; a0

and b0 are the unfolding and refolding rates when no force
is applied, Dxu and Dxf are the distances to the transition
state (Fig. 1b), and N �f , set to be a real number, is a contin-
uous version of the integer N f . Its initial value is set to be
equal to Nf and it evolves according to Eq. (2). On the
other hand, Nf , the number of folded proteins, evolves in
such a way that it jumps by �1 whenever N �f reaches an
integer. Note that for simplicity we assume here that Dxf

and Dxu are unaffected by the external force. This assump-
tion is valid when the local curvatures of the potential wells
are large [23,24]. More sophisticated kinetic models (e.g.,
[18]) can be easily incorporated into our description. We
stick with Bell’s model here because the goal of this paper
is to apply the three-equation mathematical framework to
understand the unfolding behaviors of proteins under dif-
ferent pulling conditions, and Bell’s model is simple enough
to give analytic or semi-analytic solutions for all the condi-
tions discussed below, and at the same time captures most
of the physics reported in the experiments. The condition
for unfolding or refolding events to happen is:Z

dN �f ¼
Z
ð�kuN f þ kf N uÞdt ¼ �1 ð3Þ
0 50 100 150 200
0

20

40

60

80

100

120

140

Extension (nm)

Fo
rc

e 
(p

N
)

b

model with only four free parameters: (a) ubiquitin; (b) fibrinogen. Blue
ata from Ref. [9]. We use two of the experimental curves (black dots) to fit
(black dashed lines are the fitting results). Then, without any more free
her curves. The predictions (red curves) match well with the experimental
ure legend, the reader is referred to the web version of this paper.)

orced unfolding of proteins. Acta Biomater (2009), doi:10.1016/



4 T. Su, P.K. Purohit / Acta Biomaterialia xxx (2009) xxx–xxx

ARTICLE IN PRESS
where þ1 represents refolding and �1 represents unfolding
of a protein.

The advantage of the present method over MC simula-
tions is that we can solve exactly for all the four kinetic
parameters (a0, b0;Dxu and Dxf ) from the experimental
data (discussed below) instead of guessing which parameter
values fit the data best. Guessing the best-fit kinetic param-
eters is especially difficult for the MC simulations when
taking the refolding rate b0 into account since the parame-
ter space is large. In fact, in many cases b0 is simply set to
zero by taking advantage of the fact that refolding is neg-
ligible at large forces [1,3]. A caveat of our deterministic
model is that it ignores the randomness of the unfolding/
folding events, but it is really meant to represent the aver-
age behavior of a large ensemble of experiments. In fact, we
show in what follows that the kinetic parameters obtained
from the deterministic model assuming kf ¼ 0 are close to
those obtained previously by MC simulations. Further-
more, the kinetic parameters obtained from the determinis-
tic model can be used in the MC simulations to obtain
particular instances of the unfolding pathway, thus provid-
ing information about higher moments, e.g., the variance
of the unfolding force in a constant-velocity pulling
experiment.

2.4. Constant-velocity pulling

For the case of constant-velocity pulling, the external
constraint equation is dx=dt ¼ vc. Using this relation, the
unfolding and refolding condition (Eq. (3)) can be rewrit-
ten as:Z x2

x1

ðkuNf � kf NuÞdx� vc ¼ 0 ð4Þ

where the positive (negative) sign represents refolding
(unfolding) of one protein, x1 is the initial extension of a
particular continuous force–extension curve, x2 is the
extension when unfolding/refolding is imminent, kuðF ðxÞÞ
and kf ðF ðxÞÞ are functions of the extension, and N f and
Nu are the number of folded and unfolded proteins which
remain constants for each curve.

Each of the unfolding events in the force–extension pro-
file should satisfy Eq. (4) and we can use any four of them
to solve for the four free kinetic parameters. This results in
four algebraic equations that we solved numerically using
Newton’s method for both ubiquitin and fibrinogen (pull-
ing velocity for both the proteins is vc ¼ 1000 nm s�1

[7,9]). The result for ubiquitin is: a0 ¼ 3:75 s�1; b0 ¼
1293:65 s�1;Dxu ¼ 0:08 nm and Dxf ¼ 0:31 nm. The refold-
ing rate b0 found here is comparable to that obtained pre-
viously from MD simulations [25]. The result for
fibrinogen is: a0 ¼ 3:19 s�1; b0 ¼ 7691:16 s�1;Dxu ¼
0:10 nm and Dxf ¼ 0:67 nm. Similar transition distances
have been reported for many other protein domains and
are suggested to reflect the critical breaking of hydrogen
bonds or hydrophobic interactions in the process of protein
unfolding [26]. Using the solved kinetic parameters, we can
Please cite this article in press as: Su T, Purohit PK. Mechanics of f
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predict other breaking points and thus the whole force–
extension profile using Eqs. (1) and (4) and dx=dt ¼ vc.
The predictions match well with the experimental data
and are shown in Fig. 3. Our solutions for both the pro-
teins imply that b0 is several orders larger than a0. Intui-
tively, this is expected because when no external force is
applied, the proteins tend to rapidly fold into their native
state. The fact that b0 � a0 suggests that the refolding rate
cannot be ignored, at least when the force is small.

If we assume that the refolding rate b0 is zero as is com-
monly done in MC simulations, the solution for the kinetic
parameters for ubiquitin is: a0 ¼ 0:05 s�1;Dxu ¼ 0:17 nm.
These results are quite close to those obtained previously
by other experiments that also assumed kf ¼ 0 [8,27,28],
and suggest that our model is consistent with the MC sim-
ulations used before. In fact, the authors in Ref. [8]
assumed ku ¼ 0 and found a0 ¼ 0:015 s�1;Dxu ¼ 0:17 nm
using the constant-force pulling data and
a0 ¼ 0:0375 s�1;Dxu ¼ 0:14 nm using the linearly increasing
force pulling data on ubiquitin. Our results show that the
unfolding rate a0 obtained by ignoring the refolding rate
is significantly lower than that obtained by taking the
refolding rate into account. In fact, setting b0 ¼ 0 should
always lead to an underprediction of a0. The reason for
the underprediction is that when the refolding rate is
ignored in the kinetic equation, the unfolding rate pre-
dicted is in fact a ‘‘net rate” for the proteins to change from
the folded state to the unfolded state. This calculated ‘‘net
rate” should be smaller than the true unfolding rate
because it includes the contribution of the refolding rate
which is high at low forces.

It has been shown that the average breaking force is
approximately linear with respect to the logarithm of pull-
ing velocity [5,7]. We use the parameters calculated above
and predict the force–extension profiles under different
pulling speeds ranging from vc = 103 nm s�1 to
vc = 1011 nm s�1 for both proteins (six copies, force–exten-
sion profiles not shown). The linear relation between the
average breaking force and the logarithm of pulling veloc-
ity is found using either set (kf = 0) and (kf – 0) of the
kinetic parameters obtained previously (Fig. 4a). For ubiq-
uitin, our calculations show that the slope is 63.1 (pN per
10-fold change of the velocity in nm s�1) if we use the set
of parameters that assumes kf ¼ 0, and 135.3 if we use
another set of parameters that takes refolding into account.
Recent MD results on fibrinogen, with pulling velocity
2:5	 109 nm s�1, show that the unfolding events happen
at force �103 pN [11]. This result is close to our predicted
average breaking force for fibringen at similar pulling
velocity (see Fig. 4a, blue solid line). However, Fig. 4a
shows that if we set kf ¼ 0, the predicted unfolding force
is much smaller than the one that takes the refolding rate
into account. The reason the unfolding force is higher with
non-zero kf is as follows. Recall that for given ku and kf ,
the breaking extension x2 (and hence the breaking force)
is calculated from the integral over the entire force–exten-
sion curve (see Eq. (4)) including the low force regime
orced unfolding of proteins. Acta Biomater (2009), doi:10.1016/
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Fig. 3. Force–extension profiles of six copies of (a) ubiquitin and (b) fibrinogen (vc ¼ 1000 nm s�1) in constant-velocity pulling. Blue curves, experimental
data (ubiquitin data from Ref. [7] and fibrinogen data from Ref. [9]); red curves, prediction using our two-state kinetic model. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this paper.)
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where refolding is dominant. The integral in Eq. (4) is ini-
tially negative because the force is low and kf � ku, so for
the case kf – 0, the force–extension curve should go higher
in order for the integral to reach the positive value vc. This
suggests that a poor prediction of the unfolding rate at low
pulling velocities leads to large errors in the predictions for
the breaking events at high pulling velocities.

We also note here that if we set Nf and N u in both Eqs.
(1) and (2) to be real numbers that change continuously,
then together with the constraint equation, dx=dt ¼ vc, we
can analytically reproduce the continuous force–extension
profile for the coiled-coil proteins with a shallow force pla-
teau as observed experimentally [4,11]. The solutions will
be discussed elsewhere since we mainly focus in this paper
on the unfolding of globular proteins. Furthermore, our
model can be applied to study the relaxation behavior of
Please cite this article in press as: Su T, Purohit PK. Mechanics of f
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the protein chain after all the proteins are fully stretched
as has been done in experiments [29]. We keep the relaxa-
tion extension xr fixed by setting vc ¼ 0, let the initial N f

be 0 (i.e., all the proteins are unfolded initially), and obtain
the solution for Nf ðt; xrÞ. Fig. 4b shows how the number of
refolded proteins evolves as a function of time and also its
dependence on xr. The trend in the solution agrees with
recent experimental observations on a different protein
[29]. We further note that the correct limit profile as
t!1 (Fig. 4b, blue line) can be obtained only by taking
both the unfolding and refolding rates into account.

2.5. Pulling with a force linearly increasing with time

For a protein oligomer stretched under a linearly
increasing force, we have dF=dt ¼ vf , and the unfolding/
refolding condition (Eq. (3)) becomes:

W ðF 2Þ ¼ �vf þ W ðF 1Þ ðF 2 > F 1Þ ð5Þ
Eq. (5) can be used to determine the unfolding force F 2.
The double exponential function W ðF Þ is given by
W ðF Þ ¼ kBT ½N f kuðF Þ=Dxu þ Nukf ðF Þ=Dxf 
, and F 1 is the
initial force at each step (note that the force–extension pro-
file is stepwise). Depending on the sign (positive/negative)
of vf , one protein unfolds/refolds when F linearly increases
to reach F 2.

We use Eqs. (1) and (5) together with dF =dt ¼ vf

(vf ¼ 300 pN s�1) to generate the stepwise extension–time
profile for both ubiquitin and fibrinogen (all the kinetic
parameters have been obtained in the constant-velocity
pulling section). The results are shown in Fig. 5a and b
(red). For ubiquitin, the unfolding events occur around
�100 pN and the breaking extension is nearly linear in
time, with a slope predicted as 680:9 nm s�1. Both these
results are consistent with experimental observations [8].
For fibrinogen, the result shown here constitutes a falsifi-
able prediction from our model and can be easily tested
orced unfolding of proteins. Acta Biomater (2009), doi:10.1016/
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using current AFM techniques. For both proteins, some
refolding events are observed at small force (inset of
Fig. 5a and b), which would not be predicted if the refold-
ing rate is ignored (Fig. 5c).

Further analysis of Eq. (5) shows that the initial force F 1

at each step should be larger than a critical force in order
that one protein unfolds at the end of the step (otherwise
one protein will refold at the end of the step). This critical
force F cl is determined by:

W ðF clÞ ¼ vf þ W ðF sÞ ðF cl < F sÞ ð6Þ
where F s is the unique stationary point of the function
W ðF Þ: F s ¼ ½kBT=ðDxu þ Dxf Þ
 ln½b0Nu=ða0Nf Þ
. In general,
since W ðF Þ depends on N f , the critical force increases as
more and more proteins unfold (Fig. 6). For example, con-
sider the unfolding of a chain of nine ubiquitins; the critical
force computed using Eq. (6) increases from � 30 to
�80 pN during the unfolding process.

If we let Nf and N u in both Eqs. (1) and (2) be continu-
ous real numbers, then the solution for Nf ðtÞ satisfying
Nf ð0Þ ¼ N and F ¼ vf t is:

Nf ðtÞ
N
¼ Q�1ðtÞ

Z t

0

b0QðtÞeC2tdt þ Qð0Þ
� �

ð7Þ

where the function QðtÞ and the two constants C1 (appear-
ing in QðtÞ) and C2 are given by:

QðtÞ ¼ exp a0 expðC1tÞ=C1 þ b0 expðC2tÞ=C2½ 
 ð8Þ

C1 ¼
vf Dxu

kBT
; C2 ¼

�vf Dxf

kBT
ð9Þ

An analytic expression of xðtÞ can be obtained by plug-
ging Eq. (7) into x ¼ xðNf ðtÞ; F ðtÞÞ (Eq. (1)). The results
for both the proteins are shown in Fig. 5a and b (blue).
The curves agree quite well with the predictions of the dis-
crete model, implying that whether we take N f and Nu as
integers or real numbers does not greatly affect the results
for this kind of experiments. The advantage of assuming
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Extension–time profiles for nine copies of ubiquitin assuming kf ¼ 0 shows no
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continuous N f and N u is that we have an analytical expres-
sion for x ¼ xðNf ðtÞ; F ðtÞÞ. This can be directly fitted to the
experimental data for linearly increasing force.

2.6. Constant-force pulling

Stretching proteins under a constant force produces a
staircase-like extension–time profile, in which the extension
remains piecewise constant over each step. Since the force
is a constant, the unfolding/refolding condition Eq. (3)
leads to the dwell time Dt for one unfolding (Nf decreases
by 1) or refolding (N f increases by 1) event:
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discrete model shown in red. The profiles for ubiquitin obtained here are
ate into account, some refolding events are observed at small force. (c)
refolding events at small force even though it reproduces the overall trend.
is referred to the web version of this paper.)
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Dt ¼ 1

jkuN f � kf Nuj
: ð10Þ

If kuNf � kf Nu > 0, then dN �f=dt < 0 (Eq. (2)), so one
protein unfolds after the dwell time Dt, otherwise, one pro-
tein refolds after Dt. Note that usually Nu is small or zero at
the beginning of the experiment, so that kuN f � kf Nu > 0
results in sequential unfolding of the proteins. As more
and more proteins unfold, (kuNf � kf Nu) decreases and
thus the unfolding time increases, which is indeed observed
in experiments [8]. If the force is large enough that the term
ðkuNf � kf NuÞ remains positive before Nf decreases to 0,
then all the proteins can unfold (Fig. 7a). On the other
hand, if the force is small (e.g., �80 pN for ubiquitin),
ðkuNf � kf NuÞ becomes negative at some time before N f

reaches 0, then unfolding events cease, and periodic refold-
ing and unfolding events ensue with ðkuN f � kf N uÞ switch-
ing sign each time an event occurs (inset of Fig. 7a).
Although it is difficult to do the constant-force experiment
on copies of proteins at low force (<70 pN for ubiquitin)
using AFM [8], the unfolding and refolding ‘‘hopping”

was indeed found in a simulation on an a-helix with a sim-
ilar force (78.2 pN) [23] as well as in experiments on RNA
hairpin using optical tweezers [24].

By setting kuNf � kf Nu ¼ 0, we can obtain the critical
force below which refolding/unfolding ‘‘hopping” will
occur:

F cc ¼
kBT

Dxu þ Dxf
ln

b0Nu

a0N f

� �
ð11Þ

This critical force F cc keeps increasing as more and more
proteins unfold.

Using the parameters obtained from constant-velocity
pulling, we find that an applied force larger than 84 pN is
required for all the ubiquitins to unfold if there are nine
copies of the protein in the chain. Note that the critical
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increases as the protein unfolds. The inset shows that when the force is not
‘‘hoppings” occur periodically. (b) Nf1=N as a function of the dimensionless fo
force over which Nf1=N changes from 90% to 10%, is a universal constant ln
unfold. It is shown in the text that P�F ¼ lnðb0=a0Þ. (c) Unfolding rate a as a fu
refolding rate into account. When the force is large enough, log a is a linear fun
kf ¼ 0. Inset, kf =ku as a function of the applied force. (For interpretation of th
version of this paper.)

Please cite this article in press as: Su T, Purohit PK. Mechanics of f
j.actbio.2009.01.038
force is different for constant-force pulling and pulling with
a linearly increasing force unless vf ¼ 0 (Eqs. (11) and (6)).
Also note that there is no such critical force if we assume
kf ¼ 0, and therefore a model ignoring refolding unrealisti-
cally predicts that all the proteins in the chain should
unfold and no ‘‘hopping” events should occur no matter
how small the force is.

If we assume that Nf and Nu are continuous real num-
bers in the model, then the analytic solution for N f ðtÞ is:

Nf ðtÞ ¼ Nf1 þ ðNf 0 � N f1Þe�t=s ð12Þ
where Nf1 ¼ Nkf=ðkf þ kuÞ is the number of folded pro-
teins that remain in the chain as t!1;N f 0 is the number
of folded proteins at t ¼ 0 and s ¼ 1=ðkf þ kuÞ is the time
constant.

We plot Nf1=N vs. a dimensionless force PF ¼ F ðDxuþDxf Þ
kBT

in Fig. 7b and find that the transition of Nf1=N from 90%
to 10% occurs over a narrow range of PF , a result also
reported in an earlier simulation work on an a-helix and
suggested to have some relation to mechanotransduction
[23]. From our expression for Nf1, we further show that
this transition range dF (Fig. 7b) can be calculated analyt-
ically and the value turns out to be a universal constant
ln 81 � 4:4, independent of all the kinetic parameters. In
other words, for any protein that obeys the two-state
model, the transition always occurs over 4.4 units of the
dimensionless force. Also, it can be shown that the dimen-
sionless force P�F that unfolds half the proteins is related to
the kinetic parameters by P�F ¼ lnðb0=a0Þ. This suggests a
new way to determine b0 experimentally. Note that all
the discussions here for N f1 and dF are the results of tak-
ing the refolding rate into account, otherwise Nf1=N � 0
and is not a function of F.

Eq. (12) combined with Eq. (1) further leads to an ana-
lytic expression for the relative extension as a function of
time:
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time for the stepwise solution, which is obtained analytically in the text,
large enough, not all the proteins can unfold, and refolding/unfolding

rce PF . Red, ubiquitin; blue, fibrinogen. dF , the range of the dimensionless
81 for all proteins. P�F is the dimensionless force for half the proteins to
nction of the applied force F. The red solid line is the result of taking the
ction of F (red broken line). The blue solid line is the prediction assuming
e references to color in this figure legend, the reader is referred to the web
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x
xM
¼ 1� DxN f1

xM

� �
�

Dx Nf 0 � Nf1
� �

xM
e�

t
s ð13Þ

where xM ¼ NLus½cothðFlu=ðkBT ÞÞ � kBT=ðFluÞ
 is the
extension of the chain when all proteins are unfolded,
and Dx ¼ Lus½cothðFlu=ðkBT ÞÞ � kBT=ðFluÞ
 � Lfs½cothðFlf=
ðkBT ÞÞ �kBT=ðFlf Þ
 is the difference in length between a sin-
gle unfolded and folded protein. We plot the analytic solu-
tion from the continuous model (Eq. (13)) together with
the stepwise solution from the discrete model in Fig. 7a.
The two results agree quite well.

Moreover, Eq. (13) leads to the conclusion that the
unfolding rate a ¼ 1=s is a double exponential of the force
F (Fig. 7c):

a ¼ 1

s
¼ a0 exp

F Dxu

kBT

� �
þ b0 exp � F Dxf

kBT

� �
ð14Þ

When the applied force is large enough so that kf � ku

(inset of Fig. 7c), then ln a � ðDxuF =kBT Þ þ ln a0 is linear
with respect to the force F, as has been shown experimen-
tally [8]. For small forces, the unfolding rate decreases with
increasing force, which is consistent with earlier works
[23,27]. Note that decreasing the unfolding rate at small
force is due to the decreasing kf , which again suggests that
kf cannot be ignored, especially at small forces. Eq. (14)
further gives a way to fit all the four kinetic parameters
using the constant-force pulling experimental data.

3. Conclusion

We have obtained solutions to a kinetic two-state model
for protein unfolding based on a heterogeneous FJC model
and Bell’s model. This model describes the forced unfold-
ing of a chain of proteins under various kinds of loading
conditions. Using this model we have obtained analytic
solutions that can predict the response of a chain of pro-
teins under a linearly increasing force or a constant force.
The model can also be used to fit the experimental data
from constant-velocity pulling experiments, as we have
demonstrated for ubiquitin and fibrinogen. In particular,
we have used the experimental data to solve directly for
all the four kinetic parameters and predict the response
of the proteins under a linearly increasing or constant
force. Our solutions show that the refolding rate is much
larger than the unfolding rate at zero force and that inter-
esting physics is revealed if we account for the refolding
rate at low forces.
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