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We present a newmethod combining structural and statistical mechanics to study the entropic elasticity

of semiflexible filament networks. We view a filament network as a frame structure and use structural

mechanics to determine its static equilibrium configuration under applied loads in the first step. To

account for thermal motion around this static equilibrium state, we then approximate the potential

energy of the deformed frame structure up to the second order in kinematic variables and obtain

a deformation-dependent stiffness matrix characterizing the flexibility of the network. Using statistical

mechanics, we then evaluate the partition function, free energy and thermo-mechanical properties of

the network in terms of the stiffness matrix. We show that penalty methods commonly used in finite

elements to account for constraints, are applicable even when statistical and structural mechanics are

combined in our method. We apply our framework to understand the expansion, shear, uniaxial

tension and compression behavior of some simple filament networks. We are able to capture the stress-

stiffening behavior due to filament reorientation and stretching out of thermal fluctuations, as well as

the reversible stress-softening behavior due to filament buckling. Finally, we apply our method to

square networks and show how their mechanical behavior is different from triangular networks with

similar filament density and persistence length.
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1 Introduction

Soft filamentous networks show distinct mechanical behaviors

compared to conventional solids. They have a nonlinearly elastic

stress-strain relation at large strains.1–5Also, filament gels display

so-called ‘‘negative normal force’’ behavior: they contract under

shear while usual Neo-hookean polymers expand.6,7 Different

deformation modes of the networks, such as affine versus non-

affine modes, have been discussed in recent years.8–11 It has also

been shown that the elastic modulus of a filament network can be

tuned by the density/type of the cross-linking proteins, internal

motor generated stresses and by the loading frequency,

etc.1,3–5,12–15

A method frequently employed to study mechanical behavior

of filament networks is finite element simulation. But, typical

finite element studies in this field often neglect the contribution of

thermal fluctuations to the mechanics of networks, or only

consider thermal effects in the undeformed configurations.16 It is

well known that at nanometer and micrometer length scales,

thermal fluctuations can significantly affect the mechanical

behaviors. For example, the non-linearity in the force-extension

relation of the wormlike-chain model comes from stretching out

thermal fluctuations at large force.17 For a semiflexible filament

network, the role of thermal fluctuations is not completely clear

at present. Some recent studies found that thermal fluctuation

has a noticeable influence only when the persistence length of the

polymer xp is comparable to the average distance between cross-

links lc,
18 while other studies suggest that thermal undulations of
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individual filaments are responsible for the elasticity of cross-

linked network even when lc � xp.
1,19,20 Despite this uncertainty,

it is commonly acknowledged that at least for low pre-strained,

low density networks, configurational entropy due to thermal

fluctuation plays an important role in the mechanical behavior.

One of the main goals of this paper is to establish a theoretical

framework that extends the finite element method such that it

can account for the effect of thermal fluctuations.

Besides finite element models there are theoretical studies on

networks that do include the effect of thermal fluctuations by

using the wormlike-chain model, or the freely-jointed-chain

model, as the constitutive law for individual filaments in the

networks.21,22 But, this may not always be appropriate because

a filament in a network can be subjected to very different

boundary conditions and constraints compared to an isolated

filament. More importantly, the wormlike-chain model concerns

only the behavior of a filament under tension. In a network,

however, even under simple shear, some filaments can be sub-

jected to significant compressive forces and bending

moments.2,23–25 The wormlike-chain constitutive law can no

longer be used to describe filament mechanics in such scenarios.

The method described in this paper can systematically account

for the effect of thermal fluctuations instead of using the worm-

like chain constitutive law locally.

Another simulation technique that has been employed to study

soft networks is Brownian dynamics.18 This method accounts for

the effect of thermal motion by including the Langevin force

term in the dynamic simulations.18 The advantage of doing so is
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† The theory described here is not restricted to filament networks alone.
Other types of energies may be included if a different fluctuating
mechanical structure, such as a nano shell, is under investigation.
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that the influence on equilibrium and dynamic properties (such as,

relaxation times) of different cross-linking proteins, thermal

fluctuations, pre-strain of the filaments, etc., can be easily inves-

tigated.18 But, dynamic simulations are computationally costly,

especially when the number of atoms/particles is large. For

problems involving buckling, the results from dynamic simula-

tions also depend strongly on the strain rate and the critical force

can have significant overshoot.26 This type of problems can be

avoided in Monte-Carlo simulations of networks. The expensive

step inMonte Carlo simulations is the sampling of configurations

to accurately compute the ensemble averaged quantities. We note

that recently improved sampling techniques have been developed

and applied on filament networks.27

In this paper, we propose a new theoretical framework

combining structural mechanics and statistical mechanics to

understand the entropic elasticity of fluctuating filament

networks. A filamentous network is viewed as a mechanical

structure, discretized and represented by a set of generalized

coordinates. In the first step, the static equilibrium state of the

network under applied loads and possible constraints is deter-

mined using energy minimization (structural mechanics part). In

the second step, Gaussian integrals are used to understand the

fluctuation around the static state (statistical mechanics part).

We approximate the local minimum energy well to quadratic

order; this gives rise to a deformation-dependent stiffness matrix

that characterizes the flexibility of the deformed network. We

then use the stiffness matrix to calculate the partition function,

from which all thermodynamic properties of the network can be

determined. Our method is efficient because there is only a small

extra computational cost for computing averages based on

Gaussian integrals in the second step after computing the inverse

of the stiffness matrix in the first step. In fact, the matrix inver-

sion step is highly optimized in commercial finite element pack-

ages. We show that the fluctuation of the network scales linearly

with the temperature and inversely with the stiffness matrix.

While most previous studies have focused on homogeneous

networks with one type of filament, the framework proposed in

this paper can deal with heterogeneous networks easily.

We note that there exist models of rubber elasticity in the

literature that view a polymer as a network of linear springs and

perform a Gaussian integral to obtain the partition function (and

the free energy) in terms of the determinant of a stiffness

matrix.28 But, to our knowledge, no attempt has been made to

view networks of semiflexible polymers as fluctuating beam-

frame structures, instead of networks of linear springs. Thinking

of the network as a fluctuating beam-frame allows us to examine

the effects of filament buckling which cannot be captured in

a network of linear springs. Filament buckling is partially

responsible for non-affine deformations and has also been shown

by several studies to cause stress softening in networks.2,16 A

recent study has also proposed that buckling plays a role in

organization of the networks in cells.25 In this paper, we require

our computation to follow the correct post-buckling paths and

obtain the entropic elastic behavior of the networks both before

and after buckling of the individual filaments.

Our focus in this paper is (1) to set up and understand the

above framework, and (2) to apply the framework to simple

filament networks to understand the effects of thermal fluctua-

tions on the mechanics. We will not discuss large networks in this
ART � C2SM
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paper since the framework developed here can easily be incor-

porated into existing finite element packages to study large

networks. Using finite element method to study large filament

networks is feasible as many previous studies have demonstrated

on systems with degrees of freedom �104.16,29–33 Our goal for this

paper is to demonstrate that the proposed method can capture

the entropic effects and reproduce known results on small

networks, so that researchers in the community can use the finite

element method to study entropic effects in networks. Although

the networks in our study are simple, they capture many of the

characteristic behaviors observed in experiments, such as stress-

stiffening when thermal fluctuations are stretched out, stress-

softening when filaments buckle and also negative normal stress

when the networks are sheared.

2 Theory

2.1 Entropic elasticity of a system without constraints

The elastic energy of an individual filament in a network consists

of stretching and bending energies:

Eelastic ¼
ðL0

0

Ks

2
ðl� 1Þ2ds0 þ

ðL0

0

Kb

2

�
vq

vs0

�2

ds0; (1)

where s0 and s are the reference and deformed arc lengths, L0 is

the reference contour length before deformation, l¼ vs/vs0 and q

are the local stretch and tangent angle respectively, Ks and Kb are

the stretching and bending moduli of the filament. We note that

the filaments can be heterogeneous in this theory, i.e, Ks and Kb

may vary along the filaments.

Cross-links in a polymer network (like actin-binding proteins

(ABP)34) give rise to another energy term. Some of them

constrain the angle between the cross-linked filaments3 while

others act as hinges. To model these angle constraints, we add

a rotational spring, with spring constant k, at each cross-link.

When there is no constraint, we set k¼ 0. The energy contributed

by each of these rotational springs is:

Elink ¼ k

2
ðDq� Dq0Þ2; (2)

where Dq is the tangent angle difference between the cross-linked

filaments and Dq0 is the reference value of that angle. For

example, a cross-link by macrophage ABP would have Dq0 ¼ p/

2.35

The potential energy of a filamentous network also includes

various force potentials due to the applied loads. For example,

for a network under live hydrostatic edge tension p, the potential

energy is Ep ¼ �pA, with A being the current area in a 2D

network. On the other hand, a shear stress s on a filament

contributes a potential energy Es ¼ � Ð
sð~r$t̂Þds, with~r being the

position vector of the filament and t̂ being the local unit tangent.

Total potential energy of a network is E ¼ Eelastic + Elink +

Eforcepotentials.

The first step in our proposed framework is to use methods in

structural mechanics to determine a static equilibrium configu-

ration that minimizes the energy described above.† Usually, the
07058H
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structure is discretized into elements and becomes a system with

finite degrees of freedom (dof) characterized by a set of gener-

alized coordinates qi (i ˛ [1,dof]). In our method, each filament in

the network is discretized into small segments whose lengths are

much smaller than the persistence length. The generalized coor-

dinates are the local stretches li and local tangent angles qi for

each segment. Energy minimization is performed on the discrete

structure using Newton’s method, which involves the computa-

tion of the current stiffness matrix Kq: [Kq]ij ¼ v2E/vqivqj. This

matrix is evaluated at the current configuration under given

applied loads, so that geometric non-linearity is taken into

account. Using the current stiffness matrix is crucial when

buckling and post-buckling behaviors are under investigation.

Below, we will denote the minimum energy configuration as~qmin.

A ‘static’ result mentioned later in this paper will refer to the

solution without taking thermal fluctuations into account.

The next step is to apply statistical mechanics to study the

entropic elasticity behavior around the static solution.We denote

the fluctuation away from the static state as D~q ¼ ~q � ~qmin, and

approximate the energy of the states around the static state up to

the second order:

E ¼ Emin þ 1

2
D~qT$KqD~q; (3)

with Emin being the energy of the static state. We emphasize that

Kq is the current stiffness matrix. It depends on the current static

state and varies as one changes the applied loads. The partition

function of such a system is a multidimensional Gaussian inte-

gral and it is given analytically by:36,37

Z ¼
ð
exp

�
� E

kBT

�
d~q ¼ e�bEmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpkBTÞdof
detKq

s
; (4)

with b¼ 1/kBT, kB being the Boltzmann constant and T being the

absolute temperature. The free energy of the system, neglecting

a constant term, is:

G ¼ �kBT logZ ¼ Emin þ TkB

2
log

�
detKq

�
: (5)

A more important result relates to the fluctuations of the

independent coordinates, and it can be obtained by doing the

Boltzmann weighted average:

�
DqiDqj

� ¼ 1

Z

ð�
DqiDqj

�
expð�bEÞdD~q ¼ kBT ½K�1

q �ij : (6)

This result tells us that thermal fluctuation of the independent

variables is determined by (1) thermal energy kBT, and (2) inverse

of the current stiffness matrix. For a system on the length scale of

nm and force scale of pN, the stiffness is usually comparable to

kBT at room temperature. Therefore, thermal fluctuations of

such nano-scale systems are significant and must be taken into

account. We note that eqn (6) is a natural generalization of the

equipartition theorem. To see this, we recall that the equi-

partition theorem for a one-dof linear system reads

1

2
khq2i ¼ 1

2
kBT , which gives hq2i ¼ kBT/k.

The thermal average of other quantities, say A ¼ A(~q), can be

determined using a Taylor series expansion:
ART � C2SM
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hAð~qÞi ¼
*
Að~qminÞ þ

vA

vqi
Dqi þ 1

2

v2A

vqivqj
DqiDqj

+
(7)

hAð~qÞi ¼ Að~qminÞ þ
kBT

2

v2A

vqivqj
½K�1

q �ij: (8)

We see that the thermal average of a quantity hAi is, in general,

different from the static value A(~qmin) determined by energy

minimization, as long as v2A/vqivqj s 0. Note that if the quantity

A is the energy E, then v2E/vqivqj ¼ [Kq]ij, and eqn (8) reduces to

hEi ¼ 1

2
$dof$kBT , which is the equipartition theorem. When we

apply the theory to study a network in the following sections, the

quantity A can be the area of the network, or the position of

a node, or the angle between two filaments.
2.2 Including constraints in the system

In the previous section, we discussed the theoretical framework

in which no constraints are posed on the independent coordi-

nates ~q. However, spatial constraints are commonly met. For

example, a filament with two ends clamped has a constraint that

the tangent angles at the ends are zero and not free to fluctuate.

Similarly, a displacement boundary condition poses a constraint

on the gerneralized coordinates. In this section, we discuss

methods to deal with such constraints.

In finite elements, the penalty method is commonly used to

enforce spatial constraints. This method replaces the rigid spatial

constraints by very stiff springs. We shall see below that similar

ideas can be used even in statistical mechanics. Suppose a spatial

constraint on ~q can be expressed as g(~q) ¼ 0. The partition sum

must then be evaluated over the allowed configurations that

satisfy g ¼ 0:

Z ¼
ð
exp

�
� E

kBT

�
dðgÞd~q: (9)

To deal with the additional Dirac delta function in eqn (9), we

use the expression d ðgÞ ¼ limk/N

ffiffiffiffiffiffiffiffi
k=p

p
e�k g2 which turns the

expression for the partition function into:

Z ¼ lim
k/þN

ffiffiffiffiffiffi
bk

p

r ð
exp

�
� E þ kg2

kBT

�
d~q: (10)

Now, in the limit as k / +N, the partition function has

exactly the same form as the one without spatial constraints if an

effective energy Eeffective ¼ E + kg2 is used for the structure. This

is essentially the same idea as the penalty method. We replace the

constraints (removing the delta function) with stiff springs

(adding large penalty energy to the system). When we do the

computation, we do not take k as infinity. Instead, we just ensure

kBT/k is very small so that there are negligible fluctuations in the

constrained degree of freedom.

Another way of dealing with the delta function is to use its

Fourier transform which again can change the constrained

system into one without constraints.36,37 But, if we use the

Fourier transform, we have to change the integration path on the

complex plane to evaluate the partition function, and the effec-

tive energy has a complex value. Moreover, in the Fourier

transform method, each constraint adds one more degree of
07058H
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freedom to the structure. This is not favorable since it requires

more computational effort in manipulating the stiffness matrix.

For these reasons we will use the penalty method to enforce

spatial constraints.

The advantage of the proposed theoretical framework is that it

can be applied to evaluate the entropic elasticity and thermal

fluctuations of any mechanical structure, including frame struc-

tures, plates, shells or membranes. Using finite elements to study

these systems is now standard, especially with many commercial

finite element packages being available. We have shown here that

adding the effects of thermal fluctuation to the structural

mechanics requires simply the inverse of the stiffness matrix,

which is typically already available from the finite element

calculation.

To test our theory, we first apply the framework described

above to the extension of a single filament. The thermal average

of the end-to-end extension of the filament is computed under

different tensile loadings. As expected, this thermal average is less

than the static extension because fluctuations tend to shrink the

end-to-end distance of the filament. The result (Fig. 1) from our

computation matches exactly with the known analytic solution

for an extensible wormlike chain (2D):37,38

hxi ¼ Lþ FL

Ks

� kBTL

4
ffiffiffiffiffiffiffiffiffi
KbF

p
"
coth

�
L

ffiffiffiffiffiffi
F

Kb

r �
� 1

L

ffiffiffiffiffiffi
Kb

F

r #
; (11)

where hxi is the average end-to-end extension of the chain under

applied force F, and L,Kb,Ks are respectively the contour length,

bending and stretching moduli of the chain. This result verifies

the proposed framework and our computation scheme. In fact,

the framework has been successfully applied to study an isolated

fluctuating heterogeneous chain under end-to-end loads,37 under

general distributed loads,39 and under confinement.40 We will

next apply our framework to simple 2D filament networks.
Fig. 1 Force-extension relation for an isolated hinged-hinged filament.

Blue dashed line: static computational results without thermal fluctua-

tion. Blue circles: computational results with thermal fluctuation using

eqn (8). Red line: known analytic solution for an extensible wormlike

chain shown in eqn (11). The filament with contour length 100.58 nm is

discretized into n ¼ 100 segments in the computation. Stretching and

bending moduli are Ks ¼ 1000kBT/nm and Kb ¼ 250kBT $ nm

respectively.
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3 Results and discussions

3.1 Hydrostatic edge tension on a triangular network

We first consider the expansion of a single hexagon formed by

cross-linking semiflexible filaments together. Fig. 2A shows its

reference and deformed static configurations under hydrostatic

tension. The ratio between the contour and persistence length of

each filament is L/xp ¼ 2. The stretching modulus is Ks ¼ 10kBT/

nm. The filaments are cross-linked without angle constraints.

Under live stepwise-increasing edge load p, the hexagon expands.

The area of the hexagon, with and without thermal fluctuations,

is calculated using eqn (8), and the results are shown in Fig. 2B.

When thermal fluctuation is taken into account, the hexagon

stiffens as it expands, with the 2D bulk modulus (or area

expansion modulus) increasing from Kbulk ¼ 0.07 pN nm�1 to

1.29 pN nm�1. This is because at the initial stage of expansion,

the deformation is caused by stretching out thermal fluctuations

(easy), instead of elastically stretching the filaments (difficult).

The computational results in Fig. 2B, both with and without

thermal fluctuations, can be verified by an analytic one-dof

model described below. Let us imagine a toy filament network

model shown in the inset of Fig. 2B. n cross-linked filaments are

oriented uniformly like the spokes of a wheel, bounded by

a circular filament of radius r0 in its reference state. Under edge

tension, the radius of the circular filament increases to r, and the

interior n filaments are stretched. We denote by w(r) the energy

density function for each filament; then under hydrostatic edge

tension, the potential energy of the toy network is E(r) ¼ 2r(p +

n)w(r) � ppr2. Energy minimization (vE/vr ¼ 0) leads to a rela-

tion between the radius r and edge tension p:	
1þ n

p


FðrÞ
r

¼ p; (12)

where F(r) is the force extension relation for a single filament.

Surprisingly, eqn (12) matches with our computational results,

both with and without thermal fluctuations. In particular, if we

choose a static linear force-extension relation F(r) ¼ Ks(r/r0 � 1)

in eqn (12), it reproduces our computational results without

thermal fluctuations. The analytic static r–p relation turns out to

be

r ¼ r0

1� pr0=Keff

; (13)

with Keff ¼ (1 + n/p)Ks being an effective stiffness. This suggests

that the static bulk modulus depends linearly on the filament

density r0 ¼ n/(pr20) inside the network. More importantly, from

eqn (13), we obtain a static bulk modulus that varies as r�1, which

suggests a strain softening effect, as opposed to strain stiffening

when thermal fluctuations are accounted for. This highlights the

importance of considering thermal fluctuations in discussing the

mechanics of a network. Furthermore, if we choose the exten-

sible wormlike-chain model given by eqn (11) for F(r) in eqn (12),

the computational result with thermal fluctuations is reproduced

(Fig. 2B). The match between the computational results and the

analytic one-dof toy model verifies our proposed method. But, it

is important to note that a simple analytic model works because

no buckling or angle constraint is involved in this example.

A transition from entropic expansion, where thermal fluctua-

tions play a significant role, to enthalpic expansion is expected as
07058H
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Fig. 2 Expansion of a hexagon. (A) Static reference (black) and deformed configurations under hydrostatic tension. The ratio of contour length to

persistence length for each filament is 2 : 1. (B) Area of the hexagon versus edge tension p. Dashed line is the static computational result without thermal

fluctuations, while the solid line is the result with thermal fluctuations, which shows ‘strain stiffening’ with bulkmodulus increasing fromKbulk¼ 0.07 pN

nm�1 toKbulk¼ 1.29 pN nm�1. Circles and squares are the results from an analytic toy model shown in the inset, which agree well with our computational

results. The area A is nondimensionalized by A0, the reference area of the network.

Fig. 3 Transition from entropic to enthalpic expansion. Contours of

Kbulk,thermal/Kbulk,static are plotted on the xp � p plane. Both the persis-

tence length xp and the edge tension p have been nondimensionalized.

Small persistence length or edge tension leads to small Kbulk,thermal/

Kbulk,static, meaning entropic contribution is significant. Increasing

persistence length or the edge tension reduces the contribution from

thermal fluctuations.
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one increases the edge tension p, or the persistence length xp, since

both of these reduce fluctuations. In fact, a similar transition in

shear8–10 has been reported as a result of changing the cross-link
Fig. 4 Effects of changing the (A) bending, (B) stretching moduli and (C) fil

The results in Fig. 2B are superimposed as blue lines and blue circles for comp

only affects the result with thermal fluctuations. (B) Increasing the stretchin

results. (C) Expansion behavior of hexagons with different filament densities an

line is the result for a hexagon with higher filament density (inset).

ART � C2SM
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density and filament concentration to suppress fluctuations. To

illustrate such a transition, we calculate the tangent bulk

modulus Kbulk ¼ Adp/dA, with and without thermal fluctuations,

and make a contour plot of their ratio a ¼ Kbulk,thermal/Kbulk,static

on the xp � p plane. In the small xp and small p regime, we get

a small a � 1, which suggests a significant softening of the

network by thermal fluctuations. On the other hand, in the large

xp and large p regime, a/ 1, which suggests enthalpic stretching

dominates. The contour plot is shown in Fig. 3.

We also report, using our computations, that changing the

bending modulus of filaments only affects the plots with thermal

fluctuations, while changing the stretching modulus affects both

the static and thermal results (Fig. 4A–B). This is confirmed by

the analytic expressions of the one-dof toy model. In Fig. 4C, we

show that adding filaments in the hexagon stiffens the structure,

while removing filaments softens it. This confirms that our

method qualitatively captures the result that the entropic elas-

ticity of a network can be tuned by changing the filament density.
3.2 Simple shear on a triangular network

In this section, we study shear deformation by applying uniform

shear stresses on the top and bottom filaments of the hexagon
ament density and connectivity on the expansion behavior of a hexagon.

arison. (A) Reducing the persistence length (red: L/xp ¼ 4, blue: L/xp ¼ 2)

g modulus to Ks ¼ 100kBT/nm (red) affects both the static and thermal

d connectivities. Red line is the result for an empty hexagon (inset). Black

07058H
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Fig. 5 Shear on a triangular network. (A) Uniform distributed forces in �x direction are applied on the top and bottom filaments of hexagon to cause

the shear deformation. (B) Dx is the distance, in X direction, between node 1 and node 2 shown in A. It is plotted as a function of s. Effective stiffness is
defined as k¼ ds/d(Dx) here. Dashed line is the result without thermal fluctuation. Solid line is the result with thermal fluctuations. Circles are the results

from the analytic static solutions assuming affine deformation (eqn (15)). They match with our computational results at small s. For large s, buckling
occurs and the deformation of the hexagon is non-affine. (C) Height of the hexagon during shear. Static result without thermal fluctuations is shown in

inset. (D) Shear strain g as a function of the shear stress s. Effective shear modulus can be defined as G ¼ ds/dg. Dashed line: static solution. Solid line:

result including the thermal effects. The stress-strain relation is linear before and after buckling at s z 40 fN nm�1. For the static solution, the shear

modulus decreases significantly after buckling. For the result that includes thermal fluctuation, the shear modulus decreases after buckling but the

change is not as large as in the static case.

Fig. 6 Axial shortening versus compressive force for a hinged-hinged

filament shown in (A) inset. (A) Dashed line: computational result

without thermal fluctuation. Solid line: result with thermal fluctuation.

Small imperfections are introduced to the initial straight configuration of

the filament. (B) Influence of the initial imperfection. The peak around

the buckling point becomes taller and sharper as we reduce the imper-

fection. The fluctuation peak can be an artifact of the second order

expansion in our theory. But, we show in Fig. 7 that even for a quartic

system, one still expects large fluctuations at the point where the second

order term vanishes.

Fig. 7 Thermal fluctuations, hx2i ¼ Z�1
Ð
x2exp(�bE)dx, of a one-dof

system with quartic energy bE ¼ ax2 + bx4 (red) and quadratic energy

bE ¼ ax2 (blue). hx2i increases but remains finite as a / 0 when the

quartic term is non-zero. For large enough values of a, the quadratic term

is sufficient to account for the fluctuations.
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(Fig. 5A). Compared with the expansion process, the challenge of

considering shear is that some filaments in the network are under

compression and will buckle, which has been shown in
07058H
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Fig. 8 Uniaxial deformation of a hexagon. (A) Static reference and

deformed configurations. (B) Poisson’s ratio as a function of the tension

force q. The dashed line is the static result without thermal fluctuations.

At q ¼ 0, n ¼ 1/3, as predicted using an analytic toy model. The solid line

is the computational result with thermal fluctuations. Interestingly, the

Poisson’s ratio is negative near q ¼ 0 when thermal fluctuation is

included.

Fig. 9 Stress softening due to buckling. We compress a triangular

network (a hexagon here, shown in inset) and measure its modulus as

a function of the compressive stress. Blue and red lines are the results with

and without thermal fluctuations respectively. With thermal fluctuations,

the network shows stress stiffening at the beginning due to stretching out

of thermal fluctuations. This is followed by stress softening because of

buckling of filaments. The same phenomenon is observed in experiments

on actin networks (Fig. 3 in Chaudhuri et al.2). Note that as in Chaudhuri

et al.,2 the stress on the x axis is shown on a log scale. The stress-strain

curves with (blue) and without (red) thermal fluctuations are shown as

inset. Here we use the parameters for a actin filament network: xp ¼ 10

mm, L ¼ 5 mm.

Fig. 10 Tangent shear modulus G versus shear stress s for (A) a triangular ne

with and without thermal fluctuations respectively. A comparison between t

modulus than a square network. Rotational springs are present at each cross-li

the same for the triangular and square networks. Shear strain is measured as
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experiments to play a crucial role in determining the mechanics

of a network.2,16,41 But, the static behavior before buckling can

still be understood using a simple two-dof analytic model, the

results of which can serve to verify our computational results and

also shed some light on the problem. We will first briefly discuss

this analytic model and then apply our method to understand the

shear behavior with buckling.

The analytic two-dof model is set up as follows. Suppose the

hexagon under shear (shear stress s is applied on the top and

bottom filaments) suffers affine deformation with deformation

gradient:

F ¼
�
1 F12

0 F22

�
: (14)

We evaluate the potential energy E (elastic energy for each

filament plus force potential energy due to the applied shear

stress s) of the hexagon under such a deformation and perform

energy minimization vE/vFij ¼ 0 to find F12 and F22. An analytic

solution exists and the result is:

F12 ¼ 4ffiffiffi
3

p s

ð1� s2Þ2;F
2
22 ¼

4

3ð1� sÞ2 �
1

3

"
1þ 4s

ð1� s2Þ2
#2

; (15)

with �t ¼ sL0/2Ks being a dimensionless shear stress. Here L0 is

the contour length of the individual filaments. In the small shear

stress limit �t � 1, the solution is approximately:

F12z
4ffiffiffi
3

p s;F22z1� 2

3
s2: (16)

The fact that F22 # 1 shows that a hexagon will contract in the

y direction under shear, even in the absence of thermal fluctua-

tions. This is consistent with previous studies that showed athe-

rmal networks very generally exhibit negative normal stress.11

Also, eqn (16) leads to an analytic static shear modulus of

G ¼ ffiffiffi
3

p
Ks=2L0 for the hexagon. We note that the same analysis

can be applied to an empty hexagon without the interior fila-

ments. Interestingly, the results of eqn (15) remain the same,

except that the dimensionless �t has to be redefined as �t ¼ sL0/Ks.

The static shear modulus is half of that for a regular hexagon

with the interior filaments. Though simple and analytic, this

model cannot be extended to include the contribution of thermal
twork and (B,C) a square network. Blue lines and red lines are the result

he three figures shows that a triangular network has much higher shear

nk with stiffness k¼ 1kBT and the lengths and stiffness of the filaments are

the change of angle between the dashed lines shown in the figures.

07058H
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Fig. 11 Shear of (A) hexagons and (B) squares with different rotational stiffness at the cross-links. Shear stress is applied in a manner shown in insets of

Fig. 10A and B. At a given shear stress s, the tangent shear moduli Gstatic and Gthermal are calculated. Plots (A) and (B) show their difference, normalized

by Gstatic, against the shear stress. At each cross-link of the networks, there is a rotational spring with stiffness k. Blue, red, black, green, cyan and

magenta lines are for k ¼ 1,2,3,4,5 and 10kBT respectively. Plot (C) shows the buckling shear stress s for hexagons with different rotational spring

constant k.

Fig. 12 Shear of a heterogeneous hexagon in which one diagonal fila-

ment (shown in thicker stroke in the inset) has 1.75 times the persistence

length of the rest of the filaments. x-direction separation Dx, between the

top and bottom filaments as a function of the shear stress s is shown. Red

, solid and dashed lines are the results with and without thermal fluc-

tuations respectively. As a comparison, the behavior of a homogeneous

hexagon is shown in blue + lines. Replacing the diagonal filament with

a stiffer filament affects the behavior of the hexagon significantly only

after buckling occurs. The stiff impurity shifts the buckling event to

a larger load and also suppresses the fluctuation peak. This effect is seen

for persistence length ratios other than 1.75 (results not shown).
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fluctuations. The wormlike-chain model cannot be used for the

filaments under compression, not to mention the buckling

behavior that is neglected at large s.
We can still apply our method of combining structural and

statistical mechanics to this problem. But, before using it on the

triangular network, we will first study the compression of an

isolated filament with both ends hinged (Fig. 6A inset). This will

help us understand the effects of thermal fluctuations on buck-

ling. We use eqn (8) to obtain the relation between the

compressive force F and the axial shortening hDxi of the fila-

ment. The results, both with and without thermal fluctuations,

are shown in Fig. 6A. The result without thermal fluctuation is

classical, with Dx increasing dramatically after buckling.42 The

result with thermal fluctuation, on the other hand, is more

interesting. A peak appears at the buckling load, suggesting large

thermal fluctuations caused by a loss of stability when buckling

occurs. This is an artifact of the second order expansion in our

theory. We will discuss this again later. After transition to the
ART � C2SM
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post-buckling path (we verify that the Euler elastica is correctly

obtained), however, the filament regains stability and thermal

fluctuation is reduced. Before buckling, thermal fluctuation

causes the end-to-end distance of the filament to be less than the

static value, but at large compressive force the opposite is true.

This result agrees with a previous study on the role of thermal

fluctuation on a buckled rod.43

To obtain the correct post-buckling behavior (the Euler elas-

tica) in the above study, we introduced small imperfections into

the initial straight configuration of the filament.42 The reasons for

doing so are as follows. (1) With small imperfection, the

computational result in the structural mechanics part naturally

follows the correct stable post-buckling path,42 otherwise, it is

possible that the computational result goes to the unstable local

energy maximum after buckling. (2) Introducing small imper-

fections into the initial configuration avoids the singularity of the

stiffness matrix at the buckling load.42 Singularity of the stiffness

matrix is not desirable, since the partition function is determined

by (detKq)
�1 and the fluctuations are determined by K�1

q . (3) Real

filaments in gels are always thermally fluctuating. Therefore, they

are never compressed with an initial straight configuration.

Compression with initial imperfection is a better model to

describe fluctuating filaments and has been used in simulations of

networks.16 We point out that the peak in Fig. 6A depends

strongly on the amount of imperfection in the initial configura-

tion (Fig. 6B). For small imperfection, the path is closer to the

singularity so the peak is large. For large imperfection, on the

other hand, the transition is smoother and the peak is smaller.

For fluctuating filaments, we expect the initial configurations to

be bent so that the overall response would look smooth.

It is worth discussing the quadratic approximation of the

energy (eqn (3)) around the buckling point. This approximation

is appropriate before and after buckling, since the structure is

stable in those regimes and the leading order of the energy is the

second order. Near the buckling load, especially when imper-

fections are small, the second order term in energy may become

very small and the leading order may be quartic. The fluctuation

peak in Fig. 6 is an artifact of our second order expansion.43–45

But, one still expects large thermal fluctuations around the

buckling load even if the quartic term is included in the calcu-

lations. In fact, for a one-dof system with energy E(x) ¼ ax2 +
07058H
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‡ To be exact, Dx here is the Dx shown in Fig. 5B minus L0.
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bx4, both the partition function and the fluctuations hx2i can be

evaluated analytically. The expressions involve Bessel functions

and are not shown here. In Fig. 7, we plot hx2i as a function of

a for a fixed b. We see an increase in the fluctuations hx2i for this
quartic system as the quadratic term vanishes. We note that the

error in neglecting the quartic term around the buckling point

will not affect our computational results after buckling occurs.

Now that we understand the buckling of a single filament with

thermal fluctuation, we return to shear of a triangular network.

Again, the stretching modulus isKs¼ 10kBT/nm and L/xp is set to

2 so that the filaments are semiflexible. Fig. 5A shows the static

reference and deformed configurations obtained in our compu-

tations. To avoid the singularity, we again start with initial

curved configurations with small imperfection. Some filaments

buckle at large shear force, as expected. Using eqn (8), we

calculate the separation between the top and bottom filaments in

the x direction, denoted as Dx, as a function of the applied shear

stress s. Both the results with and without thermal fluctuations

are shown in Fig. 5B. For the results without thermal fluctua-

tions, our computation almost exactly matches with the toy

analytic affine model (eqn (13)) upto the buckling load s z 0.04

pN nm�1. As expected, however, the toy model fails to capture

the post-buckling behavior because of the affine deformation

assumption. Our computational results, on the other hand,

capture the buckling events and show that buckling significantly

softens the hexagon and makes it much more deformable in the

post-buckling regime. In fact, our result shows that a stiffness

defined as k ¼ ds/d(Dx) decreases from 34.2 fN nm�2 before

buckling to 3.20 fN nm�2 after buckling. These are the results

without thermal fluctuations, and they show the importance of

notmaking the affine assumption when buckling is involved. For

the results with thermal fluctuations, we obtain a much smaller

initial stiffness k ¼ ds/d(Dx) ¼ 9.80 fN nm�2 compared to the

static value. This is a consequence of stretching out thermal

fluctuations in the initial state. Moreover, while the static solu-

tion suggests that the hexagon softens after buckling, the results

with thermal fluctuations suggest the opposite. We obtain an

increase, though not significant, in the stiffness k after buckling

when fluctuations are included. We also note, as in the case of

compression of an isolated filament, that the peak in the thermal

results in Fig. 5B implies we are near an instability (.We checked

the axial force of each of the filaments in the network as a func-

tion of the shear stress and confirmed that the peak corresponds

exactly to the buckling event).

Changing the bending modulus of the filaments has a signifi-

cant effect on the thermal solution. In particular, decreasing the

persistence length from L/xp ¼ 2 to L/xp ¼ 4 (L is the filament

contour length) reduces the initial stiffness k ¼ ds/d(Dx) to only

3.30 fN nm�2 before buckling occurs. This is expected, since

filaments with smaller persistence length have more thermal

fluctuations and therefore are easier to shear. Buckling occurs

earlier, which is also expected.

We now turn to the deformation of the hexagon in the y

direction. We calculate the height of the hexagon, denoted as Dy,

as a function of the shear stress. The computational results, with

and without thermal fluctuation, confirm that the hexagon

indeed contracts during shear (Fig. 5C). Before buckling, the

contraction Dy (including thermal fluctuations) scales as Dy

� �s2.017, which suggests that the separation in the y direction
ART � C2SM
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decreases quadratically in the initial stages. Further, shear strain

of the hexagon can be defined as g ¼ Dx/Dy, with Dx and Dy

discussed above.‡ We show the relation between g and s in

Fig. 5D. An effective tangent shear modulus can be introduced as

G ¼ ds/dg. For the static solution, the shear modulus is signifi-

cantly reduced (from G ¼ 1.26 pN nm�1 to G ¼ 0.08 pN nm�1)

after buckling. The static initial shear modulus agrees well with

the analytic value of the simple affine toy model. For the results

that include thermal fluctuations, the shear modulus does not

change a lot. The modulus before buckling is due to stretching

out thermal fluctuations, while the modulus after buckling is due

to elastic stretching.
3.3 Uniaxial tension on a triangular network

We also apply tensile stress q on the hexagon to study its uniaxial

deformation (Fig. 8A). As in the previous section, an affine toy

model can be set up. In particular, two components of the

deformation gradient vanish F12 ¼ F21 ¼ 0 while the other two,

F11 and F22, are left as unknowns to minimize the static potential

energy. The results are F11 ¼ 1 + 3ql0/Ks and F22 ¼ 4/3 � (1 +

3ql0/Ks)
2/3. The initial Poisson’s ratio is predicted as n ¼ 1/3 for

the hexagon. Our static computational result confirms this value

(Fig. 8B), but, the result with thermal fluctuations is quite

different (Fig. 8B). Curiously, we find that the Poisson’s ratio of

a hexagon is negative near q ¼ 0 when thermal fluctuations are

included.

We have now illustrated our method with triangluar networks

that are known to be isotropic.46 In the remainder of the paper,

we will discuss some other applications of our method.
3.4 Applications

3.4.1 Strain softening due to filament buckling. Actin

networks have been shown to undergo strain stiffening followed

by strain softening under compression.2 The initial strain stiff-

ening is due to stretching out of thermal fluctuations while the

softening effect is suspected to result from buckling of actin

filaments, because the stress-strain relation is reversible when the

compressive load is released.2 Here we use the parameters of

a actin filament network (xp ¼ 10 mm, L ¼ 5 mm) and compress

a single hexagon as performed in the experiment2 (Fig. 9 inset).

The stress-strain relation is calculated (Fig. 9 inset), from which

the elastic modulus as a function of stress is determined. The

result is shown in Fig. 9 (blue line). This plot qualitatively agrees

with the experimental measurement shown in Fig. 3 in Chaud-

huri et al.2 As in the experiment, we observe an initial strain

stiffening due to entropic effects, followed by strain softening due

to buckling of filaments. This is the result with thermal fluctua-

tions taken into account. We note that since the network is 2D in

our calculation, we cannot compare the modulus directly with

that measured in the experiment. If thermal fluctuation is turned

off (Fig. 9 red line), no initial strain stiffening is observed in our

calculations.

3.4.2 Square networks, angle constraints. In the examples

discussed so far, we assumed that the cross-links are all hinges.
07058H
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But, some cross-links in real networks put constraints on the

angle between the linked filaments. In fact, cross-links in a square

network must have rotational stiffness in order for the network

to resist shear. In the examples below, we add rotational springs

(spring constant k ¼ 1kBT) to the cross-links and compare the

behavior of a triangular network with a square network under

shear (Fig.. 10). Filaments in both networks have the same

contour length, stretching and bending moduli. For both

networks the tangent shear modulus G ¼ ds/dg is calculated as

a function of the shear stress s. In particular, since a square

network has two shear moduli,47 we perform two shear tests in

different directions on the square (Fig. 10B–C). The computa-

tional results are shown in Fig. 10. The shear modulus of

a triangular network, with or without thermal fluctuations, is

much higher than those of a square network with filaments of the

same length and mechanical properties. We also compute DG,

the difference between the static shear modulus and the shear

modulus with thermal fluctuations, as a function of the shear

stress s (Fig. 11, A for a triangular network and B for a square

network sheared as shown in inset of Fig. 10B). For a triangular

network, DG is initially positive and changes to negative after

buckling, while for a square network, the trend is exactly the

opposite. Fig. 11C shows a phase diagram that separates the pre-

buckling and post-buckling regimes for a triangular network

with different rotational spring stiffness.

3.4.3 Heterogeneous networks. Many cellular networks are

not homogeneous. They consist of a complex scaffold of several

distinct filaments with different mechanical properties. In fact, it

has been proposed that the compressive load in the cytoskeleton

is borne by microtubules, whose persistence length is about 2

orders of magnitude larger than actin filaments.3 For this reason,

it is important to study heterogeneous networks and several

recent studies have looked into the effects of incorporating

microtubules on the mechanics of actin networks, and numeri-

cally investigated two-component networks of biopoly-

mers.30,48,49 Our framework can deal with heterogeneous

networks easily. As an example, we increase the bending

modulus of one diagonal filament in the previously studied

hexagon to construct a heterogeneous network (Fig. 12 inset)

and redo the shear test. Interestingly, the behavior of the

hexagon is not affected by such a replacement before buckling.

Our computational results show that the stiff impurity shifts the

buckling event to a larger load and also suppresses the peak in

the solution that includes the effect of thermal fluctuations

(Fig. 12).
50

55
4 Conclusions

In this paper a combination of structural and statistical

mechanics is used to investigate the entropic elasticity of fila-

mentous networks. The structural mechanics part of the theory is

standard, involving discretizing a structure followed by energy

minimization. The statistical mechanical part, on the other hand,

involves an approximation of the energy upto quadratic order,

which in turn makes it possible to compute the partition function

as a Gaussian integral. The free energy and other thermodynamic

quantities are obtained using the partition function or the

Boltzmann weighted ensemble averages. This framework is
ART � C2SM
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applied only to simple networks here and its ability to capture

various mechanical behaviors seen in experiments is demon-

strated. The importance of including thermal fluctuations and

the effects of filament buckling are discussed. With the frame-

work demonstrated, we hope that researchers will move on to

using available finite element packages to study larger 3D fila-

ment networks and other mechanical structures (such as

membranes) for which thermal fluctuations play a significant

part in the physics.
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