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Abstract

The mechanics of DNA super-coiling is a subject of crucial importance to uncover the
mechanism and kinetics of several enzymes. It is therefore being investigated using several
biochemical and biophysical methods including single molecule experimental techniques. An
interesting problem within this realm is that of torsional buckling and plectoneme formation
in DNA as it is simultaneously put under tensile and torsional stress. Analytical solutions
to this problem are difficult to find since it involves non-linear kinematics and thermal
fluctuations. In this paper we use ideas from the Kirchhoff theory of filaments to find semi-
analytical solutions for the average shape of the fluctuating DNA under the assumption
that there is no self-contact. The basic step in our method consists of combining a helical
solution of the rod with a non-planar localizing solution in such a way that the force,
moment, position and slope remain continuous everywhere along the rod. Our solutions
allow us to predict the extension vs. linking number behavior of long pieces of DNA for
various values of the tension and temperature. An interesting outcome of our calculations
is the prediction of a sudden change in extension at buckling which does not seem to have
been emphasized in earlier theoretical models or experiments. Our predictions are amenable
to falsification by recently developed single molecule techniques which can simultaneously
track the force-extension as well as the torque-rotation behavior of DNA.
Keywords: Buckling, rods, biological material, plectonemes.

Formation of plectonemes in filaments is a commonly observed phenomenon in yarn, hair
strands, garden hoses and telephone or computer cords. The process of plectoneme formation
is easily demonstrated by holding a string or wire taut by exerting forces at its ends, twisting
it and then relieving the tension so that structures of the type shown in figure 1 are formed. In
fact, it is now believed that the torque associated with plectoneme formation in the bacterial
genome is an important ingredient in the regulation of certain genes (Purohit and Nelson,
2006). Furthermore, several molecular machines manipulate the plectonemes during crucial
processes such as transcription and DNA repair (Nelson, 2004). To unravel the mechanics of
these machines it is necessary to first understand the response of DNA to torsional moments.
This was the goal of some recent single molecule experiments described below.

In a typical experiment a tension F of order 1pN is applied to a single fluctuating DNA
molecule while one of its ends is rotated about an axis coinciding with the direction of the
applied force (Strick et al., 1996, 1998, Charvin et al., 2004, Deufel et al., 2007). The end-to-end
extension of the molecule is then measured as a function of the number of turns applied to the
end. As the number of turns applied is increased the DNA is found to undergo torsional buckling
(manifest in a constant post-buckling torque irrespective of the number of turns applied) and
plectoneme formation, resulting in a reduction of the end-to-end extension. It is the goal of
this work to devise a simple model to interpret experimental data in the context of plectoneme
formation in thermally fluctuating DNA.
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In an elegant article Stump and Fraser (see Stump, Fraser and Gates, 1998 and Stump and
Fraser, 2000) discussed the mechanics of plectonemes in a rod by dividing it into three regions
– the end loop, the ply which consists of two interwound helices in contact, and two tails at
whose ends the remote forces and moments are applied (see figure 1). Since there is contact
and friction between the helices in the ply there are discontinuities in the force and moment
at the boundaries of the three regions and one needs jump conditions to account for these
discontinuities. The remaining analysis is carried out by insisting on equilibrium at every point
along the rod and continuity of position and tangents at the boundaries of these three regions.
The analysis of Stump and Fraser (2000) was extended to variable plys by Coleman and Swigon
(see Coleman, Swigon and Tobias, 2000 and Coleman and Swigon, 2000) and further developed
by Thompson,van der Heijden and Neukirch (2002) who successfully applied their results to
closed DNA rings which were twisted to form plectonemes as in bacterial plasmids. Stump
and Fraser (2000) had done a similar comparison between predicted balanced ply shapes and
electron micrographs of twisted plasmids and found good agreement. Neukirch (2004) carried
out an analysis based on the method of Stump and Fraser (2000) for determining the force-
extension response of DNA under torsional moments and was able to fit the post-buckling
response data (Strick et al., 1996) for number of turns vs. extension quite well. All of these
analyses accounted for self-contact of the rod (see also van der Heidjen et al., 2003 and Starostin,
2004 for analytical solutions of rod equilibria with self-contact) but none of them considered the
effects of fluctuations (which are important for DNA, especially in the context of force-extension
measurements) but were still able to obtain good agreement with experiment since the scales
of bending and twisting energies involved in plectoneme formation are much larger than the
scale of thermal energy. The methods presented in this paper differ from this body of work in
that we account for the effect of fluctuations (or configurational entropy) in an effort to make
contact with force-extension measurements.

The effects of Brownian motion in twisted rods was first treated by Moroz and Nelson (see
Moroz and Nelson, 1997, 1998) under the assumption that the shape fluctuations caused by
thermal motion are small enough that the energy can be approximated by expanding upto
quadratic order around a straight equilibrium configuration. This assumption holds good until
the rod buckles under the action of a force and moment. Moroz and Nelson (1997) applied
their model to extract a twisting modulus for DNA under tension from the experimental data
of Strick et al. (1996) which measured the end-to-end extension of a long piece of DNA as a
function of the added link at various values of the applied tension as described above. Their
analysis was restricted to the pre-buckling regime and built on prior work of Marko and Siggia
(1995) and Odijk (1995) who developed force-extension relations for thermally fluctuating rods
with bending alone and no twist. An early attempt to account for twist in a fluctuating rod
was that of Fain, Rudnick and Ostlund (1997) who recognised that the entropic part of the
free energy of the plectonemes is negligible in comparison to the elastic energy so that most
of the entropy comes from the straight portions of the rod. We follow their line of thought
in this paper but our results differ from theirs in that we can explicitly predict the sudden
change in extension of the rod as it buckles, and moreover, our treatment (which follows the
work of Moroz and Nelson, 1997, 1998) of the straight portion of the rod includes softening of
the twist rigidity due to thermal motion, which they do not account for. Our results also differ
from those of Moroz and Nelson (1997, 1998) since we are able to capture both the pre- and
post-buckling response of the DNA.

As in all of the work described above we treat the DNA as a continuous, inextensible,
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isotropic elastic rod, with a linear relation between the moment and curvature. We neglect
bending anisotropy, non-linear DNA elasticity and strand separation in the present treatment
while acknowledging that they are likely to be important in the quantitative understanding of
plectoneme formation in DNA. We also neglect electrostatic effects or more precisely, assume
that they can be incorporated via effective values of the bending and twisting moduli. The
advantage of these simplifications is that they will allow us to use the elegant closed-form solu-
tions (see Nizette and Goriely, 1999 and references therein) to the elastic equilibrium equations.
These solutions will be combined with some known analytical results on the entropic elasticity
of fluctuating DNA to model the phenomena observed in some recent experiments on long DNA
molecules where thermal motion results in significant configurational entropy.

1 Review of Kirchhoff’s theory of rods

In the following we briefly review Kirchhoff’s theory for the equilibrium of rods and some known
analytical solutions which we will use in our development. The coordinates of the center-line
of a Kirchhoff rod are given by a position vector P(s) where s is the arc-length along the rod.
At each point s of the rod we attach a coordinate frame called the material frame. The unit
vectors of the material frame are denoted by d1(s), d2(s), d3(s) with d3(s) chosen to be along
the tangent to the rod at every point so that d3(s) = P′(s) = dP(s)

ds . Note that the tangent
P′(s) is a unit vector since the rod is assumed to be inextensible. The derivatives of these
vectors along the arc-length s contain information about the local curvature of the rod. More
explicitly, we note that

ddi

ds
= κ× di, for i = 1, 2, 3, (1)

where κ(s) = [κ1(s) κ2(s) κ3(s)] is the curvature vector. The moment M(s) at any point on
the rod is given by

M = Kbκ1d1 + Kbκ2d2 + Ktκ3d3, (2)

where Kb and Kt are the bending and twisting moduli of the DNA. The equilibrium equations
for the rod are then simply,

dF
ds

= 0,
dM
ds

+ d3 × F = 0, (3)

where F(s) is the internal force in the rod. These equations imply that F(s) is constant along
the rod and its value is determined by the external force applied on the DNA, which in the
experiments considered in this paper are applied using an optical tweezer setup (Deufel et
al., 2007). Following Nizette and Goriely (1999) we will assume that the laboratory coordinate
frame is chosen in such a way as the applied force F is aligned with the z-axis so that F(s) = Fez.
The position vector P(s) is then explicitly written as

P(s) = X(s)êx + Y (s)êy + Z(s)êz

= R(s) cos Φ(s)êx + R(s) sinΦ(s)êy + Z(s)êz, (4)

where we have used a cylindrical coordinate system. We will look for solutions with the following
symmetry since the buckled and plectonemic shapes of the rod have this symmetry (as we will
see later).

X(s) = −X(−s), Y (s) = Y (−s), Z(s) = −Z(−s). (5)
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This suggests that Φ(s) is of the form Φ(s) = π
2 − α(s) with α(−s) = −α(s).

The known analytical solutions of the equlibrium equations for R(s), Φ(s) and Z(s) are
summarised in Nizette and Goriely (1999). There are four constants in the solution – z1, z2,
z3 and λ (see also Purohit and Nelson, 2006). The constant λ is related to the force through
Kb
F = λ2. The other constants z1, z2 and z3 are related to the three components of the moment
M. These three constants can be determined by enforcing the boundary conditions, which leads
to a set of algebraic equations that must be solved numerically (e.g., by Newton’s method).

2 Post-buckled shapes of a rod

The problem of stability of a straight rod has been thoroughly investigated in the literature (see
for example, Maddocks (1984) and references therein). A crucial result obtained through a linear
stability analysis around a straight configuration shows that the straight twisted configuration
becomes unstable (Love, 1944) to small perturbations at the critical twist density 2

√
KbF
Kt

where
F is the applied tension. When the applied twist density reaches this critical value the rod
buckles and the torque immediately falls to M3 < 2

√
KbF so that the link which was entirely in

the form of twist in the straight rod is now stored partly as twist and partly as writhe of the non-
planar buckled shape. The linear analysis does not allow us to compute the post-buckled shape
of the rod, but the shapes can be readily determined using the known analytical expressions
for the fully non-linear rod equilibria. In this section we illustrate this for small forces (small
enough so that the critical link at buckling 2L

√
KbF

Kt
< 2π) by setting z2 = 1 while z1, z3 and λ

are chosen such that −1 ≤ z1 ≤ 1 and z3 > 1. The more general case of 2L
√

KbF
Kt

> 2π which
leads to plectoneme formation is discussed in the next section.

The general solution summarised in Nizette and Goriely (1999) can be specialised to the
case of z2 = 1 to yield:

Z(s) = z3s− λ(z3 − z1)E(
s

λ
|k), (6)

Z ′(s) = z1 + (1− z1)sn2(
s

λ
|k), (7)

M3λ

Kb
=

Mzλ

Kb
=

√
(1 + z1)(1 + z3), (8)

where k2 = 1−z1
z3−z1

, sn(u|k) is an elliptic function (see below) and E(u|k) is the incomplete elliptic
integral of the second kind defined as follows (for details, see Abramowitz and Stegun, 1964):

E(u|k) =
∫ u

0
(1− k2sn2(x|k)) dx, (9)

where
sn(x|k) = sin ϕ, and x =

∫ ϕ

0

dθ√
1− k2 sin2 θ

. (10)

In the solution given above λ =
√

Kb
F is determined immediately since the force F is prescribed.

The remaining constants z1 and z3 are determined from the known value of the applied torque
M3 and the condition that Z ′(±L

2 ) = 1 which says that the tangents at the two ends of the rod
are aligned with the z-axis in the laboratory frame which we recall is chosen in such a way as
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F = Fez. The resulting boundary condition is

1 = z1 + (1− z1)sn2(
L

2λ
|k). (11)

This equation has two solutions – z1 = 1, which corresponds to the pre-buckled straight rod,
and sn2( L

2λ |k) = 1, which corresponds to the post-buckled bent and twisted shape. For the
straight rod z1 = 1 implies k2 = 0 and hence Z(±L

2 ) = ±L
2 irrespective of the value of

z3 which is determined from the applied torque M3 through M3 =
√

2Kb
λ

√
1 + z3. For the

solution corresponding to the post-buckled state we recall that sn2( L
2λ |k) = 1 implies that

L
2λ = (2n− 1)K(k) where K(k) is the complete elliptic integral of the first kind with modulus
k and n > 0 is an integer. The lowest energy solution corresponds to n = 1. The configuration
of the rod is determined by solving the following equations (using Newton’s method) for λ, z1

and z3.

λ =

√
Kb

F
, M3 =

Kb

λ

√
(1 + z1)(1 + z3), k2 =

1− z1

z3 − z1
,

L

2λ
= (2n− 1)K(k). (12)

The last of these equations sets the value of k once λ is determined from the force using

λ =
√

Kb
F . The value of k2 therefore remains constant as M3 varies, and the end-to-end

distance is determined using

Z(
L

2
)− Z(−L

2
) = z3L− 2λ(z3 − z1)E(k) =

L

k2
+ z1L(1− 1

k2
) + 2λE(k)

z1 − 1
k2

, (13)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind respec-

tively. We plot the non-dimensionalized extension ζ = Z(L
2
)−Z(−L

2
)

L as a function of the non-
dimensionalized applied torque for various values of the tension F in figure 2. From the figure
it is immediately apparent that the extension ζ is minimum when M3 = 0 (corresponding to
z1 = −1) and ζ → 1 (its maximum value) as the applied torque M3 → 2

√
KbF . As the torque

M3 is increased from 0 to 2
√

KbF , z3 decreases monotonically from 2
k2 + 1 to 1 (see figure 3),

and z1 increases monotonically from −1 to 1 implying that (see (13) above) the rod is progres-
sively straightened. The case z1 = −1, z2 = 1, z3 = 1 corresponds to the well-known planar
homoclinic loop solution (with k2 = 1, see Nizette and Goriely, 1999) for which we see that the
change in extension 1− ζ scales as λ or F−1/2. In figure 3 we plot how z3 varies as a function
of M3 for three different values of the length L and bending and twisting moduli typical of
DNA. It is clear that z3 ≈ 1 for all values of M3 for this set of parameters and furthermore
(z3 − 1) → 0 as the length L

2λ becomes larger. Said differently, as the length L becomes longer
our solutions tend to the well known non-planar localizing solutions of Coyne (see Nizette and
Goriely, 1999) in which z2 = z3 = 1 and and z1 is such that −1 ≤ z1 ≤ 1. The parameter
k2 = 1 for the Coyne solution and hence the boundary condition (11) will be violated for a
rod of finite length (since L

2λ = (2n − 1)K(k) → ∞ as k2 → 1). This means that the Coyne
solution does not describe the shape of a buckled rod of finite length in a rigorous sense, but in
practise it is a good approximation in the limit where L

2λ is large as in the optical or magnetic
tweezer experiments on DNA (Strick et al., 1996, 1998 and Deufel et al., 2007) where typically
L ≈ 1µm and F ≈ 1pN. We will combine the Coyne solution with helical solutions in the next
section to describe plectoneme formation in twisted DNA.
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3 Plectoneme formation

As we add more link at the end of the rod after buckling it forms plectonemes. We think
of the plectonemic region as two helices with their axes pointing along the y-direction. The
helices are reflections of each other across the y-axis. Consider any one of those helices. On one
end of the helix is the part of the rod where the remote force (and torque or link) is applied
and on the other end is a loop. For the purposes of our analysis in this section we make
the simplifying assumption that the helices have an integer number of turns1 so that if the
helices were removed and the remaining portion of the rod and end loop were glued together
we would obtain a shape of the type discussed in the previous section. Note that there will
be no discontinuity in tangents and curvatures at the point where the loop and tail portions
are joined together since we assumed an integer number of turns in the helices which we know
are constant curvature solutions of the equilibrium equations. The ideas outlined above will
now be used for obtaining plectonemic shapes of torsionally buckled rods. We will combine the
helical solutions with other known solutions of the rod by enforcing continuity of the material
frame unit vectors, forces and moments at the boundaries of the helices. We emphasize that
this method based on combining helices with other known solutions by imposing continuity is
not new and has been used by other authors both in the context of the mechanics of yarn and
also in the mechanics of twisted DNA plasmids as reviewed in an earlier section. The chief
distinguishing feature of the solutions presented here is that unlike the aforementioned work
we do not have contact or friction between the helices leading to equations that can be solved
without recourse to sophisticated numerics.

To begin let us assume that the total length of the rod is L and the length eaten up by
the helical region is 2L2 so that L1 = L− 2L2 is the leftover length that (without the helices)
corresponds to a shape described in the previous section. At present L1 is an unknown and
so are ±s1 (with −L1

2 < −s1 < 0 < s1 < L1
2 ) which are the arclengths at which we cut the

rod to insert the plectonemic helices. The arclength interval [−s1, s1] corresponds to the end
loop referred to above while the intervals [−L1

2 ,−s1] and [s1,
L1
2 ] correspond to the tails with

the ends s = ±L1
2 where the tension F is applied. The center-line of the helix is given by

P(s) = [r cos(As+B) Qs+D r sin(As+B)] where A, B, Q, D and r are all constants. The
tangent vector to the helix is simply P′(s) = [−Ar sin(As+B) Q Ar cos(As+B)] where we
require A2r2 + Q2 = 1. The length of each of the helices is L2 = 2πmr sec α where α is the
pitch angle (tanα = Q

Ar ) and m is the number of turns in each helix. Fuller (1971) showed that
the writhing number for this plectonemic solution (completed to a closed curve) is 2m sin α.
Assuming that κ3 = M3

Kt
is the constant twist rate in the rod in the post-buckled shape, the

total link stored in the rod can be obtained from the Fuller-White-Calugrenau relation which
is equated to the prescribed change in link ∆Lk leading to:

∆Lk =
M3L

2πKt
+ 2m sinα, (14)

L = L1 + 4πmr sec α, (15)

where the second equation merely says that the length in the helices and the rod solution should
add up to the total length L.

1Our method will also work if each helix had n + 1
2

turns where n is an integer but then we would have to
rotate the loop in the interval [−s1, s1] by π radians about the y-axis. The rigid body rotation preserves the
assumed symmetry of the solution and it also does not violate equilibrium.
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The curvature vector of the helix is P′′(s) = [−A2r cos(As + B) 0 − A2r sin(As + B)].
From these we infer that the Frenet curvature and torsion (Nizette and Goriely, 1999) of the
helix are respectively κ = A2r and τ = AQ = A

√
1−A2r2. s1 is the arclength at which the rod

solution intersects the helix. We require continuity of the tangent, the force and the moment
at this point. We will denote the helical side by s+

1 and the rod side by s−1 . Continuity of the
position vector and tangent vector at this point imply:

X(s−1 ) = r cos(As+
1 + B), Y (s−1 ) = Qs+

1 + D, Z(s−1 ) = r sin(As+
1 + B),(16)

X ′(s−1 ) = −Ar sin(As+
1 + B), Y ′(s−1 ) = Q, Z ′(s−1 ) = Ar cos(As+

1 + B). (17)

These can be satisfied if we find a point s1 in the rod solution with 0 < s1 < L1, such that

X(s1)X ′(s1) + Z(s1)Z ′(s1) =
d

ds
(X2(s) + Z2(s))|s1 = 0. (18)

If there exists such a point in the rod solution then the parameters A, B, D, Q and r for the
helix can be uniquely determined. We see that s1 is simply the arc-length at which the distance√

X2(s) + Z2(s) is a minimum. Intuitively, we know there is such a location s1 in the rod
solution and therefore there exists an s1 which will satisfy (18) above. Once we find s1 the
parameters of the helix are determined using

r2 = X2(s1) + Z2(s1), Q = Y ′(s1), A2 =
1− Y ′2(s1)

X2(s1) + Z2(s1)
. (19)

We also need to satisfy continuity of forces and moments at s1. For a helix the force and
moment equilibrium equations can be summarised by a single vector equation written below in
the material frame (see Nizette and Goriely, 1999).

F = (Ktκ3 −Kbτ)[κ1d1 + κ2d2 + τd3], (20)

where d3(s) = P′(s) is the tangent vector. Taking magnitudes on both sides of the equation
above we get

F = (Ktκ3 −Kbτ)
√

κ2
1 + κ2

2 + τ2. (21)

Now, for any equilibrium solution of a Kirchhoff rod we know that M3 and Mz are constants
independent of s. We exploit this fact in the helical solution and note that

|Kbκ1d1 + Kbκ2d2|2 = |M−M3d3(s1)|2 = M2
3 |ez − d3(s1)|2 = 2M2

3 (1− Z ′(s1)). (22)

Substituting this result back into (21) and remembering that the force and moment have to be
continuous at s1 we obtain

F = (M3 −Kbτ)

√
2M2

3

K2
b

(1− Z ′(s1)) + τ2, (23)

which after some re-arrangement can be recast as

1 = (
M3λ

Kb
− τλ)

√
2M2

3 λ2

K2
b

(1− Z ′(s1)) + τ2λ2. (24)
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Equations (14), (15), (18) and (24) together with the following are six equations for the six
unknowns – L1, s1, m, z1, z3 and M3.

M3λ

Kb
=

√
(1 + z1)(1 + z3),

L1

2λ
= K(

1− z1

z3 − z1
). (25)

For instance, if L
2λ is large we could assume z3 = 1 (see previous section) and solve (18) and (24)

for s1
λ and z1. The scaled helix parameters Aλ, Q and r

λ can then be determined immediately
from (19). For a given value of F and material properties Kb and Kt, the helix parameters A,
Q, r etc., can then be obtained and L1 and m can be determined using (14) and (15). This
completely determines a plectonemic shape.

3.1 Plectonemes in DNA under tension

We consider now an example inspired by recent single molecule experiments on plectoneme
formation in DNA. We assume that L = 750nm and the mechanical properties of DNA are
summarised by Kb = 205pNnm2 and Kt = 431pNnm2 (see for example, Moroz and Nelson,
1997). The critical torque for buckling (in the absence of thermal fluctuations) is 2

√
KbF =

40.5pNnm for F = 2pN, which for a rod of length L = 750nm corresponds to a critical link
∆Lkc = 2L

√
KbF

2πKt
= 11.23 turns. In other words, the DNA should remain straight until 11.23

turns are added and then buckle. Experimental evidence (personal communication with Wang)
indicates that this is not the case and the DNA buckles at a lower value of about 8 turns
for F = 2pN which corresponds to a critical torque of

√
2KbF . This lower value of critical

buckling torque can also be explained theoretically if one accounts for thermal fluctuations
of the rod and then calculates the critical torque by finding the configuration which has the
minimum free-energy (Moroz and Nelson, 1998). We would like to determine the end-to-end
distance before and after buckling since this is one of the observables in recent experiments.
To this end we assume z3 = 1 and solve (18) and (24) to obtain z1, s1

λ etc., and ultimately the
lengths L1, L2, r etc. The results are plotted in figure 4 as a funtion of the force F . A striking
feature of the results is that the length 2L2 which is the length eaten up by the plectonemic
region immediately after buckling stays nearly constant at 196.4nm. Note that this implies
that L1 = 750 − 196.4 = 553.6nm also stays nearly constant irrespective of the force F . For
this value of L1 we are justified in assuming z3 = 1 as explained in the previous section and
summarised in figure 3. The radius of the helices decreases with increasing force as might be
expected intuitively and the values of the radius are in excess of 4nm. We recall from (18) that
the radius of the helix is determined from the minimum value of X2(s) + Z2(s) along the rod
and hence conclude that the assumption of no self-contact of the rod is also not violated since
we know that the radius of DNA is about 1nm (Nelson, 2004).

When we add more turns after the rod has buckled to form plectonemes m increases lin-
early with the number of turns added since κ3 does not change. In other words the length
of the plectonemes increases at the expense of the end-to-end distance Z(L1

2 ) − Z(−L1
2 ). The

length of the plectoneme is linear in m which in turn varies linearly with the number of turns
added. Hence, the end-to-end distance after buckling decreases approximately linearly with the
number of turns added. This is clearly seen in figure 5 where we have plotted the end-to-end
distance vs. number of turns for three different values of the force F . The qualitative features
observed in recent experiments (Strick et al., 1996, 1998, Deufel et al., 2007, Wang (personal
communication)) on DNA are neatly captured by our model. The slope of the linear portion of
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the curves after buckling depends on the value of the tension F since this slope is determined by
κ3 which depends on F . A dramatic feature of the curves shown in figure 5 is that the change in
end-to-end distance at buckling remains the same no matter what F is. This is to be expected
since L1 remains independent of the force as shown in figure 4. A caveat of figure 5 is that it
does not represent the correct post-buckling response for end-to-end distances less than about
150nm since the assumption z3 = 1 used to obtain the curves is violated in this regime. But, the
framework developed in this section does not rely on this assumption and similar computations
can be performed without enforcing z3 = 1 as was done in the previous section and outlined
above. Also, the presence of thermal fluctuations in experiments on DNA changes the picture
completely and renders figure 5 irrelevant in their context in spite of capturing many of the
qualitative features. In the next section we will explore a simple method to incorporate the
effect of thermal fluctuations and also dispense with the assumption of z3 = 1 which was used
above primarily to simplify computations.

4 Thermal fluctuations

In the absence of thermal fluctuations a straight rod remains straight when the curvature κ3 is
such that κ3L < 2π∆Lkc where ∆Lkc is the critical link to cause buckling. Before buckling all
the link is stored in the rod as twist since a straight rod does not have any writhe. However, if
the shape of the rod is fluctuating around a straight equilibrium configuration the link is stored
in the rod partly as twist and partly as writhe in accordance with the Fuller-White-Calugrenau
relation. This is the first point of departure from the well understood zero temperature torsion
of a rod. Moreover, the inextensibility of the rod results in the end-to-end distance not being
equal to L as was the case in the absence of thermal fluctuations. In fact, the end-to-end
distance for a fluctuating rod depends on the applied tension F as well as link added as was
demonstrated in the beautiful experiments of Strick et al. (1996). This is the second point of
departure from the zero temperature case and we see that the problem of torsion of a fluctuating
rod is far more complex than the zero temperature case even if we do not consider torsional
buckling.

Fortunately, Moroz and Nelson (1997) found a way to determine the pre-buckling torsional
response of a fluctuating rod in the limit when fluctuations are small. In this limit which is
appropriate for tensions F > 0.5pN the elastic energy of the rod can be expanded upto quadratic
order in the fluctuations so that the resulting thermal averages (within a constant temperature
ensemble) can be represented as Gaussian path integrals which can be computed exactly. Their
results (see Moroz and Nelson, 1997, 1998) made it possible to accurately determine the twisting
modulus Kt of DNA. In fact the number Kt = 431pNnm2 used throughout this paper was for
the first time reported by them after fitting the model to the data of Strick et al., (1996).
The expressions derived by Moroz and Nelson (1997) are specialised to an inextensible rod (by
assuming the linear stretch constant γ in their expressions to be infinite) and summarised as
follows:

M3(F,∆Lk) =
2π∆Lk

L
Kt

+ LkBT
4Kb

√
KbF

, (26)

ζ(F,∆Lk) = 1− 1
2

1√
KbF
k2

BT 2 −
M2

3

4k2
BT 2 − 1

32

+
KbkBT

L(KbF −
M2

3
4 )

, (27)
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where ζ = Z(L
2
)−Z(−L

2
)

L is the non-dimensionalized extension, kB is Boltzmann’s constant and T
is the absolute temperature. The above expressions are valid as long as M3 < 2

√
KbF which, we

recall, is the classical critical buckling torque in the zero temperature limit. A few comments
about the above results are in order. First, we see from (26) that fluctuations result in a
softening of the rod which is proportional to the temperature T since the fluctuations around
equilibrium are larger for higher temperatures. In fact, the classical expression for the torque
M3 = Kt

2π∆Lk
L for a straight rod is recovered from (26) when we set T = 0 which corresponds

to no fluctuations. Fluctuations can also be supressed by applying larger tensions F resulting
in lesser softening and this too is borne out in (26). Equation (26) says that the softening
occurs because the link is now stored partly as twist and partly as writhe (as explained above)
so that we now have two ‘torsional springs’ in series whose stiffness is the harmonic mean of
the original stiffnesses of the springs – Kt

L and 4Kb
√

KbF
LkBT . The stiffness 4Kb

√
KbF

LkBT of the ‘spring’
storing link as writhe involves the bending modulus Kb since writhe is a manifestation of the
out of plane bending of the rod. Equation (27) shows how an experimental observable, namely
the end-to-end distance, varies as a function of the applied tension and link. In particular,
when M3 = 0 we find that ζ ≈ 1− 1

2
kBT√
KbF

+ kBT
FL which is the well-known result of Marko and

Siggia (1995) and Odijk (1995) for the so called worm-like-chain (WLC) model of a fluctuating
rod which assumes that rod deforms only in bending and not in torsion. It is also apparent

from this expression that ζ = Z(L
2
)−Z(−L

2
)

L = 1 when T = 0 as is expected for the equilibrium
of a purely elastic rod.

We will use (26) and (27) in the straight portions of the buckled rod, meaning for those
s where the tangent P′(s) ≈ ez in the zero-temperature equilibrium solution. This leaves the
question of how to account for the thermal fluctuations around the plectonemic helices which
form after buckling of the rod. Here we will follow the approach of Fain, Rudnick and Ostlund
(1997) who showed that the flcutuations in plectonemes make a negligible contribution to the
free energy of a buckled rod. As a result the buckled fluctuating rod can be viewed as consisting
of three regions – two largely straight but highly fluctuating regions corresponding to arc-length
intervals [−L

2 ,−L1
2 ] and [L1

2 , L
2 ] and a highly curved region corresponding to [−L1

2 , L1
2 ] plus the

plectonemic helices with negligible fluctuations. We will use (26) and (27) in the intervals
[−L

2 ,−L1
2 ] and [L1

2 , L
2 ] and apply ideas from section 3 to the interval [−L1

2 , L1
2 ]. Following the

development of section 3 the following equations need to be satisfied:

X(s1)X ′(s1) + Z(s1)Z ′(s1) = 0, (28)

(
M3λ

Kb
− τλ)

√
2M2

3 λ2

K2
b

(1− Z ′(s1)) + τ2λ2 = 1, (29)

√
(1 + z1)(1 + z3) =

M3λ

Kb
, (30)

K(
1− z1

z3 − z1
) =

L1

2λ
, (31)

M3L

2πKt
+

M3LfkBT

8πKb

√
KbF

+ 2m sinα = ∆Lk, (32)

Lf + L1 + 4πmr sec α = L, (33)

where the parameters τ , r, α etc., of the plectonemic helices are obtained using (19) as shown in
section 3. In the above equations Lf is the total length of the DNA in the nearly straight highly
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fluctuating part of the rod while L1 +4πmr sec α is the remaining length where the fluctuations
are negligible. From (32) we see that the writhe contribution to the total link comes from both
the plectonemes (2m sinα) as well as the fluctuations (M3Lf kBT

4Kb
√

KbF
). In fact, when T = 0 there

are no fluctuations so that Lf = 0 and we recover the equations of section 3. We also note that
at s = ±L1

2 , which is the junction of the fluctuating part of the rod with the highly curved
part, the tangent is continuous2 since Z ′(±L1

2 ) = 1. We observe also that Z ′′(±L1
2 ) = 0 which

together with the enforced continuity of F , M3 and Mz gaurantees that the force and moment
vectors are also continuous at ±L1

2 .
Equations (28) to (33) are six equations in the seven unknowns – s1, z1, z3, M3, m, L2 and

Lf . We need one more condition to ensure that we have as many equations as there are un-
knowns. This last equation is obtained from the principle that the free energy of the equilibrium
configuration should be a minimum. The calculation of the free energy of a fluctuating rod (with
both bending and twisting) under non-linear constraints such as inextensibility and conserva-
tion of link (according to the Fuller-White-Calugrenau relation) requires evaluating a difficult
functional integral and is a non-trivial exercise. We will not puruse this exercise at present, but
instead use the results of Moroz and Nelson (1998) who were able to perform this calculation in
the straight pre-buckled state of the rod. Their expressions together with the observation (see
Fain, Rudnick and Ostlund, 1997) that the free energy of the plectonemes contains a negligibly
small entropic contribution allows us to write the free energy of the post-buckled plectonemic
state of the rod in the following way:

G = 4πmr sec αGhel + L2Grod + LfGflc − F (Z(+
L

2
)− Z(−L

2
)), (34)

where the free energy densities Ghel, Grod and Gflc are given by

Ghel =
M2

3

Kb
(1− Z ′(s1)) +

M2
3

2Kt
, (35)

Grod =
F

2
(1 + z1 + z3 − z1z3) +

M2
3

2Kt
+ F

Z(+L2
2 )− Z(−L2

2 )
L2

, (36)

Gflc = −kBT
PkBT

Kb
(1− 1

4P
− 1

64P 2
) +

M2
3

2Kt
, (37)

where P =

√
KbF−

M2
3

4

kBT . The free energy given by (34) depends on the variables z1, z3, s1 etc.,
for any given values of ∆Lk, L, T and F and material properties Kb and Kt. Our goal is to
find the values of z1, z3, s1, m, M3, L2 and Lf that satisfy equations (28) to (33) and minimise
the free energy given by (34). This calculation was performed by first solving equations (28)
to (33) for z1, s1, M3, m, L2 and Lf using Newton’s method and assuming z3 as a parameter.
The free-energy was then determined as a function of z3 and the appropriate value of z3 chosen
according to the principle of minimum free energy. The resulting dependence of the end-to-end
distance Z(L

2 )− Z(−L
2 ) on the link added at the ends is shown in figure 6. The plot is similar

to figure 5 but there are some important differences. First, the pre-buckling response is no
longer a straight line; the effects of thermal fluctuation are clearly apparent in the significant
reduction in the end-to-end distance (about 100nm for F = 1pN). Second, because of thermal

2Here continuity of a quantity X(s) should be interpreted as equality of the average values 〈X(s±)〉 where 〈·〉
represents an average in a constant temperature ensemble.
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softening, buckling is delayed to a larger value of the number of turns added although the critical
torque for buckling is

√
2KbF in all cases. Third, the slope of the post-buckling (almost) linear

response regime is different, again because of thermal softening. The change in extension at
buckling is about 200nm both in figure 5 and figure 6. Finally, another experimental observable,
the torque M3 is plotted in figure 7. The torque rises linearly with the number of turns before
reaching a critical value

√
2KbF (at which buckling occurs) and then remains constant at some

M3 <
√

2KbF . As a result there is a jump in the torque at buckling. However, the experiments
of Deufel et al. (2007) indicate, contrary to our expectation, that the torque plateaus at
a constant value after buckling without showing an abrupt jump, at least at F = 10pN. This
motivates us to impose M3 =

√
2KbF as the seventh adhoc3 constraint (instead of requiring the

free energy to be a minimum) for closing equations (28) to (33) and examine the consequences.
The resulting dependence of end-to-end distance on the number of turns applied is depicted in
figure 8. We notice that the jump in extension is much smaller with this constraint but the
post-buckling response still remains linear albeit with a different slope. Moreover, the curves in
figure 8 look qualitatively similar to the experimental data of Strick et al. (1998). This suggests
that within the parameters of our model the magnetic tweezer based experiments of Strick et
al. (1996, 1998) are best simulated by assuming that the post-buckling torque remains constant
at
√

2KbF . However, Strick et al. (1996, 1998) and Charvin et al. (2004) do not report the
post-buckling torque in the DNA; they only give the extension as a function of the number of
turns of the magnet. It is for this reason that we can, at best, only qualitatively compare our
results for the extension vs. number of turns with those of Strick et al.

5 Conclusions

In this paper we have developed a simple model for the mechanics of plectoneme formation in a
fluctuating rod. Our model is inspired by, and shares some common elements with the works of
Stump and Fraser (2000) and Fain, Rudnick and Ostlund (1997) but it differs from them in the
nature of the predictions it makes about torsional buckling in fluctuating DNA. In particular,
our model predicts a sudden change in the end-to-end distance immediately at buckling. The
change in end-to-end distance is roughly 200nm for a piece of DNA that is 750nm long at
a temperature of 300K. This value of 200nm for the change in end-to-end distance is nearly
constant for forces in the range of 1-3pN. It is, however, dependent on material parameters
such as the bending modulus Kb and the twisting modulus Kt which we have assumed constant
at 205pNnm2 and 431pNnm2 respectively throughout this paper since several independent
experiments have reported values in this range. The change in the end-to-end distance as well
as the post-buckling slope of the response curve depend strongly on the nature of constraints
applied to the DNA as well as on the assumed form of the free energy. In this paper we have
used an expression for the free energy that has been derived purely by assuming DNA to be
an elastic rod while neglecting electrostatic contributions. The latter might become important
for plectonemic radii smaller than 3nm. We have also assumed that the free energy admits
an additive decomposition as summarised by (34) which is not strictly true; the alternative
is to perform a calculation similar in spirit to that of Moroz and Nelson (1998) and is rather

3We can either prescribe ∆Lk or M3 but not both. Hence we call this an adhoc constraint. However, we also
recognise that the constraints in a real experiment will neither correspond to a hard apparatus in which ∆Lk is
prescribed (figure 6), nor a soft apparatus in which the torque M3 is prescribed (figure 8) – this will depend on
the stiffness of the magnetic or optical trap.
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cumbersome. Furthermore, we have assumed, for the sake of simplicity, that the helices have
an integer number of turns and a constant pitch. Some of these assumptions can be relaxed
and we will discuss their consequences in a future article.
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Figure 1: Plectonemic solutions of a twisted rod with no self-contact. The figure illustrates
how plectonemic solutions are constructed by combining non-planar localizing solutions (such
as the Coyne solution) with the constant curvature helical solutions. The non-planar localizing
solution is cut at points ±s1, the end-loop region is separated from the tail region and two helices
with an integer number of turns are inserted in such a way that the curvature (or moment),
slope and position remain continuous. There is no self-contact anywhere along the plectonemic
solution since it is constructed from two other solutions which have no self-contact. Since there
is no contact the force remains continuous through out the plectonemic solution.
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Figure 2: Non-dimensionalized extension ζ = Z(L/2)−Z(−L/2)
L of a buckled rod of length L =

200nm plotted as a function of the non-dimensionalized applied torque M3

2
√

KbF
. Three curves

for different values of the force F are depicted. The extension at M3 = 0 scales as F−1/2.
As M3 → 2

√
KbF the rod straightens as is evident from the fact that ζ → 1 in this limit.

The non-planar writhed region (for illustrations of the writhed region in non-planar localizing
solutions, see Nizette and Goriely, 1999) becomes smaller and eventually disappears as M3 →
2
√

KbF . The figure has been constructed assuming mechanical properties Kb = 205pNnm2 and
Kt = 431pNnm2 which are typical of double-stranded DNA.
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Figure 3: Parameter z3 − 1 plotted as a function of the non-dimensionalized applied torque
M3

2
√

KbF
for three different values of L at F = 1pN. z3 ≈ 1 for all values of the torque M3 and

furthermore z3 → 1 as L is increased. Typically, L = 1µm in single molecule experiments on
DNA, implying that assuming z3 = 1 would introduce little error in the calculations. The figure
has been constructed assuming mechanical properties Kb = 205pNnm2 and Kt = 431pNnm2

which are typical of double-stranded DNA.
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Figure 4: Various parameters of the post-buckling plectoneme plotted as a function of the force
F assuming no thermal fluctuations in a DNA fragment of length L = 750nm. (a) The number
of turns m in each of the helices of the plectoneme increases with increasing force. (b) The
radius of the helices in the plectoneme decreases with increasing force (r ∝ F−1/2). (c) The
length 2L2 eaten up by the plectoneme remains constant irrespective of the force at 196.4nm.
This also implies that the length L1 = L − 2L2 ≈ 553nm, for which the assumption z3 = 1
used to obtain these figures is valid (see figure 3). The calculations were performed assuming
Kb = 205pNnm2 and Kt = 431pNnm2 which are typical of double-stranded DNA.
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Figure 5: The end-to-end distance of a rod of length L = 750nm plotted as a function of the
number of turns applied at the end assuming no thermal fluctuations. The rod is assumed to
buckle at a critical value of ∆Lkc = L

√
2KbF

2πKt
. If the number of turns applied at the end is

less than ∆Lkc the rod remains straight with an end-to-end distance L but after buckling it
forms plectonemes which eat up length 2L2 hence causing jump in extension at the critical link
∆Lkc = L

√
2KbF

2πKt
. Adding more turns to the rod results in a linear relation of the end-to-end

distance vs. number of turns. These plots were generated assuming Kb = 205pNnm2 and
Kt = 431pNnm2 which are typical of double-stranded DNA.
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Figure 6: The end-to-end distance of a fluctuating rod of length L = 750nm plotted as a
function of the number of turns applied at T = 300K. The rod buckles at a critical value of the
torque Mc =

√
2KbF . If the twisting moment applied to the rod is less than this critical value

it fluctuates about a straight configuration and the end-to-end distance is determined from the
theory of Moroz and Nelson (1997). The end-to-end distance is smaller than L because thermal
fluctuations ‘eat up’ some length. The eaten-up length is lesser if the tension F is larger. After
buckling the rod forms plectonemes which eat up some more length 2L2 hence causing a jump
in extension at the critical torque

√
2KbF . Adding more turns to the rod results in an almost

linear relation of the end-to-end distance vs. number of turns. These plots were generated
assuming Kb = 205pNnm2 and Kt = 431pNnm2 which are typical of double-stranded DNA.
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Figure 7: The twisting moment M3 for a fluctuating rod of length 750nm plotted as a function
of the number of turns. The pre-buckling torque is linear in the number of turns while the
post-buckling torque is constant at some value M3 <

√
2KbF . This, however, is not observed

in the experiments of Deufel et al. (2007); the post-buckling torque is constant at
√

2KbF and
does not show an abrupt jump. We impose this as a constraint and plot the end-to-end distance
vs. number of turns in figure 8.
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Figure 8: The end-to-end distance of a fluctuating rod of length L = 750nm plotted as a function
of the number of turns applied at T = 300K under the constraint that the post-buckling torque
is
√

2KbF . This figure is to be contrasted with figure 6 which is based on the minimisation
of free energy. The change in extension at buckling is significantly lesser in the present case.
As a result these curves look qualitatively similar to the experimental data of Strick et al.
(1996,1998).

21


