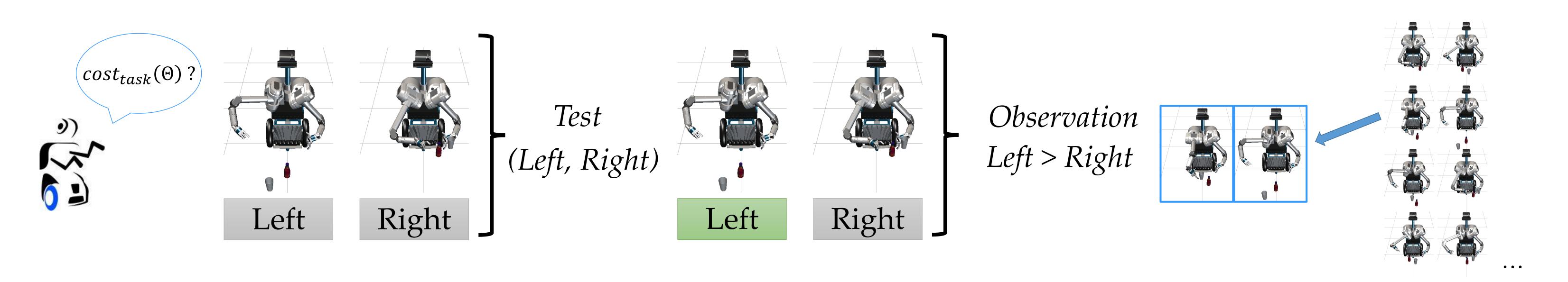
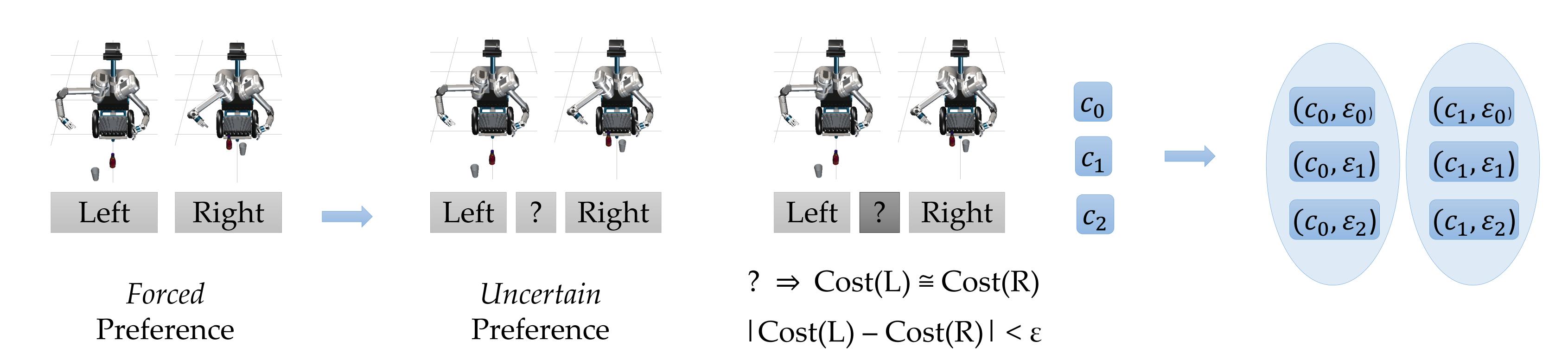
Active Comparison Based Learning Incorporating User Uncertainty and Noise

Rachel Holladay¹, Shervin Javdani¹, Anca Dragan², Siddhartha Srinivasa¹ ¹Personal Robotics Lab, Carnegie Mellon University ²InterACT Lab, University of California Berkeley

Active Comparison Based Learning for Cost Functions

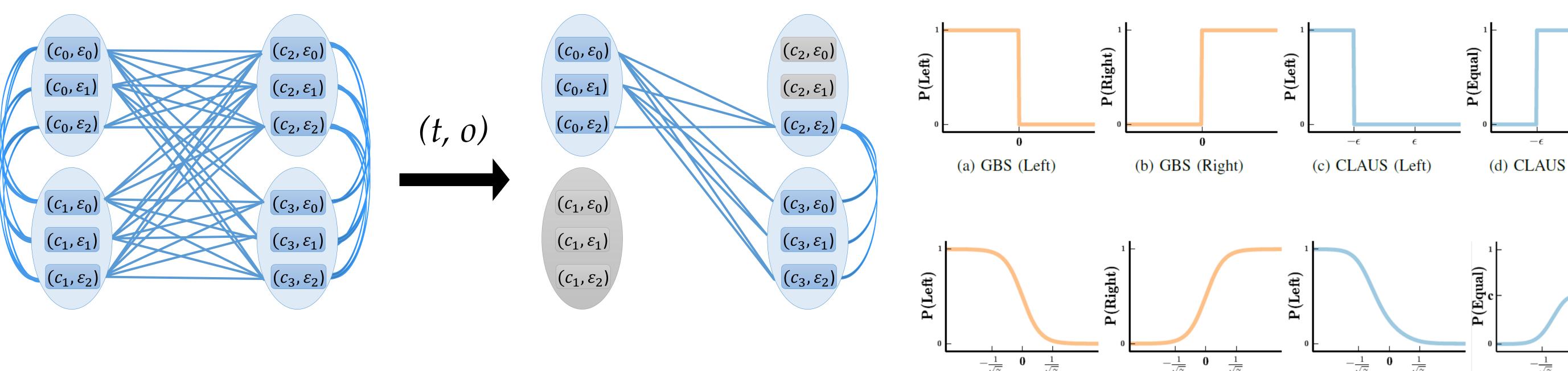


Key Insight: The user's uncertainty is informative about their cost function.



Comparison Learning Algorithm for Uncertain Situations (CLAUS)

Noise Model:



Symbol Key

S: evidence

 $h \in H$: hypotheses

 $a \in A : edges$

 $o \in O$: observations

 $t \in T$: tests

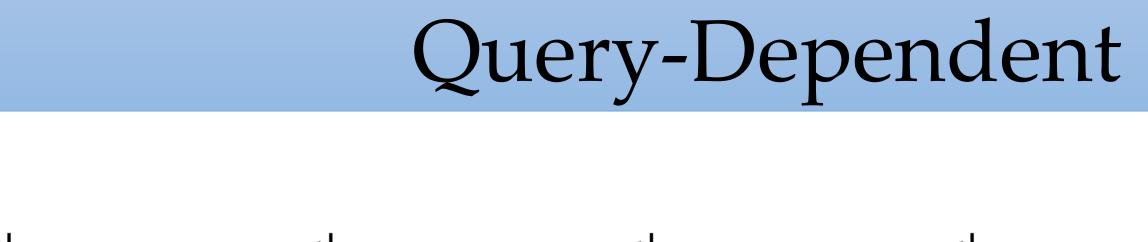
 $f_{CLAIIS}(S) = w(A) - w(A|S)$

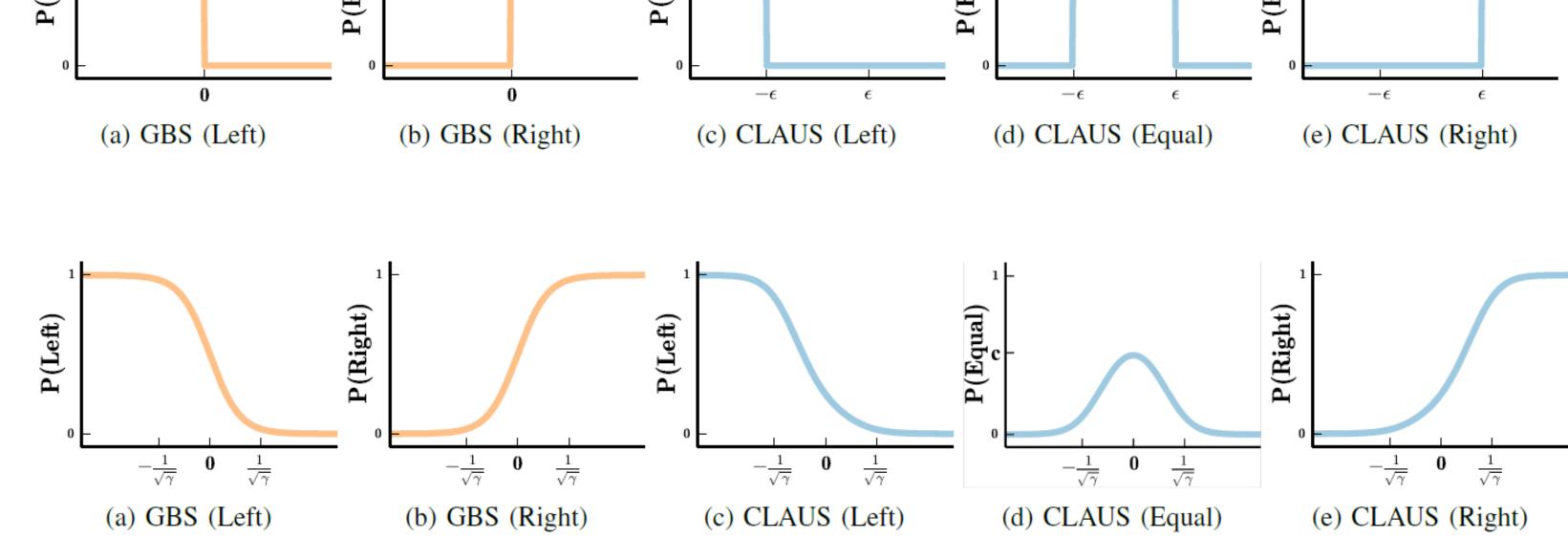
$$w(A|S) = \sum_{a \in A} w(a|S)$$

$$w(a | S) = \prod_{h \in a} w(h | S)$$

$$w(h|S) = p(S|h)$$

$$p(S|h) = \prod_{(t,o)\in S} p((t,o)|h)$$





Forced Preference

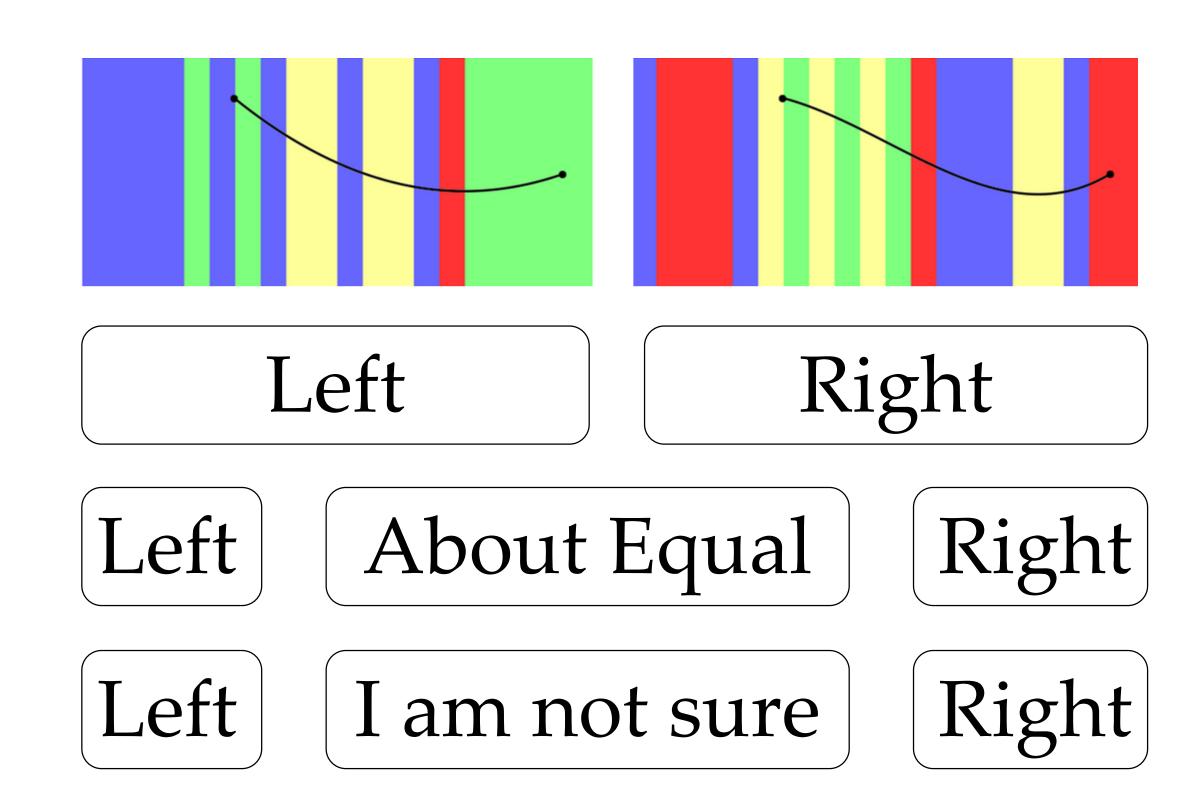
$$p((t, o = x)|h) \propto \exp(-\gamma c_h(x))$$

Uncertain Preference: CLAUS

$$p(t, o = x)|h) \propto \exp(-\gamma(c_h(x) - c_h(y)))$$

$$p((t, o = xy)|h) \propto \exp\left(-\frac{1}{\varepsilon_h^2}[c_h(x) - c_h(y)]^2\right)c$$

User Evaluation with a Known Cost Function



- H1. The uncertainty labeling effects user's performance.
- H2. Accounting for uncertainty leads to fewer queries.
- H3. Accounting for uncertainty performs as accurate as forcing an answer.

