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Abstract— Given the ubiquity of graph search and the
rise of parallel computing, we implemented and explored
a parallel A* graph search. Taking inspiration from Hash
Distributed A* (HDA*) [1], we implemented the search
technique with message passing and shared address space
memory models. We present a detailed comparison and
analysis on performance and quality along with a discus-
sion of how we leveraged and investigated the subtleties
of parallelism.

I. INTRODUCTION

Graph search is a powerful tool that permeates across
a variety of applications. Graph search is ubiquitous,
used in everything from robotic motion planning [2],
[3] to flight trajectory generation [4] to biological sig-
nal tracking [5]. Given its widespread use, we are
constantly pushing to make search faster and more
efficient. One of the most popular informed graph
search algorithms is A* [6]. With the increasing advent
of parallel computing, our goal was to implement a
parallel A* graph search algorithm.

A* is an informed, best-first search for finding the
minimum cost path on weighted graphs. The search is
informed via it’s heuristic, a problem specific function
that estimates the distance to the goal from a particular
vertex. The search maintains an open and closed set
of vertices to search from and those who have been
searched, respectively.

Parallelism is usually injected into A* by parallel
handling of the open and closed sets, and we detailed
the variety of methods explored in our related work,
Sec. II. A key difficulty is managing contention and
distribution of work along with efficient termination
conditions.

For our parallelization, we dove into HDA* (Hash
Distributed A*), a distributed search approach that
schedules work among processors based on a hash
function on the search space [1]. Every time a vertex
is expanded, we hash its index to determine which
processor will evaluate it. For the simple graph shown
in Fig.1, each set of colored vertices would be evaluated
by a different processor.

Using Boost Graph as our graphing library [7], we
implemented HDA* under a message passing model,
powered by Open MPI [8], and a shared memory
model, powered by OpenMP [9]. We performed a
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Fig. 1: HDA* distributes work by hashing vertices to different pro-
cessors. Hence this simple graph could distribute all vertices of a
color to a particular processor.

detailed analysis comparing our implementations, ex-
ploring the effects of algorithmic decisions and problem
size.

Our work shows that the message passing imple-
mentation is better suited to HDA*, achieving better
overall results. We were able to observe interesting
effects with respect to memory implications and data
coherence.

We begin by reviewing related work (Sec. II). Next
we outline sequential A*, HDA* and our methods of
parallelization (Sec. III). We then outline our experi-
mental design (Sec. IV) and a summary of our most
interesting subsequent results (Sec. V). A full report of
all of our results are given at the end, as an Appendix.
We conclude with a discussion and look towards the
future (Sec. VI).

II. RELATED WORK

Interest in parallel search was sparked early on in
the rise of parallel computing, dating back to the
mid-1990s [10]. PLA* (Parallel Local A*) presented a
distributed? A* search, where each processor had a
local closed and open set [11], while PRA* (Parallel Re-
tracting A*) utilized SIMD processing and introduced
a retracting algorithm [12].

Moving into the more recent age of parallel algo-
rithms we have seen an increased interest in paral-
lelizing A* within the last six or seven years [13].
PBNF (Parallel Best NBlock First) builds from PRA*,
combining it with insights from work on parallel struc-
tured duplicate detection and powering this parallelism
through a pthreads implementation [14]. Meanwhile
PNBA* (Parallel New Bidirectional A*) presents a bidi-



rectional search; however this is limited to only utiliz-
ing two processors, since the two sides of the search
are handled by unique processors [15].

Leveraging the newer hardware, A* has been paral-
lelized on CUDA, where path computation was spread
across multiple threads [16]. There has been very recent
developments on A* for GPUs, where the GPU allows
for faster computation of expensive heuristic functions
and a higher bandwidth for memory access [17].

While there are parallel domain specific languages
for graph computations, such as GraphLab [18] and
GraphX [19], we elected not to explore these because
we want to have the freedom to manipulate the graph
directly.

Considering Boost Graph is our graphing library, we
briefly explored Parallel Boost Graph [20], but found
the package to be too early in the development stages
to be stably used.

III. A* AND PARALLELISM

We first describe sequential A* and the opportunities
for parallelism that we exploited. We overview HDA*
and our adaptions to message passing and shared
address space. HDA*, when first presented, discussed
both of these methods, however the main focus of the
paper was on the message passing implementation,
with only a brief aside to the shared address space
version. Additionally we discuss various interesting
algorithmic details such as path reconstruction and the
termination condition.

A. Sequential A*

Sequential A* takes in a graph G, a source vertex
s, a destination vertex d, and a heuristic function h
(Algorithm 1). The algorithm utilizes an openSet of
vertices to be expanded and a closedSet of vertices
which have already been expanded.

We start our search at s, searching towards d. At each
step, we examine the vertex n with the lowest f(n)
where f(n) is given by:

f(n) = g(n) + h(n)

Where g(n) is the cost to come, the cost of the path
from the start vertex to n, and h(n) is the cost to go,
the estimated cost of the path from n to the end vertex.
In our methods, we implement g(n) as a lookup into
a costToCome table. When we expand n, we move
it from the openSet to the closedSet, and add all of
the neighbors of n, that are not in the closedSet, to
the openSet. This allows a vertex to be added to the
openSet more than once.

A heuristic is admissible iff it never overestimates
the goal. In short, h(v) ≤ c(v, d) for all vertices v, where
h is the heuristic function, d is the destination vertex,
and c(v, d) is the length of the shortest path from v
to d. A heuristic is consistent iff it follows the triangle

Algorithm 1 Sequential A* Search

1: Given: Graph G, Source s, Destination d, Heuristic
h

2: openSet := {s}
3: closedSet := {}
4: costToCome := [INT MAX if v 6= s else 0|v ∈ V ]
5: procedure WHILE !OPENSET.ISEMPTY
6: curr = OPENSET.POP
7: if curr = d then
8: RECONSTRUCTPATH(costToCome, curr)
9: if curr ∈ closedSet then

10: CONTINUE
11: CLOSEDSET.ADD(current)
12: procedure FOR n ∈ NEIGHBORS(CURR)
13: if n ∈ closedSet then
14: CONTINUE
15: gcost = costToCome[curr] + WEIGHT(curr,n)
16: fcost = gcost + H(n)
17: if gcost > costToCome[n] then
18: CONTINUE
19: costToCome[n] = gcost
20: OPENSET.PUSH(n, fcost)

inequality. That is to say that h(u) ≤ w(u, v) + h(v),
where w(u, v) is the weight of the edge from u to v.

If a heuristic is admissible and consistent, then we
have the guarantee that the first time a vertex is ex-
panded, it will be with the lowest possible cost. Hence,
even though a vertex might be added to the openSet
more than once, if will only be expanded once.

Another consequence of this guarentee is that the
first time we arrive at d, we can terminate because we
have the shortest path.

During the search we maintain a parent lookup table
that maps a vertex n to its shortest path parent. At the
conclusion of the search we use this table to reconstruct
the path Sec. III-G.

B. Parallel A*: First Attempt

We begin by exploring the opportunities for par-
allelism in the A* algorithm, taking inspiration from
the related work discussed in Sec. II. These various
methods explored parallelize over vertices, edges or the
search itself.

Early in our discussion, disregarding previous liter-
ature, we formulated what we consider the simplest
version of parallelizing A*. We did not implement or
compare with this approach both because we do not
believe it will be efficient and because we wanted to
compare strictly within variants of HDA*. However,
because it presented a good starting exercise in reason-
ing about A*, we present this below.

The approach is to greedily divide up work among
processors, allowing for a dynamic allocation of work
and hence good work distribution. Each processor,



when it becomes idle, expands the vertex with the
lowest f(n) cost from the global openSet.

A major disadvantage of this solution is that all
the data structures require locks, so there is likely to
be quite a bit of contention, notably slowing down
progress.

We note, however, that this is less problematic when
the edge weight and/or heuristic computation is ex-
pensive since more time would be spent processing
each vertex, decreasing the chance that two processors
are trying to access the openSet at the same time.

We believe the issue of contention to be a fairly major
fault of this simple approach and, after reviewing re-
lated work, opted to dive into HDA*, presented below.

C. HDA*

HDA* assigns vertices to processors using a hash
function, allowing for a static allocation of work [1].

Definition Ownership. If a vertex is assigned to a
particular processor, we say that the processor owns
that vertex and that the processor is the vertex’s owner.

When a processor expands a given vertex, instead of
adding all of that vertex’s neighbors to its own openSet,
we hash each neighbor to determine which processor
owns that neighbor. That neighbor is then given to that
processor, for it to be processed.

Hence, we use the hash function to determine how
to distribute work amongst processors. Otherwise, each
processor expands vertices and evaluates the edge
weight and heuristic the same way as the sequential
method.

One notable difference between HDA* and sequen-
tial A* is that HDA* does not provide us with the same
guarantees that sequential A* does with a heuristic
that is both admissible and consistent. As mentioned
above, with such a heuristic, sequential A* guarantees
that each vertex will only be expanded once and that
the first time we expand the vertex we have found a
shortest path to it. In HDA* however, we lose these
guarantees.

We cannot know in which order processors will fin-
ish their work or whether they will work at a consistent
rate. Therefore, a higher cost path to the destination
may be processed before the lowest cost path arrives
in the destination owner’s openSet. Therefore, we may
need to open a vertex many times before the algorithm
completes. Proper termination detection proved to be
rather tricky and we discuss it further in Sec. III-D.

D. Distributed Termination Detection

The question then becomes: When has the algorithm
completed? With sequential A* and an admissible and
consistent heuristic, we know that once the destination
has been reached, the algorithm is complete.
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Fig. 2: This example illustrates some of the difficulty with distributed
termination. Essentially, a processor could believe it is done when it
temporarily has no work in its queue. However, this processor is not
actually done as more work is being sent to it.

Even if the heuristic is not admissible or consistent,
we could continue until the openSet is empty. With
HDA*, however, it’s not so simple.

Viewing a processor’s openSet as it’s work list, as
a processor works through this list, it is constantly
sending more work to other processors. Therefore, it
may happen that a processor has an empty openSet
and thinks itself done with all its work, but another
processor is about to send it more work, as seen in
Fig.2.

If we shut down a processor with an empty openSet,
the work it receives in the future will never be pro-
cessed and the algorithm may never terminate.

The first, simple step to address this is to notify all
processors when the destination has been reached. That
way, at the very least, no processor will stop before this
point.

We will call the most simple approach we took which
implemented a correct termination condition the barrier
method. For this method, each processor hits a barrier
when its openSet is empty. When all processors arrive
at the barrier, each checks if its openSet is still empty
and notifies all processors if it’s not.

Each processor returns if no processor has more
work in its openSet. The temporal guarantees of this
method make it both easy to reason about and less
time efficient. Each processor must wait for all others
to temporarily finish every time its openSet is empty.
Even if it receives more work while waiting, it cannot
”short cut” out of the barrier.

In an attempt to resolve this, we also explored
the sum flags method. For this method, each processor
maintains a binary flag denoting whether or not the
processor’s openSet is empty. If the sum of the flags is
equal to the number of processors, all processors are
done.

We implemented both the sum flags and barrier
methods for our shared address space implementation,
coining them SAS-S and SAS-B respectively. For SAS-S,
we utilized locks with respect to updating the flags.

We implemented the barrier method for message
passing but were unsuccessful in using the sum flags



Fig. 3: The left shows the open and closed sets’ connections to
processors (shown in blue, red and green) for message passing. Each
processor has its own private open and closed set and processors
send vertices to each other. On the right is the analogous model
for shared address space. Here there is one global closed set and a
shared open set. Since the open set is in shared memory, processors
can place vertices directly in the open set of another processor.

method. In message passing, a processor may have an
openSet at one moment and send this information to
other processors. It then may continue working again
but is unable to “cancel” the sent data. Hence, the
algorithm could terminate based off of stale data.

As we dove deeper into the issue of distributed ter-
mination detection, we realized that it alone is its own
research question. Thus a full comparison of methods
is beyond the scope of this project.

We did, however, explore, but not fully implement
one other method: the four counter method [21]. This
method tracks sends and receives, observing that if
the sum of the total number of receives across all
processors is equal to the sum of the total number of
sends across all processors at a later time, all processors
must be finished.

We began implementing this method. However, we
realized that the necessary communication would be
time consuming and would still result in processors
waiting for others to arrive. Therefore, we did not
pursue this method further.

E. Message Passing Model

In the message passing model, each processor has
its own address space and can only communicate with
the other processors via messages which are explicitly
sent and received. Each processor maintains its own
openSet, costToCome lookup table, and parent lookup
table Fig.3.

While a processor still has work in its openSet, it
expands these vertices, hashing each vertex’s neighbors
appropriately. When vertex n is hashed, the processor
that owns n is sent f(n), g(n) and n’s parent.

If the destination’s owner finds a path to the desti-
nation or a lower cost path than what it has found so
far, it broadcasts the new cost to all other processors.

When a processor no longer has work and the cost
to the destination is less than INT MAX, hence we
do have a path, we terminate according to the barrier
method described in Sec. III-D.

Once we terminate, we reconstruct the path as de-
scribed in Sec. III-G.

F. Shared Memory Model
In the shared address space model, all processors

access the same address space but cannot communicate
with each other explicitly. As a result, this model
requires a number of locks.

There is a global array of openSets, each belonging to
a different processor and each requiring its own lock.
The costToCome and parent lookup tables are the same
as in the sequential algorithm, but also require a lock
for every vertex.

While a processor still has work in its openSet, it
processes those vertices as in the sequential algorithm.
It places each vertex in its owner processor’s openSet
as can be seen in Fig.3. Placing the vertex in the
openSet requires using a lock and occurs after updating
costToCome and parentVertex using another lock.

If the destination’s owner finds a path to the desti-
nation or a lower cost path than what it has found so
far, it updates the global cost variable.

When a processor no longer has work and the cost to
the destination is less than INT MAX, and hence a path
has been found, we terminate according to the barrier
or sum flags method described in Sec. III-D.

Once we terminate, we reconstruct the path as de-
scribed in Sec. III-G.

G. Path Reconstruction
Upon A* termination, we only have the cost of the

found path, not the path itself. Thus we must recon-
struct the path as a post-processing step.

The path is reconstructed from the parent lookup
table by tracing backwards along the path from the
destination to the source. The destination vertex is
added to the path, and then the parent of the current
vertex is added until the source is found. At the end,
the path is reversed so that it correctly goes from the
source to the destination.

In the shared memory model, we can use the
standard sequential reconstruction method described
above.

In the message passing model, path reconstruction
is still sequential, but the processor that found the
destination vertex does not have all the information it
needs. This is because it only knows the parent vertex
for the vertices it owns, not necessarily all parents in
the path.

We considered a few different methods of path re-
construction for this case. One solution would be to
have the destination’s owner, which we will call root,
collect information of all vertices’ parents up front and
then have root reconstruct the path as usual. However,
in a graph with 2000 vertices with a path of length
10, for example, this requires communicating far more
information than is actually used, making it highly
inefficient.

The next alternative we considered, depicted on the
lefthand side of Fig.4, was to have root create an empty



Fig. 4: A visualization of two proposed path reconstruction tech-
niques for message passing. The left side sends along the path,
incurring a higher cost than the righthand side, which individually
requests for information.

data structure to hold the path, add the destination and
its parent to the data structure, and send it to the owner
of the destination’s parent. Then each subsequent pro-
cessor would add the parent of the final vertex in the
structure and send the data structure to the owner of
the vertex it added. The owner of the source would
have the complete path in the end.

Looking at the communication cost of this method,
we note that a data structure with the length of the
path is sent once for every vertex in the path. Since the
path is composed of vertices which are represented by
ints, this is a total of len(path) * len(path) * sizeof(int)
bits being sent between processors.

In the end, we found a more efficient method, de-
picted on the righthand side of Fig.4. As the root
backtracks through path reconstruction, when it en-
counters a vertex it does not own, it sends a message
to the vertex’s owner requesting its parent and waits
to receive the response. When it has found the source
vertex, it reverses the path exactly as in the sequential
case.

This requires two messages be sent for every vertex
in the path not owned by root. Since each of these
messages is a vertex, this is a total of 2 * len(path)
* sizeof(int) bits being sent between processors in the
worst case. This is asymptotically better than the previ-
ous method of passing an entire data structure between
processors, so we chose this method.

IV. EXPERIMENTAL SETUP

In order to evaluate the quality of our algorithms
described in Sec. III, we carefully considered our prob-
lem size and specifications. Below we detail our graph
creation, the heuristic used for A* search and how that
informed another aspect of our creation and finally our
experimental procedure.

A. Graph Construction
We construct our graph on a 2-dimensional grid.

We randomly generate N unique vertices, representing
each vertex as a point on the 2-d grid, hence with an
x and y coordinate. Given these set of vertices, V , we
next need to define our edge set.

One possibility would be to define edges randomly,
similarly to our vertices. However, we can only com-
plete a search if the source s and destination t are in
the same connected component. Any vertices not in
this connected component will not be searched because
there is no edge connecting them. Therefore it is critical
that our graph be connected.

For probabilistic guarantees on correctness, we
turned to two random geometric graphs [?]: k-nearest
and r-disc. In a k-nearest neighbor graph, each vertex
is connect to its k nearest neighbors under some metric
on the space. In a r-disc graph, an edge exists between
two vertices, x, y iff d(x, y) < r, where d is our distance
metric [22]. For our graph, d is the L2 norm. We also
use this distance to define the weight of each edge.

To have some guarantee of connectedness for our r-
disc graph, our choice of r is dependent on the number
of vertices in the graph and the size of our space [23],
[24].

γ∗ = 2

[(
1 +

1

d

)(
λd(c)

ξd

)] 1
d

r(n) = γ∗
(
log(n)

n

) 1
d

Such that d is the dimension of the space, d = 2 for
our case, λd(c) is the volume, ξd is the unit ball volume
in d dimensions, and n is the number of vertices in the
graph.

For our k-nearest neighbor graph, our choice of k is
only dependent on the number of vertices, n, in the
graph [23], [25] and is given by k = 2e log(n).

In practice, following our graph creation, we assert
that the graph must be connected to continue.

Initially we were planning to compare k-nearest and
r-disc graphs as different problem instances, since they
vary with respect to average out-degree. However, pre-
liminary comparison results did not show any interest-
ing difference between the two graph types. Therefore,
at each graph creation, we randomly choose the type.

B. Heuristic

The heart and power of A* search is the heuristic.
We define our heuristic h(n) as the L2 norm distance
from vertex n to the destination vertex, d. This heuristic
is both consistent and admissible. Since our heuristic
is the straight line distance between the vertex and
the goal, it provides the minimum distance between
them and thus is never an overestimate. Additionally,
our metric is consistent since it satisfies the triangle
inequality.

Our heuristic is quite strong and will guide the
search towards a straight line path from the source
to the destination. As we densify our graph and add
more vertices, probabilistically, the search will be able
to achieve a straighter and straighter path. Therefore,



even as we increase the number of vertices we will only
search the limited straight line area.

In order to force the search to explore more areas
of the graph, we add obstacles to our search space. In
each graph creation, we create a constant number of
obstacles of constant size but placed in random loca-
tions. We maintain that no vertices may lie inside an
obstacle, although, as a simplification, we permit edges
to cross over obstacles. By creating an environment
with obstacles, we create a much more realistic problem
space.

C. Algorithm Comparison
For each testing iteration, we specify the number

of processors, the number of vertices, and the search
algorithm. We then generate our graph, which is either
a k-nearest graph or r-disc graph with equal proba-
bility, with a random set of obstacles. We randomly
select a vertex to be our source and another to be the
destination.

We test on processor counts P = {1, 2, 4, 8, 16}
and vertex counts V = {100, 500, 1000, 2000} on our
Sequential A*, our message passing implementation
(MP) and our shared address variants (SAS-B, SAS-S).
For our message passing algorithm we elected to use
only 1 node and vary the number of processors per
node. Since we already explored the effects of multiple
nodes previously, we did not feel any additional insight
would be gained.

Since randomness is involved in our graph genera-
tion, we ran each iteration many times and averaged
across the runs.

V. RESULTS

We show the speedup of each of our algorithms for
each size test graph Fig.5. We found that overall the
message passing implementation won out over either
shared address space implementation. This can quite
clearly be seen in Fig.6a and Fig.6b. (For our graphs,
graph shows standard error). In graphs with 100 or
1000 vertices, there appears to be a bit more variation,
which will be discussed in more detail below. We
believe that message passing achieves better speedup
than a shared address space implementation due to
contention and the need for locking on a shared mem-
ory model.
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Fig. 6: Speedup Plots across Problem Size

We can also see that speedup was not consistently
achieved by adding more processors. However, the

example of 2000 vertex graphs with our most effective
algorithm, the message passing implementation, hints
that perhaps parallelism is more effective for larger
graphs.

We theorize that for smaller graphs, the overhead
of communication outweighs the benefits of decreas-
ing each processor’s workload by a relatively small
amount.

To go into more detail about these results, we will
look at each size test graph individually.

For graphs with 100 vertices, MP took notably less
time than our other algorithms Fig.7a.

Interestingly, SAS-B’s time increased as processors
were added. For such a small graph, the effects of
parallelism are relatively minimal. Meanwhile, the bar-
rier termination method may have significantly slowed
progress with a large number of processors. On two
processors for example, only one processor is ever
waiting for another. With 16 processors, however, up
to 15 of them could be waiting for that last one to
complete processing, even if every processor has work
that has been added to its openSet since arriving at the
barrier.

For graphs with 500 vertices, MP is still notably faster
than both SAS methods Fig.7b. SAS-B does quite well
on 2 processors since neither processor waits very long
at the barrier. However, SAS-S clearly has an advantage
when run on over 2 processors. Thus the barrier is
probably quite a detriment to speedup as expected.

As expected, MP is faster for graphs with 1000
vertices as well Fig.7c. One interesting contrast we
see in this graph is that SAS-S and SAS-B are not
so different; neither has a clear advantage. This could
be because on a graph with 1000 vertices, there is so
much work circulating at any given moment that a
processor is unlikely to run out of work in its openSet
while the algorithm is still running. Therefore, it is
unlikely to spend a large portion of time stuck at a
barrier. However, when running the algorithm on 16
processors, the disadvantage of the barrier method is so
significant that SAS-S does do better. If a processor does
reach a barrier before the completion of the algorithm,
it may be waiting for quite a while since so much work
is circulating among the other processors.

Graphs with 2000 vertices give evidence of the same
phenomenon Fig.7d. SAS-S does do better than SAS-
B. However, the difference is relatively small. While
processors running SAS-B rarely get to the barrier,
when a processor does get to the barrier it slows the
algorithm quite a lot.

We will also look particularly at the results for SAS-
B as they point to some interesting notes Fig.8. We
see that, as expected, running A* on graphs with more
vertices takes longer. We also see however that running
A* on graphs with 2000 or 500 vertices on 8 processors
takes longer than would be expected given the other
data points. For the 500 vertex case, we can see in
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Fig. 5: Speedup Plots across Algorithms
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Fig. 7: Timing Plots across Problem Size (Number of Vertices)
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Fig. 8: Time Comparison for SAS-B across Problem Sizes
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Fig. 9: The amount of time spent at the barrier for SAS-B

Fig.9 that a huge portion of time is spent waiting at the
barrier. For the 2000 vertex case, we can see in Fig.10
that this case causes an unusually large number of
context switches as compared to the other cases. These
may be the causes of the unusually large runtimes for
SAS-B on graphs with 2000 or 500 vertices.

Unsurprisingly, the path reconstruction time in-
creases with the number of processors. First note that
since path reconstruction is sequential, the addition of
more processors does not provide any benefits for this
piece of the algorithm. The owner of the destination
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Fig. 11: The time to reconstruct the path for MP

vertex must send and receive a message for each vertex
in the shortest path which it does not own. With more
processors, it is less likely that any given vertex in the
path belongs to the owner of the destination vertex.
Therefore, with more processors, path reconstruction
requires more communication and thus takes more
time.

VI. DISCUSSION

In summary, we conclude that a message passing
model is more efficient than a shared address space
model for implementing hash distributed A*. We also



hypothesize that the effects of parallelism are most
evident on large graphs.

One significant limitation we faced in obtaining use-
ful results was the high level of randomization in our
test structure. We wanted a realistic set of test graphs,
so we randomized many aspects of our graph creation.
As a result, we had to run all of our algorithms on
many iterations of each graph size and processor count
in order to obtain reasonably accurate results. This took
a fair amount of time and limited the quality of our
final results, especially in the case of outliers which
may have significantly affected the results we saw.

Another notable limitation we faced in efficiently
producing results was the challenge presented by the
type of graph on which we chose to test. We used
random geometric graphs as our test set. While we
believe this is realistic for many use cases, it will not
apply to all use cases and also provides quite dense
graphs. Since the graphs we used for testing were so
dense, running each algorithm on these graphs was
quite slow and included the expansion of many edges
as compared to less dense graphs. Obtaining the num-
ber of data points we found we needed for accurate
results became slightly more challenging given the time
taken to run the algorithm on such dense graphs.

In response to these limitations, in the future we
would of course like to obtain a larger body of results
data. We would also like to test our algorithm on other
types of graphs aside from random geometric graphs
to see if our results hold across all graph types. Lastly,
we would like to further explore the rich area of dis-
tributed determination detection and compare across
different detection methods for both shared address
space and message passing.
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TABLE I: Full Results

Algorithm Processors Vertices Time (sec) Edges Expanded Nodes Expanded Context Switches
Sequential 1 100 0.47 129.875 6.0 21.0625
Sequential 1 500 0.52 407.785714286 13.8571428571 33.0714285714
Sequential 1 1000 4.7909997 829.8 25.5 75.7
Sequential 1 2000 21.4555584444 2461.22222222 80.5555555556 366.555555556

MP 1 100 0.31248888 252.68 12.04 15.16
MP 1 500 4.00756333333 1458.83333333 45.625 36.9583333333
MP 1 1000 6.28185705263 1695.63157895 39.5789473684 110.105263158
MP 1 2000 28.6313063125 2969.4375 71.375 320.625
MP 2 100 0.2726844 243.066666667 10.6666666667 13.8
MP 2 500 0.769882733333 1029.26666667 28.6 19.8
MP 2 1000 4.747294 1846.9 49.2 49.0
MP 2 2000 7.728247 2090.55555556 49.5555555556 95.4444444444
MP 4 100 0.286510071429 433.285714286 18.7857142857 13.2857142857
MP 4 500 0.515689428571 1358.0 39.7142857143 19.5
MP 4 1000 4.00543788889 3820.66666667 101.777777778 46.8888888889
MP 4 2000 9.87912581818 4533.18181818 108.636363636 105.0
MP 8 100 0.215341933333 624.466666667 27.2666666667 14.4
MP 8 500 0.5282682 2259.53333333 63.6666666667 19.6666666667
MP 8 1000 5.153589 5654.66666667 143.222222222 53.2222222222
MP 8 2000 5.93648644444 5426.11111111 120.555555556 85.2222222222
MP 16 100 0.332904785714 1280.64285714 55.7857142857 14.4285714286
MP 16 500 0.855245733333 3440.66666667 97.9333333333 24.2
MP 16 1000 4.10946766667 6005.44444444 159.666666667 156.0
MP 16 2000 3.504584 70891.5 1763.0 653.0

SAS-B 1 100 0.353764066667 133.933333333 6.0 20.5
SAS-B 1 500 1.92069653333 1016.03333333 31.6666666667 47.0666666667
SAS-B 1 1000 7.42286415789 2761.36842105 79.4736842105 187.0
SAS-B 1 2000 22.6533982667 3746.86666667 90.2 543.2
SAS-B 2 100 0.4269815 314.7 14.3 24.2
SAS-B 2 500 3.53443614815 1595.07407407 47.2962962963 2037.33333333
SAS-B 2 1000 12.510616 3177.94444444 82.8888888889 14784.4444444
SAS-B 2 2000 28.2896972222 7187.5 167.388888889 80111.3888889
SAS-B 4 100 0.483658464286 328.142857143 14.6785714286 303.214285714
SAS-B 4 500 4.71011489286 4475.82142857 167.607142857 40784.4285714
SAS-B 4 1000 16.9652666111 3733.27777778 98.1111111111 98574.0
SAS-B 4 2000 35.5060253077 5143.0 126.076923077 265563.923077
SAS-B 8 100 0.539955071429 558.642857143 23.9285714286 132.785714286
SAS-B 8 500 12.0324415385 10172.1923077 321.576923077 77299.2307692
SAS-B 8 1000 15.6381565882 6023.17647059 159.294117647 198552.176471
SAS-B 8 2000 48.4169586875 9353.6875 211.125 760128.9375
SAS-B 16 100 0.849634466667 1576.73333333 64.8 331.8
SAS-B 16 500 5.31414043333 4142.46666667 118.166666667 9578.2
SAS-B 16 1000 14.3843989444 9048.0 225.166666667 32987.3333333
SAS-B 16 2000 35.1248896842 10143.0 232.473684211 114916.157895
SAS-S 1 100 0.5136088 114.2 4.6 23.4
SAS-S 1 500 5.497841 2368.0 57.6 85.0
SAS-S 1 1000 25.1283912 6625.4 186.8 429.0
SAS-S 1 2000 2.6509986 664.0 16.0 117.8
SAS-S 2 100 0.3514684 317.0 12.8 20.6
SAS-S 2 500 10.1708068 36806.4 1150.2 1499.2
SAS-S 2 1000 3.122217 927.0 25.75 3683.75
SAS-S 2 2000 16.19267925 4993.5 125.5 54929.75
SAS-S 4 100 0.5065622 260.6 10.8 255.8
SAS-S 4 500 2.3491372 552.4 15.0 7646.8
SAS-S 4 1000 19.893486 4038.25 96.5 131261.25
SAS-S 4 2000 50.32998625 2450.0 61.25 174145.75
SAS-S 8 100 0.6992188 673.0 27.4 131.4
SAS-S 8 500 7.320717 2125.4 61.2 14854.2
SAS-S 8 1000 19.1798678 7516.8 203.4 105560.6
SAS-S 8 2000 51.8222414 6657.0 143.4 320472.6
SAS-S 16 100 0.627226 704.6 29.2 137.4
SAS-S 16 500 3.0413238 2870.6 85.2 5213.0
SAS-S 16 1000 4.2998006 3177.8 88.0 13148.0
SAS-S 16 2000 52.93673975 6985.75 161.75 74384.75
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