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Abstract

Many of our everyday jobs we imagine robots accomplishing are
defined via a variety of task-specific constraints. In order for robots to
perform these tasks, the robot’s motion planners must respect these
constraints. While a robotic manipulator moves and plans in its joint
or configuration space, many constraints are naturally defined in
task space. We focus on the specific constraint asking the robot’s end
effector (hand) to trace out a shape.

Formally, our goal is to produce a configuration space path that
closely follows a desired task space path despite the presence of
obstacles. This thesis proposes distance metrics for formally defining
closeness and planning algorithms that efficiency leverage these
definitions. Adapting metrics from computational geometry, we show
that the discrete Fréchet distance metric is an effective and natural tool
for capturing the notion of closeness between two paths in task space.

We then introduce two algorithmic approaches for efficiently plan-
ning with this metric. The first is a trajectory optimization approach
that directly optimizes to minimize the Fréchet distance between the
produced path and the desired task space path. The second approach
searches along a configuration space embedding graph of the task
space path. Finally, we evaluate these approaches through real robot
and simulation experiments.
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1
Introduction

Our goal is to enable robots to complete complex tasks, like clear-
ing off the dinner table or pouring glasses of water. Many of these
tasks have task-specific constraints, like not tipping over plates of
food while we clear off the table or carefully pouring liquid without
spilling. In order to build robots to successfully accomplish these
tasks, we need robots with motion planners that reason about and
respect these constraints in addition to joint limits and collision con-
straints.

In this thesis we focus on a particular type of constraint: following
a reference path in task space. While we formally define this later, we
can informally define it as constraining a robots hand, known as an
end effector, to trace out a path.

For example, in Fig.1.1 a user provides a demonstration to a robot
on top, who can then recreate that demonstration, as seen on the bot-
tom, where the path is shown in black. Demonstration could encapsu-
late a task, such as opening a door, as learning from demonstrations is
a popular robotic paradigm (Argall et al., 2009).

Figure 1.1: On the top, a user demon-
strates a task space trajectory that is
visualized on the bottom. Our goal is to
enable the robot to be able to recreate
the shape of the provided demonstra-
tion in the general setting.

Following a path, whether demonstrated or directly specified,
can also be used to allow robots to recreate handwritten letters or
other line drawings (der Einreichung, 2016). Robot planners that
follow paths are especially suited for the industrial application of
following arc welding paths (Ahmad and Luo, 1989). This is an area
of intense interest as almost 13% of robots shipped were employed for
arc welding application in 2011 (Larkin et al., 2016).

In certain application, like arc welding, we may only be given
the path as a series of positions that we want our robot to trace out.
However, in the case of demonstrations, we might also be given the
joint poses of the robot that achieved the motion. The naïve solution
for creating the task space motion would be to replay the recorded
demonstration. However, this would prevent us from generalizing the
motion and would fail given any clutter in the scene.

For example, Fig.1.2 shows an instance where our planner succeeds
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when the naïve solution of replaying the trajectory would fail. The
demonstration, shown in black, was gathered in a blank environment.
The starting position of this trajectory is shown as the translucent
robot arm. In the new environment that includes a table, this trajec-
tory collides with the table and is therefore infeasible. By planning
with the task space motion, we are able to avoid the table and success-
fully reproduce the desired motion, shown in orange.

Figure 1.2: Simply replaying recorded
reference paths, fails in new environ-
ments. Our planners are able to plan
around obstacles.

Therefore, we will plan in the robots full configuration space to
leverage its general ability to execute collision-free planning in vari-
ous environments (Ye and Alterovitz, 2011).

We next provide definition and a more formal specification of our
problem.

1.1 Problem Specification

Before providing our problem statement we formally define configura-
tion space and task space. A configuration, q, of our robot completely
describes the location of the robot. The configuration space, C , is the
set of all configurations (Lozano-Perez, 1990). In the case of a manip-
ulator, the configuration space is equal to the joint space since we can
completely describe the location of the arm by the joint angles. A path
in configuration space is detonated by ξ : [0, 1]→ C .

Task space is the space defined by the pose of the robot’s end
effector, SE(3). A path in task space is denoted as ξ : [0, 1]→ SE(3).

We operate with paths, which do not specify velocities or timing.
This is in contrast to trajectories, which are parameterized by time. For
a trajectory of length t we define trajectories in configuration space
and task space, ξ : [0, t]→ C and ξ : [0, t]→ SE(3) respectively. Before
execution, we therefore need to time our generated paths into trajecto-
ries. We use a standard parabolic smoother and retimer (Hauser and
Ng-Thow-Hing, 2010).

The robot induces a forward kinematics and an inverse kinematics
mapping. Forward kinematics maps configurations to task space,
x = FK(q). Inverse kinematics maps a location in task space to a set
of robot configurations, Q = IK(x) such that Q = {q1, q2, ..qk}. In an
abuse of notation we will use FK(ξ) to map a configuration space path
into a task space path.

Equipped with these definitions, we can formally define our prob-
lem.

We are given a robotic manipulator, endowed with a configuration
space q ∈ C, and a reference path in task space, ξ̄ : [0, 1]→ SE(3).

Our goal is to produce the closest path that matches the reference
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path subject to constraints on the system:

ξ∗ = arg min
ξ∈Ξ
||ξ − ξ̄|| s.t. constraints (1.1)

The formulation of (1.1) raises several interesting questions.
Namely, how do we define the distance between two paths and how
to do plan in this space. This thesis addresses both questions.

To answer the first question we explore two distance metrics from
computational geometry: the Hausdorff and Fréchet metrics. While
both can be used to capture the distance between two paths, we show
that the Fréchet serves as a more natural tool because it encodes the
flow the path.

We present two planning methods. The key insight of our first
method is that we can recreate task space reference path by optimizing
a configuration space path with respect to a cost function defining
the distance between the reference path and the task space motion
achieved by the path. By formalizing a cost function we are able to
frame our problem as a trajectory optimization problem. We also
introduce two techniques to assist our optimizer’s performance.

One limitation of this trajectory optimization approach is that
our assistance techniques search only within a one dimensional
space. Therefore, for our second planning technique we define a two
dimensional search space where we sample on the reference path.
From these samples we construct and search along a cross product
graph.

1.2 Summary of Contributions

This thesis proposes using distance metrics for formally defining
closeness and planning algorithms that efficiency leverage these
definitions. Specifically, we contribute:

• Adapting metrics from computational geometry, we show that the
discrete Fréchet distance metric is an effective and natural tool for
capturing the notion of closeness between two paths in task space
(Sec. 3).

• We first formulate the planning problem under a trajectory op-
timization framework that directly optimizes to minimize the
Fréchet distance between the produced path and the desired task
space path (Sec. 4).

• We then reformulate our problem as a randomized sample-based
graph search problem on the cross product between the reference
path and a configuration space embedding of the reference path
(Sec. 5).
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We also include a discussion on related work both with respect
to task space constraints and search in motion planning (Sec. 2). We
conclude the thesis with a discussion of future research questions and
reflections (Sec. 6).



2
Background

To place our work within context, we first overview previous work in
planning with task space constraints, also referred to as Cartesian or
end effector constraints, Sec. 2.1. We then review previous work on
searching in configuration space, which provides background for our
second method, Sec. 2.2.

2.1 Task Space Constraints

Task space constraints seem to have initially emerged as a by-product
of planning with redundant manipulators. With robot manipulators
that have more degrees of freedom then the number of degrees of
freedom in the task space, we have an infinite number of solutions
for end effector poses. This infinity allows us to place additional
constraints on our end effector pose.

Seereeram and Wen formulated feasible, rather than optimal, plan-
ning with redundant manipulators as a finite time nonlinear control
problem that, as a by-product, allowed for task space constraints
(Seereeram and Wen, 1995). These constraints had to be inequality
constraints and were enforced via quadratic programming. Following
a path has also been formulated as a series of equality constraints (Ah-
mad and Luo, 1989) or posed as a Particle Swarm Optimization
problem (Xu et al., 2008).

Yao and Gupta introduced two methods for handling end effector
constraints (Yao and Gupta, 2007), Adapted-RGD (Randomized Gra-
dient Descent) and ATACE (Alternate Task Space and Configuration
Space Exploration). Adapted RGD performed gradient descent on
closed chain kinematics, temporarily breaking the chain and then
enforcing the constraint. ATACE searches for poses in task space and
connects poses through a local planner in configuration space. Our
method interweaves task space and configuration space with similar
inspiration, but we propose a different graph configuration and search
method. Stillman later compared an extension of Adapted-RGD and
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showed the projection method to be more efficient (Stilman, 2010).
Previously, Berenson et al. defined constraints as manifolds in

configuration space and enforced constraints by projecting back on
to the constraint manifold (Berenson et al., 2009). Oriolo et al. also
sampled on the manifold and specifically defined following task space
constraints as the problem of Motion Planning along End-effector
Paths (MPEP) (Oriolo et al., 2002).

Projecting between spaces has also been used to achieve fast plan-
ning in incredible high dimensional space by exploring actions in the
low dimensional task space (Shkolnik and Tedrake, 2009).

Approached as a Cartesian path planning problem in the 1970s,
Paul generated a trajectories that is are piecewise straight lines with
parabolic transitions on knot points (Paul, 1979). In contrast, Froissart
and Mechler prioritized that the path is continuous in its first two
derivatives (Froissart and Mechler, 1993). By doing so they reduced
the mechanical oscillation in the arm, a critical specification for their
applications of arc welding, gluing, laser cutting and high pressure
washing.

Path following has even been approach via a genetic algorithm,
although this was only shown for a two-dimensional arm (Tian and
Collins, 2004).

Moving beyond specific task space constraints for manipulators
allows us to explore even more general problems. For example,
Zacharias et al. expanded the search space to leverage an arm and
mobile base for following for three dimensional trajectories with the
tool tip at the end of the arm (Zacharias et al., 2009). Instead of using
one trajectory, der Einreichung created a distribution of reference
trajectories provded by human demonstrations. Similar in style to
our planning approach discussed in Sec. 4, they use trajectory opti-
mization to generate a trajectory that minimize the distance between
trajectory and distribution according to Kullback-Leibler metric (der
Einreichung, 2016).

2.2 Motion Planning and Search

Our second planning technique leverages searching in configuration
space, a popular paradigm in robotics. The high dimensional con-
figuration space is sampled to create a graph, eliminating the need
to represent the space explicitly. Probabilistic Roadmaps (PRM) and
Rapidly-exploring Random Trees (RRT) are two fundamental sample-
based motion planners (Kavraki et al., 1996; LaValle and Kuffner,
2001).

Building off of these we can use search methods, like Dikjsta or A*
to improve performance (Dijkstra, 1959; Hart et al., 1968). Both the
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PRM and RRT were extended with A* to PRM* and RRT* respectively
to achieve asymptotically optimality (Karaman and Frazzoli, 2011).

In most of these methods you use inverse kinematics to project
into configuration space and place landmarks (Ahuactzin and Gupta,
1998). These landmarks are then connected through varying technique
to create a graph that is then searched through for a solution. Typi-
cally these connections are made by a local planner (Bessiere et al.,
1993; Mazer et al., 1998)

There has been a considerable amount of work in deciding what
landmarks to connect via a local planner and how to sample points. A
simple method is to sample randomly and connect nodes according to
the k-nearest neighbor (Horsch et al., 1994). A more guided approach
to to grow the graph by picking each new milestone as far away as
possible from the current milestones with the goal of further exploring
the space (Ahuactzin and Gupta, 1999).

Another sampling method would be to select candidate points that
are designed to make it easier to get through narrow passages created
by collisions. Amato and Wu use this as motivation to sample points
uniformly on the surface of a configuration space obstacle (Amato and
Wu, 1996).

Kavraki explored a variety of ways to sample landmarks to im-
prove the search, such as adding landmarks close to other landmarks
that have few neighbors, adding landmarks where existing landmarks
are far apart, adding landmarks to areas where the local planner failed
to connect other landmarks, etc. (Kavraki and Latombe, 1994; Kavraki
et al., 1996).

There have been two directions of exploration for improving the
efficiency of these methods. The first is to delay collision checking as
much as possible.

Before using an edge in our graph, we need to collision check it to
ensure we produce a collision-free path. However, collision checking
is an expensive operation. By performing these checks lazily, only
when we believe an edge will become part of our candidate path,
we can save computation (Bohlin and Kavraki, 2000). These kind of
lazy evaluation approaches have previously been applied to graph
search and can be adapted to planning (Cohen et al., 2015; Dellin and
Srinivasa, 2016).

A second interesting question is how to efficiently search a dynamic
graph. Kallman proposed dynamic roadmaps that handle when edges
can become temporarily unavailable due to collision but where we
want to reuse paths that may be broken in several locations (Kallman
and Matarić, 2004).

Koenig et al. proposed Lifelong Planning A* (LPA*) as a way to
combine the merits of informed and incremental search (Koenig
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et al., 2004). We can see that as we build or change a graph, we can
continuously use this kind of incremental search method to update
our solution. We discuss incremental updates as an area of future
work in Sec. 6.



3
Distance Metrics

In order to create a path that closely follows our reference path we
need a distance metric for defining the closeness of two curves. We
explore two distance metrics from computational geometry that are
commonly used for shape matching: the Hausdorff distance and
the Fréchet distance. Below, we explore each of them as metrics for
capturing the distance between paths.

3.1 Hausdorff Distance

Our goal is to produce a path that is close to our reference path. One
natural way to quantify closeness is to require that each point on our
path be close to a corresponding point on the reference path.

For example, consider the reference path shown in black in Fig.3.1.
We can place an r-disc ball around each point in our path and union
these balls together to create a safe zone, as shown. If each point on
our path is within some r distance to our reference path, then our
path is contained within our safe zone. This metric corresponds to the
one-way Hausdorff distance.

The Hausdorff distance is a method for measuring how far apart
two subsets of metric space are (Hausdorff and Brieskorn, 2008).
Given that an adversary picks a point on one shape, the Hausdorff
distance is the longest distance you would be forced to travel to get
to any point on the other shape. Although originally formulated
as metric for shapes, the one-way Hausdorff distance can also be
applied to curves, point sets and objects (Dubuisson and Jain, 1994;
Huttenlocher and Kedem, 1990; Belogay et al., 1997). Hence for paths
we can formalize the one way Hausdorff distance as:

H(ξx, ξ̄x) = sup
y∈ξ

inf
ȳ∈ξ̄

dTS(y, ȳ) (3.1)

where dTS is a distance metric between points in task space defined in
Sec. 3.3
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When we consider the Hausdorff distance for paths, if every point
on the path was to find its closest neighbor on the reference path, the
Hausdorff distance is the longest neighbor to neighbor distance.

r

Figure 3.1: The one way (orange) and
two way (green) Hausdorff distances are
constrained to be in the safe zone while
the Fréchet distance (blue) forces us to
pass through the safe zone in order.

Therefore, if our path and our reference path have a Hausdorff
distance less then r, then our path is entirely contained with our r-disc
safe zone. We can see that for the orange path in Fig.3.1, each point is
forced to travel at least r distance from its closest point on the black
reference path.

By constraining our path to be within some threshold, r, according
to the one-way Hausdorff distance, we are insuring that our path is
within the reference path’s r-disc safe zone. While our orange path in
Fig.3.1 lies within the safe zone, it fails to capture the exact flow of the
reference path, shortcutting the center loop.

One way to insure that the path better matches the reference path is
to, in addition to requiring each point on the path be close to a point
on the reference point, also require that each point on the reference
path is close to a point on the path. This corresponds to the two way
Hausdorff distance for paths. In Fig.3.1 the two way Hausdorff distance
is shown in green. While the reference path (in black) and the two
way Hausdorff path (in green) are close to each other, the path fails
to capture the true shape, instead traversing through the loop in the
reverse order.

To follow our reference path, we want to constrain our path to pass
through our r-disc balls in order. This requirement motivates using the
Fréchet distance.

3.2 Fréchet Distance

The Fréchet distance captures the difference in flow between two
curves (Fréchet, 1906). The Fréchet distance is commonly explained
through an analogy, where a dog is walking along ξ at speed param-
eterization α and its owner is walking along ξ̄ at speed parameteriza-
tion β (Chambers et al., 2010). The two are connected via a leash. The
Fréchet distance is the shortest possible leash via some distance metric
d such that there exists a parameterization α and β so that the two stay
connected and move monotonically. More formally:

F(ξx, ξ̄x) = inf
α,β

max
t∈[0,1]

{
dTS

(
ξx(α(t)), ξ̄x(β(t))

)}
(3.2)

where dTS is defined as before.
We can see with the blue path in Fig.3.1 that the Fréchet’s mono-

toncity requirement forces it to follow each of the balls in order, thus
capturing the flow of the reference path. Therefore, the one-way Haus-
dorff distance captures constraining our result to be contained within
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our safe zone. In contrast the Fréchet distance captures following the
r-discs of the safe zone in order.

Additionally, in previous comparisons between the Fréchet and
hausdorff, the Fréchet distance has been shown to better capture the
similarity between paths (Alt, 2009; Larios et al., 2015; Alt et al., 2004).

3.3 Computing Distance Metrics

We next quickly detour to discuss implementation details of our
approach.

There are two possibilities for our definition of the distance be-
tween two points, x, y ∈ SE(3), dTS(x, y). A common metric in motion
planning is the the Cartesian product of the Euclidean metric for R3

and the standard great circle solid angle metric for SO(3) (Sucan et al.,
2012). We examined this metric and just the Euclidean metric for R3.
For the experiments presented throughout the thesis, we concentrated
on the latter metric.

In practice, computing the continuous Fréchet and Hausdorff is
difficult. In fact, calculating the continuous Fréchet with a similar
metric involves solving an optimization problem (Wenk et al., 2010).
Additionally, our path representation is given as a series of waypoints.
If our path is not given as a series of waypoints we can sample our
path to convert to this representation. We therefore use the discrete
Hausdorff and the discrete Fréchet (Fd), the latter of which is typically
calculated by dynamic programming (Alt and Godau, 1995; Eiter and
Mannila, 1994).

Adapting our Fréchet metaphor to the discrete case, we replace
the dog and owner to a pair of frogs, still attached by a leash, that can
only hop along stones (our waypoints) (Agarwal et al., 2014).

3.4 Gradient Interpretation
H

F

jH

iH

jF

iF

Figure 3.2: The negative analytical
gradient of the Fréchet and Hausdorff
distance steps to decrease the distance.

The gradient of the one-way Hausdorff or Fréchet distances push us
into the safe zone or ordered safe zone, respectively. Let’s say we have
a path and reference path with a discrete number of fixed waypoints.
Then, the analytical negative gradient of either distance metric is the
unit magnitude pointing towards the furtherest point on the reference
path.

Consider the reference path in black in Fig.3.2 and the candi-
date path in red. Given a Hausdorff or Fréchet distance of P, there
must exist a point i on the reference path and j on the path such that
d(i, j) = P. This pair represents our point of maximum violation,
which we will assume is unique. As seen in Fig.3.2, the two distance
metrics may select different (i, j) pairs. However, for both, the dis-
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tance is determined by their maximum violation.
Since the point at maximum deviation determines the distance, the

gradient of the distance metric with respect to the candidate path is
equivalent to the the gradient at just our maximum deviation point.

By taking a step in the negative direction of this gradient, shown as
the black arrow in Fig.3.2, we move our point of maximum violation
closer to the reference path, thus decreasing our distance. Hence in
Fig.3.2, gradient applied to each distance metric’s (i, j) would decrease
their P.



4
Direct Optimization

We first formulate following at task space path as a trajectory opti-
mization problem. Our key insight is that we can recreate task space
reference path by optimizing a configuration space path with respect
to a cost function defining the distance between the reference path
and the task space motion achieved by the path. Our cost function is
defined by the distance metrics discussed in Sec. 3. This approach has been published and

presented at IROS 2016 (Holladay and
Srinivasa, 2016).

We find that trajectory optimization is susceptible to local mini-
mum. This can lead the optimizer to generate paths that do not match
the reference path. To account for this we offer two methods, splitting
and stapling (discussed in Sec. 4.2 and Sec. 4.3). These methods guide
the optimization to the correct basin of attraction by identifying crit-
ical points in the reference path that serve as hard constraints to the
optimizer.

Leveraging a different computation geometry metric, Procrustes
Analysis, we explore a related problem. Often the reference path does
not have to have strong bindings to the particular task space location.
Rather the reference path is meant to provide a general task space
shape that the robot should produce, i.e. tracing out the letter ’A’. We
provide an optimization method for recreating only the shape (Sec.
4.4).

Finally, we explore the limitations of our optimization approach in
Sec. 4.5. This directly motivates our sample based search approach
discussed in the next chapter.

4.1 A Preliminary Experiment

We conducted a preliminary experiment to explore the problem. We
first gather demonstrations of trajectories on a robot that serve as our
reference paths. Then we use the distance metrics discussed in Sec.
3 as cost functions that penalize the trajectory for being far from the
goal in addition to constraints that prevent self-collision and respect
joint limits.
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Figure 4.1: The reference path is shown
in black. The path optimized according
to the Hausdorff and Fréchet metrics
are in orange and blue, respectively. The
bars below show the difference between
the Fréchet error of the two optimized
paths.

Clearly, the demonstrated path is one (of possibly many) global
minimum for the optimization. But we are interested in its basin of
attraction. Specifically, we explore how well a completely uninformed
initialization, like a straight line from start to goal, can bend and twist
itself to get to the reference path. By solving this problem, instead of
relying on the demonstrated path ξ̄q, we can more generally recreate
shapes. This general problem proves to be surprisingly challenging.

Gathering Demonstrations

In order to gather demonstrations from our robot HERB, we placed
it in gravity compensation mode such that an operator could move
the arms freely to create the desired motion (Ulrich and Kumar,
1991). We recorded joint angles at 100Hz. that serve as waypoints for
the reference path ξ̄q. This was then converted to ξ̄x using inverse
kinematics, since our distane metrics operate in task space and we
want to only rely on having ξ̄x in the general case.

Initial Results

We created a set of 24 demonstrations, some of which are shown in
black in Fig.4.1. We then optimize using the Hausdorff or Fréchet
metric as the cost function. We used TrajOpt’s default stopping criteria
and computed distances with respect to the end effector position, not
the full arm pose.

Fig.4.1 shows each reference path in black, the the Fréchet opti-
mization in blue and the Hausdorff optimization in orange. Each bar
below compares the difference in Fréchet error between the Fréchet
optimization and Hausdorff optimization. We elected to compare
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using theFréchet error since the Fréchet metric restricts us to follow
the curves of the reference path.

In Fig.4.1, we see three categories. The first three columns show
paths where the error for the Fréchet and Hausdorff optimization
are the same, hence their difference is zero. In the first of these two
columns, both optimization produce the nearly same path. In the third
column the path begin and end at the same location. Thus the empty
path is at a local minimum.

The fourth and fifth column show paths where the Fréchet opti-
mization produced a higher Fréchet error. In these cases the Hausdorff
optimization produced paths that were closer to the reference paths,
which were generally monotone. In the sixth column, the Hausdorff
paths have a higher error, and the Fréchet paths better corresponded
to the shape of the path.

In Fig.4.2, we show planning time as a function of the number of
iterations that the optimizer runs. Each point represents a reference
path where corresponding reference path optimized with the Fréchet
and Hausdorff metric are connected via a grey line segment. We see
two trends. First, planning time increases with more iterations of Tra-
jOpt, which is expected. Second, it generally takes longer to optimize
according to the Fréchet metric, even when there are less iterations
required. This is to be expected as the Fréchet metric, computed used
dynamic programming, is generally more time consuming.

While the paths in Fig.4.1 capture the shape to an extent, they often
fail to capture the shape entirely. Our optimization process does not
drive our cost to zero in part because these reference path are difficult
for an optimizer to achieve. Many times, the optimizer falls into a
local minimum that is different from our provided demonstration due
to self-collisions or joint limits.

In order to produce more accurate paths we therefore assist TrajOpt
via two methods: split and staple. Both of these methods add more
constraints to to our problem, thus moving our basin of attraction to
new locations.
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Figure 4.2: Each point represents a
reference path and corresponding
reference path optimized with each
metric are connected via a grey segment.
The Fréchet optimizations trend to take
longer and planning time increases with
the number of iterations.

4.2 Optimizing in Joint Space

In order to provide assistance to our optimizer we present two tech-
niques, splitting and stapling, that further constrain the path. Splitting
segments the path in a predefined way, while stapling segments
through a more intelligent method. We begin by examining both in
the robot’s joint space since it serves as an easier problem. This as-
sumes we have access to ξ̄q. We later relax this to only having ξ̄x, and
use our insights from optimizing in joint space to generalize the to the
more difficult problem of optimizing in task space.
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Algorithm 1 SplitJoint

1: Given: Reference Path ξ̄q, metric m, split count k
2: Initialize: ξ = ∅
3: procedure FOR I=0:K

4: ts = i
k

5: te = i+1
k

6: ξ i = PLANTO(ξ̄q(ts), ξ̄q(te), m)
7: ξq = COMBINETRAJS(ξq, ξ i)

8: return ξq

Split Method

To move our basin of attraction, and therefore ease our problem, we
split our path in k segments and optimize on each segment.

The algorithm for the general k is given in Algorithm 1. We loop
through k calculating the starting and end configurations (Line 4, Line
5). We then plan between these two segments (Line 6) and combine
sequentially (Line 7).

As we can see in Fig.4.3, the more pieces we segment the path
into, the lower our Fréchet error. This is expected since with more
segments, more constraints are imposed on the optimizer.
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Figure 4.3: In joint space, as we increase
the number of splits, the error decreases.

For each path we could select a k that balances between cost and
computation time. And in fact, we will see this tradeoff later in Sec.
4.2. However, it is unclear how to choose this k in the general case.
Instead we want our optimization method to select some k and place
the partitions where they are most needed. This intuition inspires the
stapling method, described in the following section.

Staple Method

Instead of picking some k which splits our path into evenly spaced
segments, we want to concentrate on points in our path that need
extra help from the optimizer. Therefore, we present the Stapling
Algorithm, in joint space, in Algorithm 2, that dynamically selects the
points of the path to staple.

Using either the Hausdorff or Fréchet we begin with a path op-
timized to that metric m, like those created in Sec. 4.1 (Line 3). For
either metric, Hausdorff or Fréchet , we then find the point of of the
path that errors furthest from our reference path: the point of maxi-
mum violation (Line 4).

Since the Fréchet distance is the minimum length leash, as de-
scribed in Sec. 3, we find the location that forces that distance and
declare that to be our point of maximum violation. For the Hausdorff
distance, this maximum point is the furthest you could be forced to
travel to go from one curve to another.
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Fréchet
Hausdorff

Figure 4.4: If we decrease the violation
threshold when stapling, the number of
segments increases.



DIRECT OPTIMIZATION 29

Algorithm 2 StapleJoint

1: Given: Reference Path ξ̄q, metric m, threshold ε, start point ts, end
point te

2: Initialize: ts = 0, te = 1
3: ξq = PLANTO(ξ̄(ts), ξ̄q(te), m)
4: vt, ti = F INDMAXV IOLATION(ξ̄q, ξq, m)
5: if vt > ε then
6: ξa

q = STAPLEJOINT(ξ̄q, ts, ti, m)
7: ξb

q = STAPLEJOINT(ξ̄q, ti, te, m)
8: return COMBINETRAJS(ξa

q, ξb
q)

9: else
10: return ξq

We then staple that point of maximum violation to the reference
path, similarly to the splitting method, and recurse on the two pieces:
the reference path from the start to the staple point and the reference
path from the staple point to the end. We repeat this iteratively until
the maximum violation is below some threshold (Line 5-Line 10).

As we vary the threshold of what violation is considered acceptable,
we see in Fig.4.4, the number of segments increases. While it does
segment the path like the splitting algorithm, the key difference is that
stapling places the segments intelligently.
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Figure 4.5: Comparing, stapling
achieves a given Fréchet error in fewer
segments (top) but a higher planning
time (bottom) then splitting.

Splitting versus Stapling

The splitting algorithm evenly spaces its allocated split count, ignor-
ing the path’s shape. In contrast, the stapling algorithm, by finding the
point of maximum violation, staples down the path at the point that
is most useful to adhering to the threshold. Thus, as shown in Fig.4.5,
for some given target Fréchet error, the stapling method required
fewer segments.

However, as illustrated in Fig.4.5, the splitting algorithm can
generally achieve a lower Fréchet error than the stapling algorithm
in the same time allotment. The recursive nature of the stapling
algorithm leads it have to repeat optimizations in trying to satisfying
the violation threshold. In contrast, the splitting algorithm handles
each segment once.

Fig.4.6 shows how stapling and splitting improve our performance,
compared to the same path in Fig.4.1.

Figure 4.6: In joint space: splitting with
k = 6 (top) compared to stapling ε = 0.2
(bottom).

Limitations

Optimizing in joint space presents a fundamental limitation. Since
we rely on indexing into the path, we must have a joint space repre-
sentation, ξ̄q. This restricts us to using the original demonstration,
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Algorithm 3 SplitTask

1: Given: Reference Path ξ̄q, metric m, split count k
2: Initialize: Qs = SAMPLEIK(ξ̄x(0))
3: Initialize: ξq = ∅
4: procedure FOR I=0:K

5: te = i+1
k

6: Qe = SAMPLEIK(ξ̄x(te))
7: ξ i = PLANTO(Qs, Qe, m)
8: ξq = COMBINETRAJS(ξq, ξ i)
9: Qs = {ξq(1)}

10: return ξq

preventing us from generalizing the motion to translate or rotate in
task space. To generalize our motion, we advance to optimizing in the
task space, using only ξ̄x.

4.3 Optimizing in Task Space
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Figure 4.7: In task space, as we increase
the number of splits, the error decreases.
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Figure 4.8: In task space, if we decrease
the violation threshold when stapling,
the number of segments increases.

While we previously explored the splitting and stapling algorithms in
joint space, we now lift those algorithms to task space. Since our robot
has a redundant manipulator, there are multiple inverse kinematic
solutions to a given point in task space. Therefore, we solve for these
inverse kinematic solutions and plan to this set. We detail the changes
this consideration implies for both splitting and stapling.

Split and Staple Methods

Splitting: We describe the splitting method in task space in Algorithm
3. In contrast to splitting in joint space, where we plan to a specific
configuration, in task space we compute the inverse kinematic solu-
tions for that point in task space (Line 2 and Line 6) and plan to that
set.

Once we compute the path for the first segment, the ending con-
figuration of the first segment determines the configuration for the
beginning of the next segment (Line 9).

Similarly to in joint space, as the number of splits increases, the
Fréchet error decreases, as seen in Fig.4.7.

Stapling: The stapling method in task space in Algorithm 4. Here,
as in splitting in task space, we must compute the inverse kinematics
set to plan to (Line 2, Line 3, Line 7). Again, before continuing to the
next segment, we need to start where the last segment left off (Line 9).

As we decrease our threshold, we increase the number of splits
required, visualized in Fig.4.8.
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Figure 4.9: Across splitting and stapling,
more segments leads to a decreased
Fréchet error.
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Algorithm 4 StapleTask

1: Given: Reference Path ξ̄q, metric m, threshold ε, start set Qs, goal
set Qq

2: Initialize: Qs = SAMPLEIK(ξ̄x(0))
3: Initialize: Qe = SAMPLEIK(ξ̄x(1))
4: ξq = PLANTO(Qs, Qe, m)
5: vi, pi = F INDMAXV IOLATION(ξ̄x, ξq, m)
6: if vi > ε then
7: Q̂g = SAMPLEIK(ξ̄x(pi))
8: ξa

q = STAPLETASK(ξ̄x, Qs, Q̂g, m)
9: Q̂s = {ξa

q(1)}
10: ξb

q = STAPLETASK(ξ̄x, Q̂s, Qg, m)
11: return COMBINETRAJS(ξa

q), ξb
q

12: else
13: return ξq

Splitting versus Stapling

As seen in Fig.4.9, for a given number of segments, stapling has, on
average, a smaller Fréchet error. This is explainable by the fact that
stapling intelligently selects where to segment the path, while splitting
selects its segments blindly.
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Figure 4.10: For an allowance of plan-
ning time, splitting achieves a lower
Fréchet error.

Like in joint space, splitting achieves a lower Fréchet error given
a time allotment as seen in Fig.4.10. However both take longer then
their joint space counterparts since we must compute the inverse
kinematic solution set and plan to a configuration in that set, as
opposed to planning to one configuration.

We can now easily generate a path that follows a new task space
path formed by warping the original reference path. For example, in
Fig.4.11, we can translate our original task space path by 10 cm and
use our optimization to generate a new path.

However, even this places the burden on the user to determine
where to place the path. Instead, we would like to be able to recreate
the shape of the path at any location.

Figure 4.11: The original reference path
is given in black and the blue path is
translated 10 cm.

4.4 Procrustes Analysis

So far we have required that our reference path have specific bindings
to poses in workspace. Often, you may want to specify only a general
shape and allow the robot to find any path that follows the shape
path. For example, you may want to draw a circle, with no particular
preference for where in task space the circle is drawn.

In essence, we wish to focus on the path’s shape, ignoring any
translations or rotations. To achieve this we draw upon the Procrustes
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Algorithm 5 ProcrustesConstraint

1: Given: Initial Path ξ i
q, reference path ξ̄x, metric m

2: p0 = CORRESPOND(ξ i
q, ξ̄s, m)

3: procedure WHILE NOT MATCHES :
4: ξ i

q = PROCRUSTES(ξ i
q, ξ̄s)

5: pn = CORRESPOND(ξ i
q, ξ̄s, m)

6: matches = (p0 == pn)
7: p0 = pn

8: return ξq

metric from shape analysis (Gower, 1975; Goodall, 1991; Schönemann,
1966). The Procrustes distance metric first attempts to optimally
superimpose two curves on top of each other before assessing the
distance between them. By superimposing the two curves, the relative
differences in placement are ignored.

Algorithm

To evaluate a cost within our optimization loop, we iteratively per-
form an expectation-maximization inspired algorithm (Algorithm 5).
This algorithm compares the output of the optimizer at iteration i, ξ i

q
to the reference path ξ̄x.

First we use either the Fréchet or Hausdorff metric to compute
the correspondence between the path’s waypoints (Line 2). Since the
discrete Fréchet distance computes the shortest leash between each of
the points on our line we can map points on one line to their partners
on the other line. Likewise for the Hausdorff metric we can find the
point on curve that each corresponding point travels to. Next we
compute the scaled Procrustes analysis on each of the curves, which
moves ξ i

q to be as close as possible to ξ̄x (Line 4).
We use our distance metric to recompute the correspondences

(Line 5). If we have converged to an optimal transform, then these
correspondences will have not changed within the loop. Otherwise
we repeat the process. Upon converging, we have now moved the
two paths to be as close as possible. We use metric m to evaluate the
distance between the two paths and return this to the optimizer as the
cost of ξ i

q.
The process is similar in style to that described in (Benseghir et al.,

2013), although using different metrics.
Since our stapling and splitting algorithms rely on binding to

task space, we cannot apply these methods to our current Procrutes
constraint formulation.
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Figure 4.12: This shows the progression
of our planner on an RR arm such that
we result in a path that closely matches
our reference path. The reference path is
the black dotted line and the generated
path is given in dark gray.

4.5 Limitations

In Sec. 4.2 and Sec. 4.3 we introduced the splitting and stapling algo-
rithms for reducing the Fréchet error in our generated paths. While
these methods had a degree of success, they critically suffered from
the ability to sample only one inverse kinematic solution. However,
there is a space of multiple IK solutions which may admit different
paths. In this section, we demonstrate why this is problematic on
a simplified 2 degree of freedom arm. This motivates our second
algorithm, described in Sec. 5.

To illustrate this limitation we use a planar two-link arm with
two rotational joints, known as an RR Arm and seen in Fig.4.12 and
Fig.4.13. The robot’s workspace is defined as the set of position reach-
able by our end effector in the (x, y) plane. For many locations in the
robot’s workspace, there exist multiple feasible configurations, com-
monly refereed to as ’elbow up’ and ’elbow down’ or the ’left’ and
’right’ solution. We will use the latter terminology. While these two
configuration have the same endpoint in task space, they are quite
distant in configuration space.

We will step through two possible execution of our optimization
planner using the stapling strategy described in Sec. 4.3. In both cases
our reference path ξ̄ is the straight line.

We first consider the case shown in Fig.4.12. We begin by selecting
the starting configuration for the first task space point, shown in the
leftmost column. Considering we have two possible configurations,
the left and right, we choose which one with equal probability since
our inverse kinematic sampling is random. In this case, we chose the
right handed configuration. We next choose our ending configuration,
shown in the second panel. In this case, we are lucky because we
selected the right handed configuration again. Since our starting
and ending locations are in the same homotopic class. Therefore our
optimizer will find the path shown in grey in the rightmost column,
which exactly matches the reference path. Thus Fig.4.12 shows a
successful instance of the planner.

We next consider the case illustrated in Fig.4.13. Again, we select
the starting configuration as the left handed solution (shown in the
first column) and but select the ending configuration as the right
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Figure 4.13: This shows the progression
of our planner on an RR arm such that
we result in a path that does not closely
match our reference path. The reference
path is the black dotted line and the
generated path is given in dark gray.

handed solution (shown in the second column). The result of our
optimization planning between these two configurations is shown in
the third column. Rather then exactly following the reference path we
have to detour to reposition our arm on the opposite side.

Our stapling algorithm will find the midpoint as the location of
maximum violation and select a configuration to staple to. With 50%
probability we select the left handed configuration, shown in the
fourth column. Our planning is now broken into two segments, the
results of which are shown in the last column. For the first half of
our path we are planning between two configurations on the same
side, leading to a straight line that exactly matches our reference
path. However, in the top half of our trajectory we are still forced to
switch between the left handed configuration and the right handed
configuration. And, in fact, we have a smaller distance to make this
detour, leading to a larger detour. Each time we staple, we are force to
travel through that configuration, preventing us from ever recovering
from our mistake.

While we illustrate this point on a two degree-of-freedom arm, this
because even more problematic on a higher degree of freedom arm,
such as HERB’s seven degree arm.

Therefore our failure comes from randomly selecting one possible
IK solution from a set of many and then forcing our commitment. In-
stead, our next method proposes search over sets of inverse kinematic
solutions.



5
Cross Product Search

We saw in Sec. 4.5 that our trajectory optimization approach suffered
from the fact that it only used one inverse kinematic solution when
there exist multiple. To correct this we present a second planning
approach that is a randomized sample based search planning method
that allows us to search over the entire space of inverse kinematic
solutions. This work was conducted in collabora-

tion with Oren Salzman.We begin by restating our problem specification and formalizing
helpful data structures (Sec. 5.1).

Our first step is to sample our reference path for inverse kinematics
solutions and create a layered graph L (Sec. 5.2). This graph repre-
sented a sampling of our configuration search space. From this, we
create a graph Φ that is the cross product of our layered graph L and
our reference path (Sec. 5.4). In this cross product graph, finding
a path with the minimal Fréchet value to our reference path corre-
sponds to finding the minimum bottleneck path. We can compute the
minimum bottleneck path with a simple variant of Dijkstra’s graph
search algorithm.

Figure 5.1: Our reference path is given
in black and the output of our planner is
given in red. For this plan, our layered
graph used four waypoints and four
inverse kinematic solutions.

We conclude this section with experiments verifying our approach
and comparing its performance to the trajectory optimization ap-
proach presented in Sec. 4. Fig.5.1 shows the reference path in black
and out output of our planner in red.

5.1 Problem Statement

We are given a robot and a reference path in task space, ξ̄ that is a
polyline given by a sequence of waypoints R ⊆ SE(3). As we will
see shortly it will be convenient to treat ξ̄ as a (one-dimensional)
graph Gξ̄ = (Vξ̄ , Eξ̄) where Vξ̄ , are the waypoints and an edge e ∈ Eξ̄

connects subsequent waypoints.
Our objective is to create a collision-free path ξ ∈ C whose forward

kinematics maps to a path, FK(ξ), in task space that follows ξ̄ as close
as possible, where "follows" is defined formally below. Similarly to



36 FOLLOWING PATHS IN TASK SPACE : DISTANCE METRICS AND PLANNING ALGORITHMS

ξ̄, our produced path ξ is a polyline represented by a sequence of
waypoints. We are given a discriminative black box collision detector
that, given a point in configuration space, returns whether or not the
robot would be in collision.

As described in Sec. 3.3, we use the discrete Fréchet , (Fd) to com-
pare the distances between two paths in task space to see how well
one follows the other. Using the Fréchet distance we can restate our
goal as find a collision free path ξ such that min

ξ∈Ξ
Fd(ξ̄, ξ) where Ξ is the

set of all task space paths whose begin and end task space poses are
the same as ξ̄.

5.2 Generating a Set of Candidate Path

The first step in our approach is to sample for candidate paths.
Consider the set of all configuration space paths that exactly map to

our reference path ξ̄. The set of all configurations along the path is:

S = {q ∈ C |FK(q) ∈ ξ̄}. (5.1)

In other words, S is the set of all configurations that map to a point in
task space on our reference path.

Alternatively we can define S as the inverse kinematics of all points
along our reference path. Hence:

S =
⋃

α∈[0,1]

IK(ξ̄(α)). (5.2)

Thus S is a two-dimensional space parametrized by α, the location of a
point in task space along ξ̄ and k, the inverse kinematic solution of this
point.

We sample this space to create a graph L = (VL, EL) that will
allow us to search for a path in configuration space. To leverage the
two-dimensional structure we construct a layered graph L embedded
in configuration space where each layer is a set of IK solutions for a
waypoint.

Our graph is parameterized via two numbers: n, the number
of waypoints we sample, and k, the number of inverse kinematic
solutions at each point. These two numbers entirely capture our two-
dimensional search space. We consider the fixed graph Ln

k and discuss
densifying and expanding the graph in Sec. 5.5.

To construct our graph, we begin by sampling n waypoints in task
space along our reference trajectory: {r1...rn} ⊆ R. To construct our
graph, we begin by sampling n waypoints in task space along our
reference trajectory: {r1...rn} ⊆ R. At each waypoint rj, we generate
up to k inverse kinematic solutions: {q1

j ...qk
j }. Each configuration qi

j
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ri−1
ri

ri+1

Figure 5.2: We show a layered graph for
a portion of a reference path for Ln=3

k=3 .
We have a directed graph where we
want to find a path from the left to right.

is a vertex in our graph L. Namely, the vertex set of our graph VL is
defined as: VL = {qj

i |1 ≤ i ≤ n and 1 ≤ j ≤ k}.
We next want to define our edge set, EL. Each vertex in a layer of

IK solutions connects to every vertex in the subsequent layer and to
every vertex its own layer. Intuitively this allows us to pass through
every waypoint, with the freedom to select any IK solution for that
waypoint. More formally, our edge set is defined as:

EL ={(qi1
j , qi2

j+1)|1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n}
∪ {(qi1

j , qi2
j )|1 ≤ i1 ≤ n, 1 ≤ i2 ≤ n}

(5.3)

Each of these edge represents a subpath of our entire path. Each
subpath is a straight line segment in configuration space between the
two configurations. We delay collision checking of these paths and
will discuss that in further detail later.

A layered graph, Ln=3
k=3 , for a portion of a path is shown in Fig.5.2.

We can restate our original objective described in Sec. 5.1 in terms
of our layered graph. Our goal is to find the (shortest) path, ξL from
any vertex in the first layer, qi, to any vertex in our last layer, qn, such
that we minimize Fd(ξ̄, FK(ξL)).

One naïve option would be to enumerate all candidate paths, ξc

and compute Fd(ξ̄, ξc). However, there are Ω(nk) candidate paths. We
cannot evaluate Fréchet on individual edges, which would decrease
the computation, because the Fréchet metric is a metric on paths, not
on individual edges.

Instead we adapt a method that searches a cross product space
between our layered graph and reference path.
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Figure 5.3: We show two levels of
discretization. On the top we show the
reference path in black and a candidate
path in task space in orange. The
continuous Fréchet is given at the grey
line but because of our discretization the
discrete Fréchet is 0. On the bottom we
show a finer level of discretization that
allows us to more accurately estimate
the true Fréchet with the discrete
Fréchet which is shown as the dotted
grey line.

5.3 Illustrative Example

Consider a Ln
k=1. It is effectively a line graph of a candidate path. We

use our inverse kinematic function to project each configuration into
task space, ξc. We can see ξ̄ in black and ξc in orange in top row of
Fig.5.3. The continuous Fréchet would find the gray line as the point
of maximum violation, the longest leash. Our Fréchet value is some
value fc. However, according to our discrete Fréchet Fd(ξ̄, ξc) = 0.

This is quite alarming - is our Fréchet distance broken? Luckily, no.
Our problem stems from our choice of discretization. The waypoints
that represent ξc we chosen to have the same task space location as ξ̄,
shown as the black circles. Therefore our waypoints in task space are
exactly the same, resulting in a distance of zero.

In order to more accurately capture the flow of each path we need
to subsample each edge. Remembering from Sec. 5.2, each edge is a
straight line path in configuration space. We can sample configura-
tions along this path and use inverse kinematics to generate subsam-
pled points in configuration space. Therefore, in our layered graph we
replace each edge with a path composed of these subsampled points,
shown in the bottom of Fig.5.3.

Our continuous Fréchet finds the longest leash at the solid grey line
and the discrete Fréchet find the longest leash between two points,
shown by the dotted gray line. As we increase our discretization, our
discrete Fréchet better approximates the continuous Fréchet .

Therefore, by subsampling, we increase the discretization, allowing
the discrete Fréchet to more accurately capture the flow of the path.

5.4 Compute the Closest Path

Our goal is to find a path in task space, ξL embedded in our layered
graph L such that Fd(ξ̄, ξL). Both our graph and path are simplicial
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complexes, a mathematical set that is a generalization of points,
polygonal curves, straight line graphs, meshes, triangulations, etc.
Har-Peled and Raichel introduced an algorithm for computing the
Fréchet distance between two curves on complexes by considering
their cross product space (Har-Peled and Raichel, 2014). Therefore,
our instance is a restricted case of their problem and we present our
adaption below.

Cross Product Graph

We create a new graph Φ = (VΦ, EΦ) that is the cross product of our
two graphs Gξ̄ and L. Each vertex in VΦ is a tuple, (r, q) such that
r ∈ Vξ̄ and q = VL.

We next define the edge set, EΦ where edges exist between two
tuples if either or both elements are adjacent to each other in their
respective graph. More formally:

EΦ ={((rm1 , qj1
i1
), (rm2 , qj2

i2
))| if

((qj1
i1

, qj2
i2
) ∈ EL and rm1 = rm2) or

(qj1
i1
= qj2

i2
and (rm1 , rm2) ∈ Eξ̄) or

((qj1
i1

, qj2
i2
) ∈ EL and (rm1 , rm2) ∈ Eξ̄)}

(5.4)

We can interpret this graph structure by drawing comparisons
between it and the typical dynamic programming approach for cal-
culating the discrete Fréchet metric (Eiter and Mannila, 1994). Let us
consider the simplest case with Ln

k=1, where there is only one inverse
kinematic solution per waypoint and the graph represents one path.

Using the dynamic programming approach, we create a matrix
of the waypoints in the reference path versus the path embedded in
the graph. The dynamic programming solution finds the path from
one end of the matrix to the other that minimize the the Fréchet value.
This is equivalent to searching a graph of their cross product, which
has the same matrix structure. By creating this cross product graph we
can generalize the same approach to a graph with multiple paths.

Given our graph Φ, we assign a cost to each edge (referred to as
elevation in (Har-Peled and Raichel, 2014)). For a vertex (r, q) we
define it’s cost as C(r, q) = dTS(r, FK(q)). The cost of an edge is then
the maximum of the cost of it’s endpoints.

Bottleneck Search

With our cross product graph φ, we next want to find the path is the
lowest Fréchet value. Given our construction of our graph this is
equivalent finding the path whose maximum edge cost is minimal,
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or bottleneck shortest path. While there are efficient algorithms for this,
linear in the number of edges (Har-Peled and Raichel, 2014), we can
use a simple variant of Dijkstra’s graph search (Dijkstra, 1959).

We briefly describe both algorithms and compare their perfor-
mance. First we review the bottleneck search method from (Har-Peled
and Raichel, 2014).

Let s be the starting node and t be the end node. Assuming s and
t are connected, we proceed in a recursive manner. At each stage we
compute the median edge weight, Emed. If s and t are connected in
the graph G≤med, a graph with all edges above the median weight
removed, then we recurse on this smaller graph. In this case we know
the bottleneck path has cost equal to or below Emed Otherwise, our
cost is above Emed. We contract the connected components of G≥med

down to vertices and recurse on this graph. Once we have a constant
number of edges, we find the minimum bottleneck path via brute
force.

This search results in the minimal possible Fréchet value, fΦ, but
not the path that produces that value. Therefore, we perform a post-
processing step to reconstruct the path. We prune the the original
graph, prior to contractions and deletions, of any edge who has a
Fréchet value greater than fΦ. Since we know there exists a path of
Fréchet cost fΦ, any edge with a higher cost will not be useful to us.
From this pruned graph, we conduct a simple shortest path search
weighted by the Fréchet cost of the edge.

We compare this alongside a variant of Dijkstra. Normally Dijkstra
estimates the cost to vertex v coming vertex u as the distance to u
plus the cost of the edge (u, v). However, we are not interested in the
distance but the bottleneck. Therefore we swap the addition, the sum
of costs, for a max() such that the cost(v) = max(cost(v), cost(u, v)).
Therefore the bottleneck is the maximum of either the cost of the
current edge or the bottleneck cost of the path leading to this edge.
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Figure 5.4: We compare search time in
the algorithm presented in (Har-Peled
and Raichel, 2014) as compared to our
variant of Dijkstra. We see that the
Dijkstra variant both takes less time and
grows at a slower rate.

While Dijkstra’s algorithm, and our variant, is asymptotically
larger, O(|E|+ |V|log|V|), we have empirically found it to be faster.
We vary the number of inverse kinematic solutions and waypoints
and compare the two algorithms across the number of vertices in
Fig.5.4. Here the linear in edges algorithm is labeled Har-Peled after
an author of (Har-Peled and Raichel, 2014). We see that our Dijsktra
variant takes less time and grows at a slower rate.

Our other motivation for using the Dijkstra-variant is that it allows
for more efficient updates, which we discuss as an area of future work
in Sec. 5.5.
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Figure 5.5: We compare the time and
Fréchet value across differenet along our
two parameters: number of IK solutions
and number of waypoints.

Experimental Validation

In the following section we briefly summarize the results of this
algorithm. We look forward to conducting more testing as an area of
future work in conjunction with graph updates which we will discuss
in Sec. 5.5.

When planning for a particular reference path our algorithm has
three knobs that can turned. The first of which is the number of
waypoints, n. The second is the number inverse kinematic solutions, k.
Finally, we can also specify the degree of discretization has mentioned
in Sec. 5.3. For the following experiments we maintained a constant
level of discretization and varied n and k.

Since sampling inverse kinematic solutions is a randomized pro-
cess, our planner is also randomized. Therefore, for any particular
set of parameters, we average across many runs of the planner. Addi-
tionally, each reference path is of varying length, shape and therefore
difficulty. As such, we cannot average across different reference path
inputs. Therefore, we show the results for a few randomly selected
reference paths.

We vary both k, the number of IK solutions, and n, the number of
waypoints. We compare across two metrics. The first is the total plan-
ning time, measured in seconds. The second is the discrete Fréchet
distance between the reference path ξ̄ and the path outputted by the
planner ξ, measured in meters.

The results for two reference paths are shown in Fig.5.5, with the
two graphs on the left corresponding to one path and the two on the
right showing the results for the other reference path.

We first consider the timing information. Unsurprisingly, the
planning time increases as we have more inverse kinematic solutions
and more waypoints because in both dimensions we need to sample
more poses and search a larger graph. Another interesting note is
that our time profiles between two different graphs are remarkably
similar. This is because although we are solving different problems,
the specific of the problem do not effect our planning time because
each operation is the same length and we are operating on a fixed
graph. This also explains why our error bars are nearly nonexistent.

We next consider our Fréchet values of our produced graph. We see
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a similar two trends: the Fréchet decreases as we have more inverse
kinematic solutions and more waypoints. Adding more waypoints
further constraints and defines the reference path while more IK
solutions give more possible path segments to chose from.

5.5 Future Work: Densification

Our planner considers a fixed layered graph, Ln
k . Our next immediate

step of future work is how we can incrementally explore our space
and improve our solution by densifying our graph. Given a solution
on our initial graph, we would like to sample more points in such a
way that we, hopefully, improve our solution. This introduces two
sampling questions: how do we sample new points and where do we
sample these points. To answer the first question, we can augment our
layered graph, and therefore our cross product graph, by sampling
more inverse kinematic solutions in a layer, by adding a layer or
by subsampling existing edges. To answer the where question, the
obvious reply is to densify at the location of the highest bottleneck,
since this is where the leash of our Fréchet is longest. This serves
only as a heuristic thought, as the Fréchet is not a local property.
Therefore, to balance this out and insure we explore the search space,
we can both densify at the area of highest bottleneck and randomly
throughout the graph.

Following each densification, we would research our graph for
the new solution. However, we do not want to restart our search
from scratch. Instead, we would hope to reuse as much information
from our previous search as possible. By using Dijkstra as our search
method we can leverage method like LPA* to perform efficient incre-
mental search (Koenig et al., 2004).

Therefore, following our initial search we can incrementally densify
to create an anytime algorithm. We look forward to implementing and
experimentally verifying this densification process.



6
Conclusion

We conclude this thesis by summarizing our contributions, discussing
future work and offering a few concluding remarks. The goal of this
thesis was to enable a robot to follow a reference path in task space.
Doing so involves answering two question: how to do measure the
distance between two paths and, using this, how to we create paths
that minimize their distance to our reference path.

To answer the first question we leverage tools from computational
geometry to quantify the distance between two paths in Sec. 3. Specif-
ically, we show that the Fréchet distance is an straightforward and
natural metric for comparing distances. Equipped with this metric we
then present two planning strategies.

In our first planning strategy we pose this as a trajectory optimiza-
tion problem where our cost is equally our distance metric (Sec. 4). To
assist our optimizer, we presented two methods for constraining the
trajectory. However, by constraining our trajectory, we limited our
inverse kinematic search space, which posed a significant limitation.

Therefore, to overcome this limitation we developed a graph search
algorithm, given in Sec. 5, that sampled and searched over a set of
inverse kinematic solutions. By transforming our problem into a series
of graph structures, we could find the path with the minimal Fréchet
compared to our reference path via a simple variant of Dijkstra’s
search algorithm.

Throughout the thesis we provide illustrative examples and sim-
ulation experiments that verify and demonstrate the efficacy of our
approach.

6.1 Future Work

Taking a step back, we can still generalize further in recreating a
shapes in task space. Imagine that someone is trying to show the robot
how to draw the letter ’A’. This person may have a distribution of ’A’
that they consider an acceptable representation. Therefore, in learning
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this skill, we want to optimize not be close to a single demonstration,
but close to the distribution of demonstrations. We believe we could
use an alternative metric, the Mahalanobis distance metric (Maha-
lanobis, 1936), often used in handwriting matching, that would allow
us to measure distances with respect to a distribution (Kato et al.,
1999).

Both of our methods concentrate on following a particular path,
or as discussed above, a set of paths. However, there may be other
task space constraints that we would want to incoporate. For example,
when carrying a glass full of water, we typically keep the glass upright
to not spill the contents. This constraint specifies that we maintain an
object’s orientation, but does not encode any particular path. One way
to encode this constraint with our optimization method is specify a
cost function that defines the distance between the current orientation
and the desired one. For a series of possible task space constraints, it
would be interesting to explore how generalizable the techniques in
this thesis generalize.

6.2 Concluding Remarks

This thesis takes a step towards developing metrics and planners
that handle task space constraints. Notably, we leverage tools from
computational geometry to develop efficient motion planners and
are looking forward to finding more connections between these two
fields.

As discussed in Sec. 6.1, we hope to take this as a stepping stone
to develop robust, efficient planners that accommodate a variety of
constraints. In conjunction, we need to insure that the way we spec-
ify these constraints is intuitive and user-friendly, creating seamless
interactions between the robot and its human collaborators. By cre-
ating robots that can plan with constraints, we open new robotic
possibilities.
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