Analysis of algorithms
Time and space

• To **analyze** an algorithm means:
 – developing a formula for predicting *how fast* an algorithm is, based on the *size of the input* (**time complexity**), and/or
 – developing a formula for predicting *how much memory* an algorithm requires, based on the *size of the input* (**space complexity**)

• Usually **time** is our biggest concern
 – Space is cheap and easy to get
What does “size of the input” mean

• If we are searching an array, the “size” of the input could be the size of the array
• If we are merging two arrays, the “size” could be the sum of the two array sizes
• If we are computing the nth Fibonacci number, or the nth factorial, the “size” is n
• We choose the “size” to be a parameter that determines the actual time (or space) required
 – It is *usually* obvious what this parameter is
 – Sometimes we need two or more parameters
Characteristic operations

- In computing time complexity, one good approach is to count characteristic operations (many terms exist for this notion)
 - What a “characteristic operation” is depends on the particular problem
 - If searching, it might be comparing two values
 - If sorting an array, it might be:
 - comparing two values
 - swapping the contents of two array locations
 - both of the above
 - Sometimes we just look at how many times the innermost loop is executed
Exact values

- It is sometimes possible, in assembly language, to compute exact time and space requirements
 - We know exactly how many bytes and how many cycles each machine instruction takes
 - For a problem with a known sequence of steps (factorial, Fibonacci), we can determine how many instructions of each type are required
- However, often the exact sequence of steps cannot be known in advance
 - The steps required to sort an array depend on the actual numbers in the array (which we do not know in advance)
Higher-level languages

• In a higher-level language (such as Java), we do not know how long each operation takes
 – Which is faster, \(x < 10 \) or \(x \leq 9 \)?
 – We don’t know exactly what the compiler does with this
 – The compiler almost certainly optimizes the test anyway (replacing the slower version with the faster one)

• In a higher-level language we cannot do an exact analysis
 – Our timing analyses will use major oversimplifications
 – Nevertheless, we can get some very useful results
Average, best and worst cases

• In some scenarios, we would like to find the average time to perform an algorithm
• However,
 – Sometimes the “average” isn’t well defined
 – Example: Sorting an “average” array
 – Time typically depends on how out of order the array is
 – How out of order is the “average” unsorted array?
 – Sometimes finding the average is too difficult
• Often we would like to find the worst (longest) time required
 – For example, in time-critical operations
• The best (fastest) case is seldom of interest
Constant time

- *Constant time* means there is some constant k such that this operation always takes k (nano) seconds
- A (Java) statement takes constant time if:
 - It does not include a loop
 - It does not include calling a method whose time is unknown or is not a constant
- If a statement involves a choice among operations, each of which takes constant time, we consider the statement to take constant time
 - This is consistent with *worst-case analysis*
Linear time

• We may not be able to predict to the nanosecond how long a Java program will take, but do know somethings about timing:

  ```java
  for (i = 0, j = 1; i < n; i++) {
    j = j * i;
  }
  ```

 – This loop takes time $k*n + c$, for some constants k and c
 – k: How long it takes to go through the loop once (the time for $j = j * i$, plus loop overhead)
 – n: The number of times through the loop (we can use this as the “size” of the problem)
 – c: The time it takes to initialize the loop
 – The total time $k*n + c$ is linear in n
Constant time is (usually) better than linear time

• Suppose we have two algorithms to solve a task:
 – Algorithm A takes 5000 time units
 – Algorithm B takes 100*n time units

• Which is better?
 – Clearly, algorithm B is better if our problem size is small, that is, if \(n < 50 \)
 – Algorithm A is better for larger problems, with \(n > 50 \)
 – So B is better on small problems that are quick anyway
 – But A is better for large problems, where it matters more

• We usually care most about very large problems
The array subset problem

- Suppose you have two sets, represented as unsorted arrays:
  ```java
  int[] sub = { 7, 1, 3, 2, 5 };
  int[] super = { 8, 4, 7, 1, 2, 3, 9 };
  ```
- and you want to test whether every element of the first set (sub) also occurs in the second set (super):
  ```java
  System.out.println(subset(sub, super));
  ```
- (The answer in this case should be false, because sub contains the integer 5, and super doesn’t)
- We are going to write a method `subset` and compute its time complexity (how fast it is)
- Let’s start with a helper function, `member`, to test whether one number is in an array

member

• static boolean member(int x, int[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 if (x == a[i]) return true;
 }
 return false;
}

• If x is not in a, the loop executes n times, where n = a.length
• This is the worst case
• If x is in a, the loop executes <= n times depending on the location of x
• Either way, linear time is required: k*n+c
subset

• static boolean subset(int[] sub, int[] super) {
 int m = sub.length;
 for (int i = 0; i < m; i++)
 if (!member(sub[i], super) return false;
 return true;
}

• The loop (and the call to member) will execute:
 – m = sub.length times, if sub is a subset of super
 – This is the worst case, and therefore the one we are most interested in
 – Fewer than sub.length times (but we don’t know how many), if sub is not a subset of super

• The worst case is a linear number of times through the loop

• But the loop body doesn’t take constant time, since it calls member, which takes linear time
Analysis of array subset algorithm

• We’ve seen that the loop in subset executes \(m = \text{sub.length} \) times (in the worst case)
• Also, the loop in subset calls \textit{member}, which executes in time linear in \(n = \text{super.length} \)
• Hence, the execution time of the array subset method is \(m*n \), along with assorted constants
 – We go through the loop in \textit{subset} \(m \) times, calling \textit{member} each time
 – We go through the loop in \textit{member} \(n \) times
 – If \(m \) and \(n \) are similar, this is roughly quadratic, i.e., \(n^2 \)
What about the constants?

• An added constant, $f(n) + c$, becomes less and less important as n gets larger.

• A constant multiplier, $k \times f(n)$, does not get less important, but...

 – Improving k gives a linear speedup (cutting k in half cuts the time required in half).

 – Improving k is usually accomplished by careful code optimization, not by better algorithms.

 – We aren’t that concerned with only linear speedups!

• Bottom line: **Forget the constants!**
Simplifying the formulae

• Throwing out the constants is one of *two* things we do in analysis of algorithms
 – By throwing out constants, we simplify $12n^2 + 35$ to just n^2

• Our timing formula is a polynomial, and may have terms of various orders (constant, linear, quadratic, cubic, etc.)
 – We usually discard all but the *highest-order* term
 – We simplify $n^2 + 3n + 5$ to just n^2
 – This is because as n gets large, the quadratic term dominates the linear term and effectively determines the value of the whole polynomial
Big O notation

• When we have a polynomial that describes the time requirements of an algorithm, we simplify it by:
 – Throwing out all but the highest-order term
 – Throwing out all the constants

• If an algorithm takes $12n^3 + 4n^2 + 8n + 35$ time, we simplify this formula to just n^3

• We say the algorithm requires $O(n^3)$ time

• We call this Big O notation
Big O for subset algorithm

• Recall that, if n is the size of the set, and m is the size of the (possible) subset:
 – We go through the loop in subset m times, calling `member` each time
 – We go through the loop in `member` n times
• Hence, the actual running time should be $k*(m*n) + c$, for some constants k and c
• We say that subset takes $O(m*n)$ time
Can we justify Big O notation

- Big O notation is a *huge* simplification; can we justify it?
 - It only makes sense for *large* problem sizes
 - For sufficiently large problem sizes, the highest-order term swamps all the rest!

- Consider \(R = x^2 + 3x + 5 \) as \(x \) varies:
 - \(x = 0 \quad x^2 = 0 \quad 3x = 0 \quad 5 = 5 \quad R = 5 \)
 - \(x = 10 \quad x^2 = 100 \quad 3x = 30 \quad 5 = 5 \quad R = 135 \)
 - \(x = 100 \quad x^2 = 10000 \quad 3x = 300 \quad 5 = 5 \quad R = 10,305 \)
 - \(x = 1000 \quad x^2 = 1000000 \quad 3x = 3000 \quad 5 = 5 \quad R = 1,003,005 \)
 - \(x = 10,000 \quad x^2 = 10^8 \quad 3x = 3*10^4 \quad 5 = 5 \quad R = 100,030,005 \)
 - \(x = 100,000 \quad x^2 = 10^{10} \quad 3x = 3*10^5 \quad 5 = 5 \quad R = 10,000,300,005 \)
Common time complexities

- $O(1)$ constant time
- $O(\log n)$ log time
- $O(n)$ linear time
- $O(n \log n)$ log linear time
- $O(n^2)$ quadratic time
- $O(n^3)$ cubic time
- $O(n^k)$ polynomial time
- $O(2^n)$ exponential time

BETTER \uparrow

WORSE