
Achieving 2/3 Throughput Approximation with Sequential Maximal
Scheduling under Primary Interference Constraints

Saswati Sarkar and Koushik Kar

Abstract— In this paper, we present a scheduling policy, se-
quential maximal tree scheduling that attains 2

3
of the maximum

throughput region in tree-graphs under primary interference
constraints. The computation time of the policy varies as the
square of the logarithm of the network size. Our results are a
significant improvement over previous results which can attain
only 1

2
of the maximum throughput region, even for graphs

that have a simple path topology, in similar computation time.

I. INTRODUCTION

Scheduling for maximum throughput is a key operational
goal in any wireless network. Scheduling of links must be
done such that no two “interfering” links are scheduled at
the same time. Under random packet arrivals, the scheduling
problem can be posed in a stochastic decision framework
where the goal is to attain stability of queues over the
largest possible set of arrival vectors. Using this framework,
Tassiulas et al. have characterized the maximum attainable
throughput region and also provided a scheduling strategy
that attains this throughput region in any given wireless net-
work [10]. The computation time for this policy is however
exponential in the size of the network. Later, Tassiulas [9]
and Shah et al. [8] provided randomized scheduling schemes
that attain the maximum achievable throughput region, which
can be implemented in fully distributed manner using gossip
based algorithms [2]. The computation times of the above
policies are linear in the size of the network.

Recent research has focused on attaining provable through-
put guarantees using fully distributed scheduling policies
whose computation times are logarithmic in the size of the
network. A class of simple distributed scheduling policies,
referred to as maximal scheduling policies satisfy the above
criteria. Maximal scheduling only ensures that if a transmitter
u has a packet to transmit to a receiver v, either (u, v) or a
transmitter-receiver pair that can not simultaneously transmit
with (u, v) is scheduled for transmission; the scheduling is
otherwise arbitrary. We have earlier shown that for arbitrary
interference models the fraction of the throughput region
guaranteed by maximal scheduling is the reciprocal of the
maximum “interference degree” of links in the network,
where interference degree of any link refers to the maximum
number of links that interfere (i.e., cannot be scheduled

This work was supported by the National Science Foundation under grants
NCR-0238340, CNS-0435306, CNS-0448316 and CNS-0435141.

S. Sarkar is with the Department of Electrical Engineering,
University of Pennsylvania, Philadelphia, PA 19104, USA. Email:
swati@seas.upenn.edu.

K. Kar is with the Department of Electrical, Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
Email: kark@rpi.edu.

simultaneously) with the given link, but do not interfere with
each other [1]. Furthermore, the above throughput guarantee
is also tight, that is, there exists maximal scheduling policies
whose throughput region is at most the reciprocal of the
maximum interference degree in the network [1].

In this paper, we focus on a specific interference model,
the node-exclusive spectrum sharing model, where the only
scheduling restrictions are due to primary interference con-
straints, i.e., a node cannot communicate with multiple nodes
simultaneously. Thus, a set of links can be simultaneously
scheduled if and only if they constitute a matching. This
specific interference model holds only when every node has
a unique frequency in its two-hop neighborhood. Lin et al.
[4] and Wu et al. [11] have shown that maximal scheduling is
guaranteed to attain at least half of the maximum throughput
region under the node-exclusive spectrum sharing model. We
have shown that the above performance guarantee is tight,
i.e., in the worst case some maximal scheduling policies
attain at most half the maximum throughput region even
in simple networks like paths with only three links [1]. An
arbitrary maximal scheduling policy cannot therefore attain a
worst-case performance ratio better than 1

2 even in the special
case of tree-graphs. Salonidis et al. [7] provides a policy that
attains the maximum throughput region in the special case
of tree graphs; the policy however needs the arrival rates in
all links and therefore must be recomputed every time these
rates change.

In this paper, we present a queue length based maximal
scheduling policy that attains 2/3 of the maximum through-
put region for tree graphs under node-exclusive spectrum
sharing model. The policy does not use any knowledge of
the arrival rates and requires a computation time which is
logarithmic in the size of the network. The policy therefore
attains a substantially higher performance guarantee in tree
graphs as compared to arbitrary maximal scheduling policies
while retaining their computational simplicity. Although the
applicability of our results to general graphs remain open, it
is worth noting that the class of graphs that we consider - tree
graphs - are very important from a practical perspective. For
instance, in many applications, nodes organize themselves
into a spanning tree and communication is confined to the
tree edges only. These include various data gathering or data
distribution applications where nodes either send data to, or
collect data from, a single source node.

The paper is organized as follows. We describe the system
model and the terminology in Section II. Our algorithm in
presented in Section III, and its throughput guarantees are
analyzed in Section IV.

II. SYSTEM MODEL

We consider the scheduling problem at the medium ac-
cess control (MAC) layer of the network. We assume that
time is slotted, and each packet takes exactly one slot for
transmission. Therefore, a link transmission schedule must
be computed at the beginning of every slot, and is used to
transmit packets in that slot.

A wireless network topology can be modeled as a directed
graph G = (N ,L), where N and L respectively denote the
sets of nodes and (directed) links. Let n = |L|. A link exists
from a node u to another node v if and only if v can receive
u’s signals. The link set L depends on the transmission power
levels of nodes and the propagation conditions in different
directions. We assume that G is a degree-bounded tree with
maximum degree-bound ∆. Without loss of generality, we
will assume that G is connected; otherwise, our algorithm
can be executed independently in each of the maximally
connected subgraphs of G.

Each link is associated with a unique identifier (id). Two
links are adjacent if and only if they have a node in common.
By this definition, a link is always adjacent to itself. Let
Nl be the set of links adjacent to l. Since we consider
the node-exclusive spectrum sharing (primary interference)
model, two adjacent links “interfere” with each other and
cannot be scheduled simultaneously, i.e., any two links (u, v)
and (u′, v′) cannot be scheduled together if u ∈ {u′, v′}
or v ∈ {u′, v′}. Thus a valid schedule in any slot must
correspond to a matching or a set of links none of which
are adjacent to each other. Note that the primary interference
model arises when the only transmission constraint is due to
the single transceiver constraint at every node.

Next we state our assumptions on the packet arrival
process. Let Al(t1, t2) denote the number of packets arriving
at link l in interval (t1, t2]. We assume that Al(t, t + 1) ≤
σl ∀ t, l ∈ L, where σl is an integer for each l ∈ L, and
maxl∈L σl ≥ 1. Further, there exists a constant α > 1 and an
arrival rate vector ~ρ = (ρ1, . . . , ρ|L|) such that the empirical
average of the arrivals in the system in T slots converges
to ~ρ at a rate faster than 1

T α . Mathematically, there exists
χδ > 0 such that for every l ∈ L, 0 ≤ t3 < t4 and δ > 0,

P
{∣∣∣∣Al(t3, t4)

t4 − t3
− ρl

∣∣∣∣ ≥ δ

}
<

χδ

(t4 − t3)α
. (1)

Clearly, χδ is a non-increasing function of δ. Note that a large
class of arrival processes, e.g., periodic, i.i.d., and Markovian
arrival processes with finite state space, satisfy the above
assumption. We refer to ρi as the arrival rate for link i.

Next we introduce a few definitions.
Definition 1: The network is said to be stable if the

expected queue-length at each link remains finite at all time.
Definition 2: The throughput region of a scheduling pol-

icy is the set of arrival rate vectors ~ρ satisfying (1) for which
the network is stable under the policy.

Definition 3: An arrival rate vector ~ρ is said to be feasible
if it is in the throughput region of some scheduling policy.

Definition 4: The maximum throughput region Λ∗ is the
set of all feasible arrival rate vectors.

SEQUENTIAL MAXIMAL PATH SCHEDULING

ITERATIVE STEP:: For k = 1 to k = 3, execute Phase k, as
given below:
Phase k : A link in the path contends if and only if (a) it is un-
decided, (b) its adjacent links are un-scheduled or un-decided,
(c) its queue length is not less than that of its adjacent links
that satisfy conditions (a) and (b). A contending link sets its
status to “scheduled” if its adjacent links do not contend or
have higher id than it; links that are adjacent to scheduled links
set their status to “un-scheduled”.

TERMINAL STEP: Compute a maximal schedule among the
links that are un-decided and whose adjacent links are un-
scheduled or un-decided. Set the status of the links selected
in the maximal schedule to “scheduled”; links that are adjacent
to scheduled links set their status to “un-scheduled”.

Fig. 1. Sequential Maximal Path Scheduling Algorithm

Definition 5: A scheduling policy π is said to guarantee a
fraction ν of the maximum throughput region if its throughput
region, Λπ , satisfies the following condition: for any ~ρ ∈ Λ∗,
ν~ρ ∈ Λπ .
Loosely speaking, if scheduling policy S guarantees a frac-
tion ν of the maximum throughput region, then its throughput
region is at least ν fraction of the maximum throughput
region.

Finally, we describe the maximal scheduling policy, which
will be a key constituent in our scheduling policy presented
later in the paper. A maximal scheduling policy schedules a
subset S of links such that (i) every link in S has a packet
to transmit, (ii) no link in S interferes with any other link in
S, (iii) if a link l has a packet to transmit, then either l or a
link adjacent to l, is included in S.

III. SCHEDULING POLICY

In this section, we describe our scheduling policy, and
derive bounds on the fraction of the maximum throughput
region attained by it. For ease of exposition, we will first
present the algorithm for paths, and then show how it can
be extended to trees.

A. Sequential Maximal Scheduling in Paths

We consider a graph G that is a simple path, i.e., L
corresponds to a sequence of links such that the consecutive
links in the sequence are adjacent. Our algorithm, which
we call sequential maximal scheduling, consists of several
phases as described in Figure 1. In our algorithm, all links
that do not have any packets to transmit set their status to
un-scheduled. All other links, i.e., links that have packets to
transmit, initially set their status set to un-decided.

Next we illustrate the Sequential Maximal Path Scheduling
algorithm using the example shown in Figure 2. The path
graph shown in the figure consists of 10 links whose queue-
lengths are shown. Using our scheduling algorithm, only link
9 will be scheduled in Phase 1, link 7 will be scheduled in
phase 2 and link 5 will be scheduled in phase 3. The terminal
step will compute a maximal schedule amongst the links 1,
2, 3, which can be either links {1, 3} or only link 2.

Fig. 2. Path Scheduling Example

The Sequential Maximal Path Scheduling algorithm attains
a guaranteed fraction 2

3 of the maximum throughput region.
This result follows as a special case of a more general result
proved later in the paper for tree graphs. The iterative step
in Sequential Maximal Path Scheduling can be computed
in constant time. In a degree-bounded graph, the expected
computation time for the terminal step is O(log n) if maxi-
mal scheduling is computed using a distributed randomized
algorithm like the one proposed in [5]. Thus, the expected
computation time for Sequential Maximal Path Scheduling
is O(log n).

We now describe the intuition behind the design of the
Sequential Maximal Path Scheduling Policy and its perfor-
mance guarantee. First, observe that if in any slot any seg-
ment of a path consists of 6 links all of which have packets
to transmit, then any maximal scheduling policy schedules
at least 2 links in the segment in the slot irrespective of
the scheduling in the rest of the path. Furthermore, any
scheduling policy can schedule at most 3 links in the segment
in any slot. This suggests that any maximal scheduling policy
should attain a throughput guarantee of at least 2/3. It has
however been shown that in any graph there exists one
maximal scheduling policy whose throughput guarantee is
exactly the reciprocal of the interference degree in the graph
[1]. The interference degree in a path is 2 [1]. Thus, in
a path there exists one maximal scheduling policy which
attains a throughput guarantee of 1/2. A close examination
of the counter example establishing the above throughput
guarantee [1] will resolve the apparent contradiction in the
above observations, and also motivates the design of the
Sequential Maximal Path Scheduling policy.

Consider a path with 3 links, l1, l2, l3. Let l2 be adjacent
to both l1 and l3. Consider a maximal scheduling policy that
serves l2 only when neither l1 nor l3 has a packet to transmit.
Consider an arrival rate vector of (1/2, ρ, 1/2) and an arrival
pattern in which l1 (l3) generates packets in the odd (even)
slots. Note that l1 (l3) is scheduled in every odd (even) slot
and l3 is never scheduled. Thus, the system is unstable for
any positive ρ. If we scale up the arrival rates by a factor
2− 4ρ, which is nearly 2 for small ρ, then the resulting rate
vector (1− 2ρ, 2ρ− 4ρ2, 1− 2ρ) which can be stabilized by
the optimum policy since the sum of the rates of l1 (l3) and
l2 is less than unity. This example can be modified slightly to
show the the above maximal scheduling policy cannot attain
a throughput guarantee better than 1/2 in this path [1].

The first observation in the paragraph before the example
does not apply in the example as all links never simultane-
ously have packets to transmit − in most slots either l1 or l3

does not have packets to transmit while the queue length in
l2 continually increases. This suggests that we need to devise
a scheduling policy which ensures that (a) the scheduling is
maximal and (b) if a link has a large queue length, then
there exists a segment of at least 6 links including the link
that have large queue lengths as well. Hence, the links in this
segment have packets to transmit for a large number of slots.
Thus, owing to the scheduling of a maximal set of links, at
least 2 links are scheduled in this segment in each slot for a
large interval. Thus, the policy provides a service rate of at
least 2/3 of that provided by any policy to the links in this
segment, and since the arrival rates of links are at most 2/3
of a feasible arrival rate vector, a 2/3 throughput guarantee
is attained.

The iterative step of Sequential Maximal Path Scheduling
Policy provides higher priority to links whose queue lengths
are higher than that of their adjacent links. This accomplishes
the above goal (that is if a link has a large queue length,
then there exists a segment of at least 6 links including the
link that have large queue lengths as well). The terminal step
ensures that the scheduling is maximal. Note that each phase
in the iterative step provides a higher priority to links with
high queue lengths - it may therefore seem that one phase
is sufficient to accomplish he desired goal. Multiple phases
are however necessary for attainng the desired performance
guarantee, and the necessity will become evident in course
of the proof.

B. Sequential Maximal Scheduling in Trees
We now describe how a throughput guarantee of 2/3 can

be attained through distributed scheduling in trees. We will
first show that every tree can be decomposed into a collection
of link disjoint paths that constitute a tree of paths of depth at
most O(log n). We refer to this new tree as a path tree. Now,
if every path conducts Sequential Maximal Path Scheduling
after waiting for a time interval in which its parent path in
the path tree finishes its scheduling (with high probability),
then the overall scheduling attains a throughput guarantee of
2/3 and also terminates in O(log2 n) time. The Sequential
Maximal Scheduling that can be used in paths in a tree
(Sequential Maximal Tree Scheduling) however needs to be
slightly different from that when the entire graph is a path.
This is because irrespective of its queue length, the first link
in a path H can not be scheduled in a slot in which the last
link of its parent path is scheduled - such slots are referred
to as constrained slots for H. The performance guarantee
however does not change because the constrained slots for
each path occur only at a rate which is upper-bounded by
one minus the packet arrival rate in the first link of H.

1) Preliminaries: We now assume that G is a tree with
maximum degree ∆ ≥ 1. Since G is a tree, any path in G
must be a simple path (i.e., a path with no cycles). Hence,
the terminology path in this section will refer to a simple
path.

Next we introduce some terminology and definitions that
will be used in presenting our algorithm and its analysis.
Let Hi, i = 1, . . . , k, denote subsets of L. If Hi =
{l1,i, . . . , lm,i} is a path, then l1,i and lm,i are its terminal
links. If there exist a link l1 ∈ Hi and a link l2 ∈ Hj such
that l1 and l2 are adjacent, then Hi and Hj are adjacent and
l1 (l2) is adjacent to Hj (Hi); if l1 is a terminal link in Hi,
then Hi is terminal-adjacent of Hj .

The following property, which we refer to as the
tree-property, holds since G is a tree. Let elements in
{H1, . . . ,Hk} be pair-wise disjoint and pair-wise adjacent,
and B = {l : l ∈ Hi for some i, and Nl ∩ Hj 6=
φ for some i 6= j}. Then all links in B intersect at one node
in G. Also, at most two links in any Hi can be adjacent to
Hj where j 6= i.

Let {Hk} constitute a partition of L such that each set
Hu in the partition is a path in G, and corresponds to a node
u in a tree T (with a designated root node) that satisfies the
following properties. Consider two nodes u and v in T and
the corresponding sets Hu and Hv in the partition.

P.1 If u is a parent (child) of v, (a) Hv (Hu) is terminal-
adjacent of Hu (Hv) and (b) only one link in Hv (Hu)
is adjacent to Hu (Hv).

P.2 If u and v are siblings, then either both Hu and Hv

are terminal-adjacent of each other, or they are not
adjacent.

P.3 If u is not a parent, child, sibling of v, then Hu and
Hv are not adjacent.

Our algorithm requires a decomposition of the link set
L into a tree T of paths that satisfy properties P.1-P.3 and
has a depth of O(log n). We show next that this can always
be done, and present an algorithm that achieves that in
polynomial time.

2) Path Tree Construction: From the tree graph G, we
construct a path graph, GP = (VP , EP), where each vertex
in GP represents a path in G. The path graph GP is initialized
as follows. Each path is set to correspond to a link in G, i.e.,
each vertex in the path graph GP is represents a single-link
path in G. We designate any node in G as the root, and
traverse G using breadth first traversal. If two links l and
l′ belonging to G are such that either l is a parent of l′ in
the breadth first traversal of G, or vice versa, then we draw
an edge between the corresponding vertices in GP . We then
add a dummy node r to GP , designate it as the root vertex
of GP , and add edges between r and the vertices in GP

that correspond to the links attached to the root node of G.
Therefore, |VP | = |L|+1 = |N |. It is easy to see that graph
GP is a tree, and is in fact isomorphic to the original tree
graph G. Thus, since the depth (maximum distance of a leaf
node from the root) in G can be O(n), the depth in GP can
be O(n) as well, where n = |N |.

PATH TREE COMPRESSION ALGORITHM

I. INITIALIZATION:
1) For all leaf vertices u in GP , set subtree balanced(v) =

TRUE; otherwise, set subtree balanced(u) = FALSE.
II. ITERATIVE PATH TREE COMPRESSION:

While subtree balanced(r) = FALSE, do the following:
For each node u in GP such that subtree balanced(u)
= FALSE, run SUBTREE BALANCE(u).

Fig. 3. Path Tree Compression Algorithm

SUBTREE BALANCE(u)
IF (subtree balanced(v) = TRUE for all children vertices v of
u in GP), THEN do the following:

1) Compute du, the depth of the subtree rooted at u.
2) Compute Vu, the set of children such that the subtree

rooted at each of them has depth du − 1.
3) If (|Vu| = 1), then do the following:

Let v be the node such that dv = du − 1. Then merge
vertex v with vertex u (or in other words, shrink the
edge connecting u ands v in graph GP). Thus the vertex
now represented by u corresponds to the union of the
paths earlier represented by nodes u and v, i.e., the path
represented by v, concatenated with the single-link path
earlier represented by u;
Else Do nothing.

4) Set subtree balanced(u) = TRUE;
ELSE Do nothing.

Fig. 4. The Subtree Balance sub-routime used in the Path Tree Compres-
sion Algorithm.

We will next run a compression algorithm on this path
tree GP that will reduce the depth of GP to O(log n). The
algorithm works by merging paths appropriately (so as to
create longer paths), starting at the bottom of the path tree
GP . The algorithm is described in Figure 3.

Note that although the complexity of the path tree com-
pression algorithm is O(n2) (where n = |N |), it can be eas-
ily reduced to O(n) be executing the SUBTREE BALANCE
procedures in a proper sequence, starting from the leaf nodes
and moving up to the root.

Next we illustrate the Path Tree Compression Algorithm
using an example, as shown in Figure 5.

Before we proceed further, we introduce a few definitions.
A tree is a binary balanced tree rooted at r′ if the shortest
distance of any leaf vertex on the tree from r′ is the same,
and is equal to the depth of the tree. Note that a binary
balanced tree must satisfy d′ = log2(n′+1)−1, where d′ is
the depth of the tree, and n′ is the number of vertices in the
tree. A tree T is said to be a subtree balanced tree rooted at
r′ if it the following conditions hold: (i) Tree T contains a
binary balanced tree T ′ rooted at r′ as a subtree, (ii) If dT
and dT ′ denote the depths of trees T and T ′ respectively,
then dT = dT ′ .

Now we prove the following result.
Lemma 1: The PATH TREE COMPRESSION ALGORITHM

terminates and the resulting graph GP is a subtree balanced
tree rooted at r.

(a) (b) (c) (d)

Fig. 5. Panel (a) shows the tree graph G. Panel (b) show the initial path graph (tree) GP . Each node in the graph corresponds to a single-link path, as
indicated across each node. The root r is a dummy node which is additionally inserted. Note that this graph is isomorphic to G. Panel (c) shows the path
graph (tree) GP after the paths corresponding to links {3,6,8} and {2,5,7} gets compressed, and is each represented by a single node in GP . Panel (d)
shows the path graph (tree) GP after the paths corresponding to links {3,6,8} and {2,5,7} gets compressed, and each is represented by a single node in
GP .

Proof: We first argue that the GP always remains a
tree during the execution of the PATH TREE COMPRESSION
ALGORITHM. Recall that GP is initially a tree. It is also easy
to see that each vertex merging step in the Subtree Balance
procedure will preserve the tree structure, since it is equiv-
alent to shrinking an edge in the tree. Therefore, when the
algorithm terminates, GP is a tree.

Next we show that when subtree balanced(u) is set to
TRUE, the subtree rooted at u in GP is a subtree balanced
tree, based on the definition stated above. We prove this by
induction. Let us assume that the statement holds for each
child vertex v of u. Now note that when subtree balanced(u)
is set to TRUE, subtree balanced(v) must be TRUE for each
child vertex v. Therefore, by our induction assumption, the
subtree rooted at any child vertex v must be a subtree
balanced tree at that stage. Now consider two possibilities:
(i) |Nu| = 1, and (ii) |Nu| ≥ 2.

In case (i), vertex v is merged with u. Therefore, after
this merging, there exists a binary balanced tree rooted at u
(the same binary balanced tree that was earlier rooted at v),
of depth dv . Since |Nu| = 1, all other subtrees rooted at u
of depth must have depth no more than dv − 1 + 1 = dv .
Therefore, the binary balanced tree rooted at u also has the
maximum depth amongst all subtrees rooted at u. Therefore,
the subtree rooted at u is subtree balanced tree.

In case (ii), there are at least two children vertices v and
v′ of u that have a binary balanced subtree rooted at those
vertices with a depth of du − 1; let these binary balanced
subtrees be T and T ′, respectively. Now note that u, along
with T and T ′, constitute a binary balanced tree of depth
du. Since no merging is done in this case, the subtree rooted
at u is indeed a subtree balanced tree.

To argue the base case, note that the leaf vertices are
subtree balanced trees (leaf vertices, which have no children,
are binary balanced trees, trivially). This completes the
induction argument, and proves that on termination of the
PATH TREE COMPRESSION ALGORITHM, GP is a subtree
balanced tree rooted at r.

We complete the proof by arguing that the PATH TREE
COMPRESSION ALGORITHM terminates. For any vertex u,

let δ(u) denote the shortest distance of the vertex from root
r in the initial tree GP ; let D0 be the depth of the initial
tree GP . Then, it is straightforward to see that at the end of
the kth iteration of the while loop, all vertices u for which
δ(u) = D0−k, must have subtree balanced(u) set to TRUE.
Therefore, the algorithm must terminate after at most D0 ≤
|N | iterations of the while loop. This completes the proof.

Corollary 1: When the PATH TREE COMPRESSION AL-
GORITHM terminates, GP is a tree with depth O(log n), and
satisfies properties P.1-P.3.

Proof: From Lemma 1, when the PATH TREE COM-
PRESSION ALGORITHM terminates, GP is a tree and contains
a binary balanced tree rooted at r, whose depth is the same
as that of GP . Let this binary balanced tree be T ′, and the
number of vertices in T ′ be denoted by n′. Note that n′ can
be no greater than the number of vertices in GP , which is
upper bounded by the number of nodes in G. Thus, if d′

denotes the depth of GP , then d′ = log2(n′ + 1) − 1 ≤
log2(|N |+1)−1, which is O(log n). From the construction
of GP , it is easy to verify that it satisfies P.1-P.3 initially,
as well as after every step of the iterative PATH TREE
COMPRESSION ALGORITHM. The result follows.

3) Scheduling Algorithm: Each path represented by the
vertices in the path tree graph GP , the output of the PATH
TREE COMPRESSION ALGORITHM executes the Sequential
Maximal Path Scheduling algorithm after waiting for a
time interval that depends on the position of the vertex
corresponding to the path in GP . We provide full details
of the algorithm below.

Let paths {Hk} be the output of the PATH TREE COM-
PRESSION ALGORITHM. If u is the parent of v in G then the
link in Hv that is adjacent to Hu is referred to as the first
link in Hv; note that this is a terminal link in Hv. Due to
the tree properties P.1 to P.3, there exists a partition on the
children of each u in GP such that Hu and the corresponding
paths in each set in the partition intersect at a common node
in G, and the corresponding paths in different partitions are
not adjacent. Given the degree bound, each partition consists
of at most ∆ nodes in T , and all these nodes are siblings.

The nodes in a partition are numbered in some chosen order.
If two siblings v, w are in the same partition, and v has a
higher number than w, then v (w) is an older (younger)
sibling of w (v). Thus, a node in GP can have at most ∆−1
older siblings.

Without loss of generality, assume that the His have been
numbered in the sequence in which the corresponding nodes
will be visited in a breadth first traversal of GP ; the breadth
first traversal visits an older sibling before a younger sibling.
Let pi be the level of node i in the breadth first traversal tree
T and ri be the number of its older siblings. Let p̂ be the
maximum level of any node in GP . From Corollary 1, p̂ is
O(log n).

Recall that maximal scheduling is implemented using a
distributed randomized algorithm like the one proposed in
[5]. The algorithm operates in rounds, and the time required
to complete each round is constant in degree-bounded graphs
[5], [6]. Let γ > 0 be the probability that the second link
in a path with only three links does not select itself at the
end of its first round of maximal scheduling. Given that a
link is un-decided at the beginning of a round in its maximal
scheduling, it is un-decided with a probability of at most γ
at the end of the round. For the algorithm in [5], it can be
easily shown that γ < 3

16 .
At the beginning of every slot, all links that do not have

any packets to transmit set their status to un-scheduled. All
other links set their status to un-decided initially. Links in
Hi start executing their scheduling phase, the Sequential
Maximal Tree Scheduling routine (Figure 6), after (pi +
ri) (bln (36∆) / (−ln(γ))c+ 1) time units where each unit
corresponds to the time required to complete one round of
the maximal scheduling policy. As the scheduling algorithm
progresses, these un-decided links change their status to
scheduled or un-scheduled.

We now point out the similarities and differences between
Sequential Maximal Tree Scheduling and Sequential Maxi-
mal Path Scheduling. Consider an arbitrary path H ∈ {Hk},
where H = lH,1, . . . , lH,m, and lH,1 is the first link in
H. A slot is a constrained slot for H ∈ {Hk} if the first
link of H sets its status to un-scheduled in the sequential
constraint step, and is an un-constrained slot otherwise.
In an un-constrained slot, since the start of its scheduling
phase, the two scheduling procedures are identical. The
above holds in a constrained slot as well except for lH,1

which becomes un-scheduled in Sequential Maximal Tree
Scheduling irrespective of its queue length. Note that in an
un-constrained slot, the scheduling for H is oblivious of
any link not in H, and in a constrained slot, the scheduling
for H \ {lH,1} is oblivious of any link not in H \ {lH,1}.
Finally, unlike that for paths, the overall scheduling for trees
need not be maximal. This is because in a slot which is
constrained for H it may turn out that the links that are (a)
in the parent and older siblings of H (b) adjacent to the first
link in H and (c) were undecided at the time the path started
its scheduling phase, may eventually not be scheduled in the
slot. Nevertheless, in the next section, we prove that the 2/3
throughput guarantee still holds for trees.

SEQUENTIAL MAXIMAL TREE SCHEDULING (Hi)

INITIAL STEP: The first link, say lHi1, in Hi, sets its status to
“un-scheduled” if at least one link in NlHi1

∩ Hj , where j is
a parent or an older sibling of i in GP , has been scheduled or
is un-decided (sequential constraint).

ITERATIVE STEP: For k = 1 to k = 3, execute Phase k, as
given below:
Phase k : A link in Hi contends if and only if (a) it is un-
decided, (b) its adjacent links in Hi are un-scheduled or un-
decided, (c) its queue length is not less than that of its adjacent
links in Hi that satisfy conditions (a) and (b). A contending
link sets its status to “scheduled” if its adjacent links do not
contend or have higher id than it; links that are adjacent to
scheduled links set their status to “un-scheduled”.

TERMINAL STEP: Compute a maximal schedule among the
links in Hi that are un-decided and whose adjacent links in
Hi are un-scheduled or un-decided. Set the status of the links
selected in the maximal schedule to “scheduled”; links that are
adjacent to scheduled links set their status to “un-scheduled”.

Fig. 6. Sequential Maximal Tree Scheduling Algorithm for Hi

Finally, we evaluate the time required for the schedule
computation. Since ri ≤ d−1, and pi ≤ p̂ which is O(log n)
and the expected time required for computing a maximal
schedule is O(log n), the scheduling for the entire tree can
be computed in O(log2 n) expected time.

C. Discussion

The Sequential Maximal Tree Scheduling Algorithm is
fully distributed, as long as we implement the maximal
scheduling algorithm on each path in a distributed manner
(using the algorithm in [5], for example). Note that it is not
necessary for each path to wait for each of its predecessor
paths in the path tree graph to finish its scheduling before
starting to execute its own scheduling phase. Each path only
waits for a time that is large enough for its predecessor paths
to finish their scheduling phase with a high probability.

Nodes exchange messages only with their neighbors, and
the overall per-node message complexity is logarithmic in the
size of the network. The path compression algorithm should
be viewed as a “pre-processing” step, and needs to be re-
run only when the network topology changes. Therefore, the
complexity of the path tree construction does not contribute
to the per-slot complexity of the scheduling algorithm.

We have assumed throughout the paper that the maximum
degree of any node is upper-bounded by a constant. In
our algorithm, each node needs to periodically exchange
information with all of its neighbors; the computation time
for this message exchange will typically depend on the
number of neighbors a node has. This is true even for the
simple maximal scheduling policy considered in [4], [1]: the
overall computation time is logarithmic only when message
exchanges between a node and all of its neighbors have
constant time complexity. However, if this can somehow be
achieved, i.e., local message exchanges with all nodes in the
neighborhood can be done in constant time irrespective of

node degree, then our Sequential Maximal Tree Scheduling
Algorithm can be generalized to guarantee the same through-
put (i.e., 2/3 of the maximum throughput region) within
O(log2 n) time even for trees that are not degree-bounded.

Finally, note that the framework we proposed involves
decomposition of trees in paths and scheduling links in
each path using a scheduling policy that attains a provable
throughput guarantee (2/3) for paths. It is interesting to
observe that this decomposition based approach retains the
same throughput guarantee for trees as compared to that for
paths. In general, if the throughput guarantee for path graphs
can be improved further while using logarithmic computation
time, then we can use this framework to obtain the same
guarantees for trees while requiring an overall computation
time of O(log2 n).

IV. PROOF FOR 2/3 THROUGHPUT GUARANTEE

We assume that G is a tree. If an arrival rate vector
~ρ ∈ Λ∗, then (a) ρl ≥ 0 ∀ l ∈ L and (b) ∀ u ∈
N ,

∑
l∈L∩{(u,v),(v,u)} ρl ≤ 1 [3]. We consider an arrival

rate vector ~ρ such that

∀ u ∈ N ,
∑

l∈L∩{(u,v),(v,u),v∈N}

ρl < 2/3. (2)

Let ξ = 2/3−max
u∈N

∑
l∈L∩{(u,v),(v,u),v∈N}

ρl.

The L.H.S. of (2) is the total packet arrival rate over all
links that originate or terminate at node u. Let Ql(t) be the
queue length at link l at the beginning of slot t (after the
arrivals but before the transmissions in t). We show that there
exists a constant B0 such that for any t > 0, EQl(t) ≤ B0,
∀ l ∈ L (Theorem 1). Thus, our scheduling policy guarantees
a 2

3 fraction of the maximum throughput region.
We subsequently state and prove supporting lemmas, lem-

mas 2 to 7 (subsection IV-A). We prove the main result,
Theorem 1, using these lemmas (subsection IV-B).

A. Supporting Lemmas

We present a series of lemmas, lemmas 2 to 7 for an
arbitrary path H in {Hk}, where H = lH,1, . . . , lH,m, and
lH,1 is the first link in H. Lemmas 3,5,6,7 will be used
in proving Theorem 1. Lemma 2 will be used in proving
lemma 3, and lemma 4 will be used in proving lemmas 5
and 6.

We first introduce some terminology required in the
proofs. Let ΘH(t1, t2) be the number of un-constrained slots
in [t1, t2) for H ∈ {Hk}. Then, H is said to satisfy the
constraint-lower-bound if there exists a constant γH such
that ∀ 0 < t6 < t7,

P
{
ΘH(t6, t7) ≤ (ρlH,1 + 1/6)(t7 − t6)

}
≤ γH

(t7 − t6)α
.

The constraint-lower-bound states that with a high prob-
ability the unconstrained slots in each path occur more
frequently than the arrivals in the first link of the path. In
Theorem IV-B, using induction, we prove that every path H
satisfies the constraint-lower-bound, and subsequently prove

the throughput guarantee using lemmas 3,5,6 - the last two
of these lemmas hold only when the constraint-lower-bound
holds.

For simplicity, we assume that Ql(0) = 0 for all l ∈ L; the
proofs can be generalized for any positive, but finite values
of ~Q(0). For any path P , let CP denote the set of links that
are adjacent to the first and last link of P and are not part
of P.

Lemma 2: Consider a path P ⊆ H where H is a path in
{Hk} and an arbitrary slot t. Let either P ⊆ H\{lH,1} or t
be an un-constrained slot. Let P consist of links l1, . . . , lm,
and satisfy the following properties at t.

1) Qli(t) > 0 ∀ i ∈ {1, . . . ,m} (non-emptyness crite-
rion).

2) If l ∈ CP then Ql(t) < Qlj (t) ∀ lj ∈ Nl ∩ {l1, lm}
(isolation criterion).

Consider the iterative step of the Sequential Maximal Tree
Scheduling. If m ∈ {1, 2}, at least 1 link in P is scheduled
during the first phase at t. If m = 3, either l2 is scheduled
during the first phase or two links in P are scheduled in the
first two phases at t. If m > 3, at least 2 links in P are
scheduled during the first two phases at t.

Proof: We first show that for any m ≥ 1 at least 1
link in P is scheduled during the first phase at t. From the
isolation and non-emptyness criteria, at least one link in P
contends in the first phase at t, and the link with the greatest
id among the contending links in P is scheduled. Thus, the
first part of the lemma follows.

Now, let m > 2. The second and third parts of the lemma
follows if at least 2 links in P are scheduled in the first
phase. So, let exactly 1 link in P be scheduled in the first
phase.

Let l1 be scheduled in the first phase. Thus, {l2, . . . , lm}
are not scheduled in the first phase and, l2 does not prevent
the contention of any link in the second phase. Consider
a path P ′ consisting of links l3, . . . , lm. Now, since lm−1

have not been scheduled in the first phase (since m > 2,
lm−1 6= l1), from the isolation and non-emptyness criteria,
at least one link in P ′ contends in the second phase. Using
arguments similar to those in the first paragraph, we can
show that at least one link in P ′ is scheduled in the second
phase. Thus, the second and third part of the lemma follow.

The proof is similar if instead of l1, lm is scheduled in
the first phase. Now, let li be scheduled in the first phase
where 1 < i < m. Let m = 3. Then i = 2. Thus, the second
part of the lemma follows. Let m > 3. Now, either i > 2
or i < m− 1. Wlog, let i > 2. Thus, {l1, . . . , li−2} are not
scheduled in the first phase, and li−1 does not prevent the
contention of any link in the second phase. Consider a path
P ′ that consists of links {l1, . . . , li−2}. Again, since l2 have
not been scheduled in the first phase (since i > 2), from the
isolation and non-emptyness criteria, at least one link in P ′
contends in the second phase. Using arguments similar to
those in the first paragraph, we can show that at least one
link in P ′ is scheduled in the second phase. Thus, the third
part of the lemma follows.

Note that the last part of the above lemma does not hold if
the iterative step of the Sequential Maximal Tree Scheduling
has only one phase.

Lemma 3: Let κ and B be positive integers such that B ≥
5κ+1. Consider a path P ⊆ H\{lH,1} where H is a path in
{Hk}. Let P consist of links l1, . . . , lm, where 1 ≤ m ≤ 5.
Consider an event A that occurs if and only if there exists a
time t such that

1) Qli(t) ≥ B − κ ∀ i ∈ {1, . . . ,m} (lower bound
criterion)

2) Qli(t
′) ≤ B − 1 ∀ i ∈ {1, . . . ,m} and ∀ t′ ≤ t

(upper bound criterion), and
3) either Ql(t′) < B − 5κ ∀ l ∈ CP ∩ H, or

mini∈{1,...,m} Qli(t
′) < B − 5κ ∀ t′ < t (boundary

condition).

Then P(A) ≤ 5χξ/3(
maxl∈L σl

4κ)α.

Lemma 3 shows that if links in a segment of a path of
length 5 or less have high queue lengths, then with a high
probability, at least one link that is not in the path but is
adjacent to a link in the path has high queue length as well.
Lemma 3 applies only for segments that do not contain the
first link of the path.

Proof: Let A occur. Since Ql(0) = 0 for all l ∈ L,
there exists a slot t2 < t such that

Qli(t
′) ≥ B − 5κ ∀ i ∈ {1, . . . ,m} and t′ ∈ [t2, t], (3)

and Qli(t2) = B − 5κ for some i ∈ {1, . . . ,m}. (4)

From the lower bound criteria and (4), t − t2 ≥ 4κ
maxl∈L σl

.
From the boundary condition,

Ql(t′) < B − 5κ ∀ l ∈ CP , ∀ t′ ∈ [t2, t). (5)

Let Bi be the event that Ali(t2, t) − ρli(t − t2) ≥
ξ/3(t − t2). From (1), P(Bi) < χξ/3(

maxl∈L σl

4κ)α. We will
prove that if A occurs, then ∪m

i=1Bi occurs. Thus, P(A) ≤∑m
i=1 P(Bi). The result follows.
From (4) and the lower and upper bound criteria,

m∑
i=1

(Qli(t)−Qli(t2)) ≥ m(B − κ)− (m− 1)(B − 1)

−(B − 5κ),
= 5κ−mκ + m− 1,

≥ 0 (since 1 ≤ m ≤ 5). (6)
m∑

i=1

(Qli(t)−Qli(t2)) =
m∑

i=1

(Ali(t2, t)− Sli(t2, t)) ,(7)

where Sli(t2, t) denotes the number of packets of link i
scheduled in interval [t2, t).

Thus, from (6) and (7),
m∑

i=1

(Ali(t2, t)− ρli(t− t2)) ≥
m∑

i=1

(Sli(t2, t)− ρli(t− t2)) .

(8)
First, let m ∈ {1, 2}. Now, from (5), (3) and lemma 2, at

least 1 link in P is scheduled in each slot in [t2, t). Thus,

from (8),
m∑

i=1

(Ali(t2, t)− ρli(t− t2)) ≥ (1−
m∑

i=1

ρli)(t− t2)

≥ ξ(t− t2)(from (2)).(9)

Thus, clearly Bi occurs for some i such that 1 ≤ i ≤ m.
The result follows.

Now, let m ∈ {4, 5}. Then, from (5), (3) and lemma 2,
at least 2 links in P are scheduled in each slot in [t2, t).
Thus, from (8),

∑m
i=1 (Ali(t2, t)− ρli(t− t2)) ≥ (2 −∑m

i=1 ρli)(t − t2). From (2),
∑m

i=1 ρli ≤ 3 × (2/3 − ξ) =
2 − 3ξ. Thus,

∑m
i=1 (Ali(t2, t)− ρli(t− t2)) ≥ 3ξ(t − t2).

Thus, Bi occurs for some i such that 1 ≤ i ≤ m. Thus, the
lemma holds for m ∈ {1, 2, 4, 5}.

Now, let m = 3. Thus, P consists of l1, l2, l3.

2∑
i=1

(Qli(t)−Qli(t2)) +
3∑

i=2

(Qli(t)−Qli(t2))

=
∑

i∈{1,3}

(Qli(t)−Qli(t2)) + 2 (Ql2(t)−Ql2(t2)) . (10)

Now, from (4) and lower and upper bound criteria, ∀ i ∈
{1, 2, 3}, Qli(t)−Qli(t2) ≥ B−κ−(B−1) = 1−κ, and for
some i ∈ {1, 2, 3}, Qli(t)−Qli(t2) ≥ B−κ−(B−5κ) = 4κ.
Thus,∑

i∈{1,3} (Qli(t)−Qli(t2)) + 2 (Ql2(t)−Ql2(t2))

≥ 3(1− κ) + 4κ

> 0 (since κ ≥ 0). (11)

Now, from (10) and (11),
2∑

i=1

(Qli(t)−Qli(t2)) +
3∑

i=2

(Qli(t)−Qli(t2)) ≥ 0. (12)

From (5), (3) and lemma 2, either l2 or both l1 and l3 are
scheduled in each slot in [t2, t). Thus,

Sl1(t2, t) + 2Sl2(t2, t) + Sl3(t2, t) ≥ 2(t− t2). (13)

2∑
i=1

(Qli(t)−Qli(t2)) +
3∑

i=2

(Qli(t)−Qli(t2))

=
2∑

i=1

(Ali(t2, t)− Sli(t2, t))

+
3∑

i=2

(Ali(t2, t)− Sli(t2, t)) (from (7))

=
2∑

i=1

Ali(t2, t) +
3∑

i=2

Ali(t2, t)

−Sl1(t2, t)− 2Sl2(t2, t)− Sl3(t2, t)

≤
2∑

i=1

(Ali(t2, t)− ρli(t− t2)) +
3∑

i=2

(Ali(t2, t)

−ρli(t− t2))−

(
2−

2∑
i=1

ρli −
2∑

i=1

ρli

)
(t− t2)(14)

≤
2∑

i=1

(Ali(t2, t)− ρli(t− t2)) +
3∑

i=2

(Ali(t2, t)

−ρli(t− t2))− (2− 4/3 + 2ξ) (t− t2) (from (2))

≤
2∑

i=1

(Ali(t2, t)− ρli(t− t2)) +
3∑

i=2

(Ali(t2, t)

−ρli(t− t2))− 2ξ(t− t2).

Note that (14) above follows from (13). Thus,
from (12),

∑2
i=1 (Ali(t2, t)− ρli(t− t2)) +∑3

i=2 (Ali(t2, t)− ρli(t− t2)) ≥ 2ξ(t − t2). Thus,
again, Bi occurs for some i such that 1 ≤ i ≤ m. The result
follows.

Lemma 4: Consider an arbitrary path H ∈ {Hk}. Con-
sider two adjacent links lH,i, lH,i+1 in H, where 1 ≤ i ≤
min(4, |H|−1). Consider a slot t that satisfies the following
criteria:

1) min
(
QlH,i

(t), QlH,i+1(t)
)

> 0 and
2) if i + 2 ≤ |H|, QlH,i+1(t) > QlH,i+2(t).

Either lH,i or lH,i+1 is scheduled in t.
Proof: First, let i = 1. In a constrained slot, clearly, lH,2

is scheduled at the end of the first phase. In an un-constrained
slot, consider a path P consisting of links lH,1, lH,2. Clearly,
P satisfies the conditions of lemma 2. The result follows
from the case with |H| = 2 in lemma 2.

Now, let i > 1. First, let Qk(t) = 0 for some k such
that 1 ≤ k < i. Let j = max{k : k < i,Qk(t) = 0}.
Consider path P consisting of links lH,j+1, . . . , lH,i, lH,i+1.
Now, P consists of i− j + 1 links where 2 ≤ i− j + 1 ≤ 4.
Since j + 1 > 1, lH,1 6∈ P. Also, P satisfies the conditions
of lemma 2. Let i − j + 1 = 2. Then, P consists of
lH,i, lH,i+1. The result follows from the case with |H| = 2
in lemma 2. Let i − j + 1 = 3. Then, P consists of
lH,i−1, lH,i, lH,i+1. The result follows from the case with
|H| = 3 in lemma 2. Let i− j + 1 = 4. Then, P consists of
lH,i−2, lH,i−1, lH,i, lH,i+1. From lemma 2 with |H| = 4, at
least 2 links in {lH,i−2, . . . , lH,i+1} are scheduled at the end
of the first two phases. Since lH,i−2 and lH,i−1 can not be
scheduled simultaneously, one of the scheduled links must
be lH,i or lH,i+1. The result follows.

Now, let Qk(t) > 0 for all k, 1 ≤ k < i. In a
constrained slot, consider a path P consisting of links
lH,2, . . . , lH,i, lH,i+1. Now, P consists of i links where
2 ≤ i ≤ 4. Also, lH,1 6∈ P. The result follows using
the same arguments as in the previous paragraph. Consider
an un-constrained slot and a path P consisting of links
lH,1, . . . , lH,i, lH,i+1. Let i < 4. Now, P consists of i + 1
links where 3 ≤ i + 1 ≤ 4. Again, P satisfies the conditions
of lemma 2. The result follows using the same arguments
as in the previous paragraph. Finally, let i = 4. Now, P
consists of 5 links: lH,1, . . . , lH,5. Let neither lH,4 nor lH,5

be scheduled at the end of the second phase. From lemma 2
for |H| = 5, at least 2 links in P are scheduled at the end of
the second phase. Thus, lH,1 and lH,3 must be scheduled at
the end of the second phase. Thus, lH,4 does not contend
in the third phase, lH,5 contends in the third phase, and
lH,6 (if |H| ≥ 6) does not contend in the third phase (since

QlH,5(t) > QlH,6(t)). Thus, lH,5 is scheduled in the third
phase. The result follows.

Lemma 4 does not hold if the iterative step of the Sequen-
tial Maximal Tree Scheduling has two or fewer phases.

Lemma 5: Consider an arbitrary path H ∈ {Hk}, where
H = {lH,1, . . . , lH,m.} Let H satisfy the constraint-lower-
bound. Let B and β be positive integers such that β < B/4.
Consider a link lH,i in H, 1 ≤ i ≤ 5, and an event A that
occurs if and only if there exists a slot t such that

1) QlH,i
(t) ≥ B − β,

2) maxl∈NlH,i
∩H Ql(t′) ≤ B − 1 for each t′ ∈ [0, t] and

3) if i < m, QlH,i+1(t
′) < B − 4β ∀ t′ ∈ (0, t].

Then P(A) ≤ (2χ1/6 + γH)(maxl∈L σl/β)α.

Lemma 5 shows that if in a path, a link l which is at most
5 hops away from the first link in the path has a high queue
length, then with a high probability, another link in the path,
say l′, which is adjacent to l, but farther off from the first
link has high queue length as well. Thus, if the first link in
a path is congested, then with a high probability congestion
spreads into the path.

Proof: Let A occur. Then there exists a slot t2 ∈ (0, t)
such that QlH,i

(t2) = B−4β and QlH,i
(t′) ≥ B−4β for all

t′ ∈ [t2, t], and either m = i (case (a)) or QlH,i+1(t
′) < B−

4β for all t′ ∈ [t2, t] (case (b)). Also, t−t2 ≥ 3β/ maxl∈L σl.
First, let i = 1. In both cases (a) and (b), lH,1 is scheduled

in each un-constrained slot in [t2, t). Thus, SlH,1(t2, t) =
ΘH(t2, t). Now, QlH,1(t) = QlH,1(t2) + AlH,1(t2, t) −
SlH,1(t2, t). Thus, AlH,1(t2, t) ≥ SlH,1(t2, t) = ΘH(t2, t).
This implies that either AlH,1(t2, t) ≥ (ρlH,1+1/6)(t−t2) or
ΘH(t2, t) ≤ (ρlH,1+1/6)(t−t2). From (1), the probability of
the first event is at most χ1/6(t−t2)−α. From the constraint-
lower-bound, the probability of the second event is at most
γH(t − t2)−α. Thus, P(A) ≤ (χ1/6 + γH)(t − t2)−α. The
lemma follows for i = 1 since t− t2 ≥ 3β/ maxl∈L σl.

Now, let i > 1. Thus, there exists a slot t3 ∈ (t2, t) such
that QlH,i

(t3) = B − 2β and QlH,i
(t′) ≥ B − 2β for all

t′ ∈ [t3, t]. Clearly, t − t3 ≥ β/ maxl∈L σl. Let B be the
event that QlH,i−1(t

′) < B − 2β for all t′ ∈ [t3, t].
Let A∩B occur. In both cases (a) and (b), lH,i is scheduled

in each slot in [t3, t]. Thus, SlH,i
(t3, t) = t − t3. Now,

QlH,i
(t) = QlH,i

(t3) + AlH,i
(t3, t) − SlH,i

(t3, t). Thus,
AlH,i

(t3, t) ≥ SlH,i
(t3, t) = t − t3. From (1) and (2),

P
{
AlH,i

(t3, t) ≥ t− t3
}

< χ1/3(t − t3)−α. Thus, P(A ∩
B) < χ1/3(t− t3)−α ≤ χ1/3(maxl∈L σl/β)α.

Now, let A ∩ Bc occur. Thus, QlH,i−1(t
′) ≥ B − 2β for

some t′ ∈ [t3, t]; let t4 be one such t′. Now, t4 ∈ [t2, t],
QlH,i−1(t4) ≥ B − 2β, QlH,i

(t4) ≥ B − 2β (since t4 ∈
[t3, t]). Thus, ∑

l∈{lH,i−1,lH,i}

Ql(t4) ≥ 2B − 4β. (15)

From the definition of t2, there also exists a slot t5 ∈ [t2, t4]
such that Ql(t′) ≥ B − 4β for all l′ ∈ {lH,i−1, lH,i} and
t′ ∈ [t5, t4] and min

(
QlH,i−1(t5), QlH,i

(t5)
)

= B − 4β.
Clearly, t4 − t5 ≥ 2β/ maxl∈L σl. Since 4β < B, and
1 ≤ i − 1 ≤ 4, in both cases (a) and (b), from lemma 4,

either lH,i−1 or lH,i is served in each slot in [t5, t4]. Thus,∑
l∈{lH,i−1,lH,i} Sl(t5, t4) = t4 − t5. Now,∑

l∈{lH,i−1,lH,i}

Al(t5, t4)

=
∑

l∈{lH,i−1,lH,i}

Ql(t4)−
∑

l∈{lH,i−1,lH,i}

Ql(t5)

+
∑

l∈{lH,i−1,lH,i}

Sl(t5, t4) (16)

≥ (2B − 4β)− (B − 4β)− (B − 1) + t4 − t5 (17)

≥
∑

l∈{lH,i−1,lH,i}

(ρl + 1/6)(t4 − t5) (from (2)). (18)

Note that (17) above follows from (15) and the fact∑
l∈{lH,i−1,lH,i} Sl(t5, t4) = t4 − t5.
Thus, either AlH,i−1(t5, t4) ≥ (ρlH,i−1 + 1/6)(t4 − t5),

or AlH,i
(t5, t4) ≥ (ρlH,i

+ 1/6)(t4 − t5). From (1), the
probability of each event is less than χ1/6(t5 − t4)−α,
which is upper bounded by χ1/6(maxl∈L σl/2β)α. Thus,
P(A ∩ Bc) < 2χ1/6(maxl∈L σl/2β)α.

Since P(A) = P(A∩B)+P(A∩Bc), for i > 1, P(A) <
3χ1/6(maxl∈L σl/β)α. The result follows.

Lemma 6: Let H be a path in {Hk} that satisfies the
constraint-lower-bound. Consider an integer B ≥ 6 and a
path P ⊆ H consisting of links lH,j , . . . , lH,j+m−1 such
that m = min(6, |H|). Consider an event A that occurs if
and only if there exists a slot t such that

QlH,i
(t′) ≤ B − 1 ∀ i ∈ {j, . . . , j + m− 1} and ∀ t′ ≤ t,

QlH,i
(t) ≥ 5B/6 ∀ i ∈ {j, . . . , j + m− 1}.

Then P(A) ≤ (6χmin(ξ/2,1/6) + γH)(6maxl∈L σl/5B)α.
Lemma 6 shows that the probability that all links in a

segment of a path consisting of 6 links has high queue lengths
is small.

Proof: When m = 6, in every slot in which every
link in P has a packet to transmit, at least 2 links in P
are scheduled for service. This clearly holds when either the
slot is un-constrained or lH,1 6∈ P . If P consists of lH,1 and
the slot is constrained, at least 2 links are scheduled among
lH,2 . . . lH,6.

Now, let m = 6. Consider the last slot t′ before t such that
QlH,k

(t′) = 0 for some k ∈ {j, . . . , j + 5}. Since Qlk(t) ≥
5B/6, t′ ≤ t− 5B/6 maxl∈L σl.

Let Bi be the event that AlH,i
(t′, t) − ρlH,i

(t − t′) ≥
ξ/2(t − t′). From (1), P(Bi) < χξ/2(

6 maxl∈L σl

5B)α. We
will prove that if A occurs, then ∪j+5

i=j Bi occurs. Thus,
P(A) ≤

∑j+5
i=j P(Bi). The result follows.

j+5∑
i=j

(
QlH,i

(t)−QlH,i
(t′)
)

=
(
QlH,k

(t)−QlH,k
(t′)
)

+
∑

j≤i≤j+5
i 6=k

(
QlH,i

(t)−QlH,i
(t′)
)

≥ 5B/6 +
∑

j≤i≤j+5
i 6=k

(5B/6−B + 1) ≥ 5. (19)

Also,
j+5∑
i=j

(
QlH,i

(t)−QlH,i
(t′)
)

=
j+5∑
i=j

AlH,i
(t′, t)−

j+5∑
i=j

SlH,i
(t′, t), (20)

and,
j+5∑
i=j

(
AlH,i

(t′, t)− ρlH,i
(t− t′)

)
≥

j+5∑
i=j

SlH,i
(t′, t)−

j+5∑
i=j

ρlH,i
(t− t′) + 5 (from (19),(20))

≥
j+5∑
i=j

Sli(t
′, t)− 3 ((2/3)− ξ) (t− t′) + 5 (from (2)).

Next, QlH,i
(t1) > 0 ∀ i ∈ {j, . . . , j + 5}, ∀ t1 ∈ (t′, t].

The set of links scheduled at each slot constitutes a maximal
scheduling among those that have positive queue lengths in
the slot. Thus, at least two links in P are scheduled in every
slot in (t′, t]. Thus,

∑j+5
i=j SlH,i

(t′, t) ≥ 2(t− t′)− 2. Thus,

j+5∑
i=j

(
AlH,i

(t′, t)− ρlH,i
(t− t′)

)
≥ 3ξ(t− t′).

Thus, for some i ∈ {j, . . . , j + 5}, Bi occurs. For the case
m = 6, the result follows.

Now, let m < 6. Then m = |H|. Thus, P = H.
Let m > 1. Thus, Ql(t) ≥ 5B/6 for all l ∈

{lH,m−1, lH,m}. Thus,∑
l∈{lH,m−1,lH,m}

Ql(t) ≥ 5B/3. (21)

Also, there exists a slot t1 < t such that QlH,i
(t′) >

0 for all l ∈ {lH,m−1, lH,m} and t′ ∈ (t1, t],
and minl∈{lH,m−1,lH,m} QlH,i

(t1) = 0. Clearly, t −
t1 ≥ 5B/6 maxl∈L σl. From lemma 4, either lH,m−1

or lH,m is served in each slot in (t1, t]. Thus,∑
l∈{lH,m−1,lH,m} Sl(t1, t) ≥ t− t1 − 1. Now,∑

l∈{lH,m−1,lH,m}

Al(t1, t)

=
∑

l∈{lH,m−1,lH,m}

Ql(t)−
∑

l∈{lH,m−1,lH,m}

Ql(t1)

+
∑

l∈{lH,m−1,lH,m}

Sl(t1, t) (22)

≥ 5B/3− (B − 1) + (t− t1)− 1 (23)

≥
∑

l∈{lH,m−1,lH,m}

(ρl + 1/6)(t− t1)(from (2)). (24)

Note that (23) above follows from (21) and from the fact∑
l∈{lH,m−1,lH,m} Sl(t1, t) ≥ t− t1 − 1.
Thus, either AlH,m−1(t1, t) ≥ (ρlH,m−1 + 1/6)(t − t1),

or AlH,m
(t1, t) ≥ (ρlH,m

+ 1/6)(t − t1). From (1), the

probability of each event is less than χ1/6(t−t1)−α, which is
upper bounded by χ1/6(6 maxl∈L σl/5B)α. Thus, P(A) <
2χ1/6(6 maxl∈L σl/5B)α.

Let m = 1. Thus, P and H consist of only one link
lH,1. Thus, QlH,1(t) ≥ 5B/6. Thus, there exists a slot
t1 < t such that QlH,1(t

′) > 0 for all t′ ∈ (t1, t], and
QlH,1(t1) = 0. Again, t − t1 ≥ 5B/6 maxl∈L σl. Clearly,
lH,1 is scheduled in each un-constrained slot in (t1, t].
Thus, SlH,1(t1, t) ≥ ΘH(t1, t) − 1. Now, AlH,1(t1, t) =
QlH,1(t) − QlH,1(t1) + SlH,1(t1, t). Thus, AlH,1(t1, t) ≥
5B/6 + ΘH(t1, t) − 1 ≥ ΘH(t1, t) (since B ≥ 2)). This
implies that either AlH,1(t1, t) ≥ (ρlH,1 + 1/6)(t − t1) or
ΘH(t1, t) ≤ (ρlH,1+1/6)(t−t1). From (1), the probability of
the first event is at most χ1/6(t−t1)−α. From the constraint-
lower-bound, the probability of the second event is at most
γH(t − t1)−α. Thus, P(A) ≤ (χ1/6 + γH)(t − t1)−α. The
lemma follows for m = 1 since t − t1 ≥ 5B/6 maxl∈L σl.

Consider an arbitrary path H ∈ {Hi} and the
corresponding node u in G. Let FH = {v :
v is either the parent or an older sibling of u in G}. Let
d = ∆ + 1.

Lemma 7: Consider an arbitrary path H ∈ {Hj}. Let for
each t > 0, l ∈ ∪i∈FHHi, P {Ql(t) ≥ B} ≤ µHi

B−α.
Then H satisfies the constraint-lower-bound with γH = (d−
1)χ1/18(d−1) + (d− 1)νd,γ + 18α(d− 1)α+1 maxi∈FH µHi

.
Lemma 7 shows that a path satisfies the constraint-lower-

bound if the probability that the links in the parent and older
siblings of a path have high queue lengths is low.

Proof: Consider i ∈ FH. For each 0 < t1 < t2, let
Ul(t1, t2) be the number of slots in [t1, t2) in which link l in
Hi∩NlH,1 is undecided just before the start of the scheduling
phase of H. Let W = bln (36(d− 1)) / (−ln(γ))c. Each
link in Hi ∩NlH,1 executes maximal scheduling for at least
W rounds before H starts its scheduling phase, and it is
undecided at the end of W rounds with a probability of at
most γW , which is less than 1/(36(d− 1). Thus,

P
{

Ul(t1, t2) ≥
t2 − t1

18(d− 1)

}
≤

(
exp

(
(1/(18γW (d− 1))

)
− 1)

(1/(18γW (d− 1)))(1/(18γW (d−1)))

)β

where β = γW (t2 − t1) (25)
≤ νd,γ(t2 − t1)−α for some constant νd,γ that depends

on d, γ, ∀ l ∈ Hi ∩NlH,1 . (26)

In the above, (25) follows from the Chernoff bound.
Clearly, ΘH(t1, t2) ≥ (t2 − t1) −

∑
l∈∪i∈FH (Hi∩NlH,1)

(Sl(t1, t2) + Ul(t1, t2)) . Let ΘH(t1, t2) ≤ (ρlH,1 +
1/6)(t2 − t1). Then,∑

l∈∪i∈FH (Hi∩NlH,1)

(Sl(t1, t2) + Ul(t1, t2))

≥ (5/6− ρlH,1)(t2 − t1)

≥ (1/6 +
∑

l∈∪i∈FH (Hi∩NlH,1)

ρl)(t2 − t1) (27)

The last inequality follows from (2) since all links in
∪i∈FH(Hi ∩NlH,1) intersect at the same node in G.

Now, Sl(t1, t2) ≤ Ql(t1) + Al(t1, t2). Thus, from (27),
and since | ∪i∈FH (Hi ∩NlH,1)| ≤ d− 1,∑

l∈∪i∈FH (Hi∩NlH,1)

(Al(t1, t2) + Ql(t1) + Ul(t1, t2))

≥
∑

l∈∪i∈FH (Hi∩NlH,1)

(1/(6(d− 1)) + ρl)(t2 − t1).

Thus, either Al(t1, t2) ≥ (1/18(d − 1) + ρl)(t2 − t1) or
Ql(t1) ≥ (t2−t1)/18(d−1) or Ul(t1, t2) ≥ (t2−t1)/18(d−
1) for some l ∈ ∪i∈FH(Hi ∩ NlH,1). From assumption, the
probability that Ql(t1) ≥ (t2 − t1)/18(d − 1) is at most
µHi(

t2−t1
18(d−1))

−α if l ∈ Hi and i ∈ FH. The result follows
from (1) and (26).

B. Main Result

Theorem 1: 1) For each t > 0, l ∈ L,
P {Ql(t) ≥ B} ≤ τp̂,d−2B

−α, where τp̂,d−2 is ob-
tained through the following recursions.

γ0,y = 0 ∀ 0 ≤ y ≤ d− 2 (28)
τx,y =

(
max(1, 151χmin(ξ/3,1/6) + 11γx,y)

)
×(72× 45 × 55 max

l∈L
σl)α 0 ≤ x ≤ p̂,

0 ≤ y ≤ d− 2 (29)
γx,y = (d− 1)

(
νd,γ + χ1/18(d−1)

)
+ 18α(d− 1)α+1

×max(τx−1,d−2, max
0≤z≤y−1

τx,z),

0 ≤ x ≤ p̂, 0 ≤ y ≤ d− 2. (30)

2) For each t ≥ 0, E (Ql(t)) ≤ τp̂,d−2

∑∞
i=1 i−α.

We first outline the main arguments in the proof. First
consider the root path in GP . This path does not have a parent
or an older sibling, and hence does not have constrained slots.
Thus, the constraint-lower-bound trivially holds for this path.
Hence, lemmas 5 and 6 hold for this path. It follows from
lemma 5 that if in this path a link has a high queue length
in any slot, then with a high probability a link which is 6
hops or farther away from the first link in the path has a high
queue length in the same slot. Now, it follows from lemma 3
that with a high probability all links in a segment consisting
of 6 links in the path have high queue lengths in the slot.
This contradicts lemma 6. Thus, the probability that a link
in this path has high queue lengths is low. It now follows
from lemma 7 that the constraint-lower-bound holds for the
children paths of the root path. Using a recursive argument,
it can now be shown that the probability that a link in the
descendant paths has high queue lengths is low as well. The
result follows.

Proof: We first prove the first part of the theorem. We
will prove that for any t > 0, for all l ∈ Hj ,

P {Ql(t) ≥ B} ≤ τpj ,rj
B−α, (31)

where τpj ,rj
is defined through the recursions in the state-

ment of the theorem. The result follows since τx,y increases
with increase in x, y and pi ≤ p̂ and ri ≤ d− 2 for all i.

We prove using induction on the level of j, pj and the
number of older siblings of j, rj .

First consider pj = 0. Since for all x, τ0,x ≥(
12× 45 × 55 maxl∈L σl

)α
, (31) trivially holds for B <

12 × 45 × 55 maxl∈L σl. Let B ≥ 12 × 45 × 55 maxl∈L σl.
Now, j is the root of T and hence does not have any sibling.
Thus, rj = 0. Thus, every slot is an un-constrained slot for
Hj . Hence, from (2), Hj satisfies the constraint-lower-bound
with γHj

= γ0,0 = 0. Consider the event A(B, t) that occurs
if and only if maxl∈Hi

Ql(t) ≥ B. Let A(B, t) occur. Then
there exists a slot t0 ≤ t such that Ql(t′) ≤ B − 1 for all
l ∈ Hj and t′ ≤ t0 and Ql(t0 + 1) ≥ B for some l ∈ Hj ;
let lHj ,k be one such l. Then, QlHj ,k

(t0) ≥ B−maxl∈L σl.

For 0 ≤ q ≤ 5−k, if |Hj | > k+q, event Bq is said to occur
if the event A described in lemma 5 occurs with i = k + q
and β = 4qbB/(6 × 45 × 55)c. If |H| ≥ 6, for 1 ≤ c ≤ 6,
1 ≤ d ≤ c, consider paths Pc,d ⊆ Hj consisting of c links
with the dth link being lHj ,max(k,6). If c ≤ 5 lH1,1 6∈ Pc,d.
For 1 ≤ c ≤ 5, 1 ≤ d ≤ c, event Cc,d is said to occur if
the event A described in lemma 3 occurs with P = Pc,d,
κ = 455c−1b B

6×45×55 c. Event C6,d is said to occur if the
event A described in lemma 6 occurs with P = P6,d.

Clearly, when A(B, t) occurs, Bq or Cc,d occurs for some
c, d, q, 0 ≤ q ≤ 5 − j, 1 ≤ c ≤ 6, 1 ≤ d ≤ c. Thus,
P (A(B, t)) is upper bounded by the sum of the probabilities
of the events Bq, Cc,d for 0 ≤ q ≤ 5 − j, 1 ≤ c ≤ 6, 1 ≤
d ≤ c. Thus (31) follows from the upper bounds of the
probabilities of these events provided in lemmas 3, 5, 6.

We now consider the induction case. Now, let (31) hold
for all i such that pi ≤ h. We will prove the hypothesis for
i such that pi = h + 1. The proof is the same as that for the
base case once we can show that Hi satisfies the constraint-
lower-bound with γHi = γh+1,ri . First consider Hi such that
pi = h+1 and ri = 0. Thus, i does not have an older sibling
in T. Since i’s parent’s level is h, i’s parent satisfies (31).
Now, lemma 7 shows that Hi satisfies the constraint-lower-
bound with γHi

= γh+1,ri
. Now, using the same proof as

that for the base case, we can show that (31) holds for i.
Now, let (31) hold for all i such that pi = h+1 and ri ≤ a.
Let pi = h + 1 and ri = a + 1. Now, i’s parent and older
siblings satisfy (31). Again, lemma 7 shows that Hi satisfies
the constraint-lower-bound with γHi

= γh+1,a+1. Thus, as
before, (31) holds for i.

Thus, the first part of the theorem holds. The second part
is immediate from the first.

REFERENCES

[1] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through
maximal scheduling in multihop wireless networks. In Proceedings
of 43d Annual Allerton Conference on Communication, Control and
Computing, Allerton, Monticello, Illinois, September 28-30 2005.

[2] D. Shah E. Modiano and G. Zussman. Maximizing throughput in
wireless networks via gossiping. In Proc. ACM SIGMETRICS / IFIP
Performance’06, June 2006.

[3] B. Hajek and G. Sasaki. Link scheduling in polynomial time. IEEE
Transactions on Information Theory, 34(5):910–917, Sep 1988.

[4] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks. In Proceedings of
INFOCOM, Miami, FL, Mar 2005.

[5] M. Luby. A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comput., 15(4):1036–1055, 1986.

[6] D. Peleg. Distributed Computing: A Locality-sensitive Approach.
Society of Industrial and Applied Mathematics, Philadelphia, PA,
2000.

[7] T. Salonidis and L. Tassiulas. Distributed dynamic scheduling for end-
to-end rate guarantees in wireless ad hoc networks. In Proceedings of
ACM MOBIHOC, 2005.

[8] D. Shah, P. Giaccone, and B. Prabhakar. An efficient randomized
algorithm for input-queued switch scheduling. IEEE Micro, 22(1):19–
25, Jan-Feb 2002.

[9] L. Tassiulas. Linear complexity algorithms for maximum throughput
in radio networks and input queued switches. In Proceedings of
INFOCOM, pages 533–539, 1998.

[10] L. Tassiulas and A. Ephremidis. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control,
37(12):1936–1948, Dec 1992.

[11] X. Wu and R. Srikant. Regulated maximal matching: a distributed
scheduling algorithm for multihop wireless networks with node-
exclusive spectrum sharing. In Proceedings of IEEE CDC-ECC’05,
Seville, Spain, Dec 2005.

