Data Structures and Algorithms (EE 220): Homework 2 Solutions

Contact TA for any Queries about the Solutions

Posted 02/14/2003

Problem 1: (5 pts) We show that

1.
$$\log(\log n) = O(\log^2 n)$$

2.
$$\log^2 n = O(e^{\log n})$$

3.
$$e^{\log n} = O(\log(n!))$$

4.
$$\log(n!) = O((\log n)^{\log n})$$

<u>Part 1</u>:

$$\lim_{n \to \infty} \frac{\log(\log n)}{\log^2 n} = \lim_{n \to \infty} \frac{\frac{1}{\log n} \frac{1}{n}}{2 \log n \frac{1}{n}}$$
 By L'Hospital
$$= \lim_{n \to \infty} \frac{1}{2 \log^2 n} = 0.$$

This shows that $\log(\log n) = O(\log^2 n)$.

<u>Part 2</u>:

$$\begin{split} \lim_{n \to \infty} \frac{\log^2 n}{e^{\log n}} &= \lim_{n \to \infty} \frac{\log^2 n}{n} \\ &= \lim_{n \to \infty} 2 \log n \frac{1}{n} \quad \text{By L'Hospital} \\ &= \lim_{n \to \infty} \frac{2}{n} \quad \text{By L'Hospital} \\ &= 0. \end{split}$$

This shows that $\log^2 n = O(n)$.

Part 3: To prove this part we use the bound $n! \ge \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \ge \left(\frac{n}{e}\right)^n$. Since log is a monotone function, this bound implies that $\log(n!) \ge n \log\left(\frac{n}{e}\right)$. Now,

$$\lim_{n \to \infty} \frac{n}{\log(n!)} \le \lim_{n \to \infty} \frac{n}{n \log\left(\frac{n}{e}\right)} = \lim_{n \to \infty} \frac{1}{\log\left(\frac{n}{e}\right)} = 0.$$

This shows that $n = O(\log(n!))$.

Part 4: In this part we use yet another important inequality $n! \leq n^n$. This inequality implies that $\log(n!) \leq n \log n$.

Hence

$$\lim_{n \to \infty} \frac{\log(n!)}{(\log n)^{\log n}} \le \lim_{n \to \infty} \frac{n \log n}{(\log n)^{\log n}}$$

$$= \lim_{n \to \infty} \frac{n}{(\log n)^{\log n - 1}}$$

$$\le \lim_{n \to \infty} \frac{n}{e^{\log n - 1}} \quad \forall n \ge e^3$$

$$= \lim_{n \to \infty} \frac{en}{n} = e < \infty.$$

This shows that $\log(n!) = O((\log n)^{\log n})$.

Problem 2: (5 pts)

Part 1: Proof by Counter Example.

Let f(n) = n and $g(n) = n^2$. Hence $\min\{f(n), g(n)\} = f(n) = n$. Now observe that $f(n) + g(n) = \Theta(n^2) \neq \Theta(n)$. This shows that the claim is false in general.

Part 2(a): It is given that f(n) = O(g(n)). Hence from the definition of "O" notation it implies that $\exists c > 0$ and an index n_0 such that $\forall n \geq n_0$

$$0 \le f(n) \le cg(n).$$

Since log is a monotone function and $f(n) \geq 1$, the above equation implies that

$$0 \le \log(f(n)) \le \log c + \log(g(n)). \tag{1}$$

Note that $\log c + \log(g(n)) = O(\log(g(n)))$. This implies that $\exists c' > 0$ and n'_o such that $\forall n \geq n'_o$

$$0 \le \log(g(n)) + \log c \le c' \log(g(n)). \tag{2}$$

Now choose $\hat{n}_0 = \max\{n_0, n_0'\}$ and observe from (1) and (2) that

$$0 \le \log(f(n)) \le c' \log(g(n)) \quad \forall n \ge \hat{n}_0.$$

This shows that by definition $\log(f(n)) = O(\log(g(n)))$.

Part 2(b): Proof by Counter Example.

Let $f(n) = 2^n$. Then, $f(\frac{n}{2}) = 2^{\frac{n}{2}}$. Now, observe that

$$\lim_{n\to\infty} \frac{f(n)}{f(\frac{n}{2})} = \lim_{n\to\infty} \frac{2^n}{2^{\frac{n}{2}}} = \lim_{n\to\infty} 2^{\frac{n}{2}} = \infty.$$

This shows that $2^n \neq \Theta(2^{\frac{n}{2}})$. Hence the claim is not true in general.

Problem 3: (5 pts) Consider the given recursion

$$T(n) = T(n-a) + T(a) + n \quad \text{iteration } i = 1$$

$$= T(n-2a) + 2T(a) + 2n - a \quad \text{iteration } i = 2$$

$$= T(n-3a) + 3T(a) + 3n - 3a \quad \text{iteration } i = 3$$

$$= T(n-ia) + iT(a) + in - \sum_{i=1}^{i-1} ja \quad \text{for general iteration } i$$

Verify the expression for general i using Induction. Observe that we need to iterate till $\frac{n}{i} > a$, i.e for $i < \frac{n}{a}$. Hence,

$$T(n) \leq T(a) + \frac{n}{a}T(a) + \frac{n^2}{a} - a\sum_{j=1}^{\frac{n}{a}-1} j$$

$$= \left(\frac{n}{a} + 1\right)\Theta(1) + \frac{n}{2} + \frac{n^2}{2a}$$

$$= O(n^2).$$

Observe that since a is a fixed constant $T(a) = \Theta(1)$.

Problem 3: (10 pts) Since the arrays were sorted our task of obtaining maximum subsequence sum is much simplified. We only need to obtain $\max\{\sigma_1, \sigma_2, \sigma_3\}$, where σ_1 is the sum of all positive numbers of $LIST_1$, σ_2 is the sum of all the positive elements of $LIST_2$ and σ_3 is the sum of the positive elements of $LIST_1$ and all the elements of $LIST_2$. We can simply obtain these sums using following algorithm. Let A[] be the combined array.

```
Initialize: \sigma_1 = \sigma_2 = \sigma_3 = 0

For (i = 0 \text{ to } m)

If (A[m+n-i] > 0)

\sigma_2 = \sigma_2 + A[m+n-i]

else

\sigma_3 = \sigma_3 + A[m+n-i]

End For Loop

For (i = 0 \text{ to } n)

If (A[n-i] > 0)

\sigma_1 = \sigma_1 + A[n-i]

else

EXIT For Loop

End For Loop

\sigma_3 = \sigma_3 + \sigma_1 + \sigma_2

Max_Subseq_Sum = \max\{\sigma_1, \sigma_2, \sigma_3\}.
```

Note that the complexity of algorithm is $O(m + \sqrt{n})$. In the case when m is much smaller than n, it becomes $O(\sqrt{n})$.

<u>Caution</u>: It is given that the number of positive elements in the Lists are $O(\sqrt{n})$ and O(sqrtm), respectively. This does not mean that the lists have exactly \sqrt{n} or

exactly \sqrt{m} elements. The number of elements can be any function f(n) such than $f(n) = O(\sqrt{n})$.