Data Structures and Algorithms (EE 220):
Homework 2 Solutions

Contact TA for any Queries about the Solutions

Posted 02/14,/2003

Problem 1: (5 pts) We show that
1. log(logn) = O(log”n)
2. log®n = O(e'°8™)
3. e°8™ = O(log(n!))
4. log(n!) = O((logn)'e"

Part 1:
11
lim log(l(;g 77,) — lim logn El
n—00 ]Og n n—oo 9 10g nﬁ
) 1
= lim 5
n—oo 2log"n
This shows that log(logn) = O(log? n).
Part 2:
. log’n _ log’n
lim ; = lim
n—oo elogn n—00 n

1
lim 2logn—
n—0oo n

.2
lim —
n—oo n

0.

This shows that log”n = O(n).

Part 3: To prove this part we use the bound n! > /27n (%)n

a monotone function, this bound implies that log(n!) > nlog (

n .
< lim

lim < lim @

n—o0 log(n!)

By L’Hospital

By L’Hospital

By L’Hospital

Y4

(

). Now,

n
e

)n. Since log is

|3

=0.

1
lim

n=yo0 @



This shows that n = O(log(n!)).

Part 4: In this part we use yet another important inequality n! < n"™. This inequality
implies that log(n!) < nlogn.

Hence
) log(n!) . nlogn
lim ——— < lim ————
n—00 (log n)logn n—00 (log n)lOg"
B nl)rgo (log n)logn—l
n

im ———
n—o0 elOg n—1

. en
= lim — =e < .
n—oQ n

This shows that log(n!) = O((logn)*s™).

Problem 2: (5 pts)
Part 1: Proof by Counter Example.

Let f(n) = n and g(n) = n?. Hence min{f(n),g(n)} = f(n) = n. Now observe
that f(n) + g(n) = ©(n?) # O(n). This shows that the claim is false in general.

Part 2(a): It is given that f(n) = O(g(n)). Hence from the definition of “O”
notation it implies that d¢ > 0 and an index ng such that Vn > n,

0 < f(n) <cg(n).

Since log is a monotone function and f(n) > 1, the above equation implies that

0 <log(f(n)) <logc+log(g(n)). (1)

Note that logc + log(g(n)) = O(log(g(n))). This implies that 3¢’ > 0 and n),
such that Vn > nj

0 < log(g(n)) +logc < c'log(g(n)). (2)

Now choose 7p = max{ng, ny} and observe from (1) and (2) that
0 <log(f(n)) < dlog(g(n)) Vn > ny.
This shows that by definition log(f(n)) = O(log(g(n)).

Part 2(b): Proof by Counter Example.
Let f(n) =2". Then, f(Z) = 2%. Now, observe that

2" n
lim f(:«) = lim — = lim 22 = co.
n—00 f(i) n—00 23 n—00

This shows that 2" # ©(27). Hence the claim is not true in general.



Problem 3: (5 pts) Consider the given recursion

T(n) = T(n—a)+T(a)+n iteration i =1
= T(n—2a)+2T(a)+2n —a iteration i = 2
= T(n—-3a)+ 3T (a) +3n — 3a iteration i =3
i1
= T(n—1ia)+iT(a) +in— Y ja for general iteration i
j=1

Verify the expression for general ¢ using Induction. Observe that we need to
iterate till % > a, i.e for 7 < 7. Hence,

n n? i
T(n) < T(a)+ ET(G) + —a Z J
j=1

- (g+1)@(1)+g+%
= 0O(n?).

Observe that since a is a fixed constant T'(a) = ©(1).

Problem 3: (10 pts) Since the arrays were sorted our task of obtaining maximum
subsequence sum is much simplified. We only need to obtain max{o1, 09, 03}, where
o1 is the sum of all positive numbers of LIST;, o, is the sum of all the positive
elements of LIST, and o3 is the sum of the positive elements of LIST; and all the
elements of LIST,. We can simply obtain these sums using following algorithm. Let
A[] be the combined array.

Initialize: 01 =09 =03 =0
For (i = 0 to m)
If (Alm+n —1i] > 0)
02=02+A[m+n—i]
else
o3 =03+ Am+n —i
End For Loop
For (i =0 to n)
If (A[n —1i] > 0)
o1 =01+ A[n — 1]
else
EXIT For Loop
End For Loop
03 = 03 + 01+ 09
Max_Subseq_Sum = max{oy, 09, 03}.

Note that the complexity of algorithm is O(m + /n). In the case when m is
much smaller than n, it becomes O(y/n).

Caution: It is given that the number of positive elements in the Lists are O(y/n)
and O(sqrtm), respectively. This does not mean that the lists have exactly \/n or

3



exactly y/m elements. The number of elements can be any function f(n) such than

f(n) = 0(V/n).



