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Abstract— Efficacy of proliferation of commercial wireless
networks can be substantially enhanced through large scale
cooperation among different providers. If a group of providers
cooperate by allowing customers to be served by the resources
of the whole group rather than just those of their own
providers, they have the potential to utilize their resources more
efficiently and enhance the quality of service they can offer.
This in turn can result in higher profits for the providers.
Such cooperation can, however, be successfully implemented
if providers in a coalition judiciously allocate the resources,
such as spectrum and base stations, accesspoints, etc., in a way
that the individuals payoffs are commensurate to the resources
they offer to the coalition. Initially, we assume that providers
do not share their payoffs. We formulate this problem as a
nontransferable payoff coalitional game and show that there
exists a cooperation strategy that leaves no incentive for any
subset of providers to split from the grand coalition, i.e., the
core is nonempty. To compute this cooperation strategy and the
corresponding payoffs, we subsequently relate this game and its
core to an exchange market setting, and its equilibrium which
can be computed by several practically efficient algorithms.
Next, we investigate cooperation in a scenario, where customers
are also decision makers and decide which provider to subscribe
to, based on whether there is cooperation. We then formulate a
coalitional game in this setting and show that it has a nonempty
core. Finally, we extend previous results to the cases, where indi-
viduals assume more general payoff sharing relations, and their
benefits are modeled as ”vector payoff functions”, comprised
of mixed transferable and nontransferable components.

I. INTRODUCTION

We have witnessed a significant growth in commercial
wireless services in the past few years, and the trend is likely
to continue in the foreseeable future. This growth has been
in part fueled by demand for new services such as network
games and multimedia transmissions. These services are
taxing the available transmission resources which are either
limited (e.g., spectrum, transmission energy), or costly (e.g.,
infrastructure). Cooperation among service providers has the
potential to substantially improve the resource utilization,
and should therefore facilitate the proliferation of wireless
services.

To serve its customers, each provider uses (i) wireless
spectrum that it acquires either directly from central reg-
ulators such as the FCC or in secondary markets from
other providers that have already licensed this spectrum
from the regulators, and (ii) infrastructure such as base
station, access points, mesh points (which we refer to as
service units) that it deploys in its coverage area. Cooperation
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between providers entails pooling and sharing some of these
resources to ultimately better serve each others customers.
This pooling and sharing of resources can improve coverage
and throughput, which can in turn lead to higher customer
satisfaction and higher revenues for the providers.

We now describe the benefits of cooperation among ser-
vice providers. When different providers cooperate, their
resources such as spectrum and infrastructure are likely to
be optimally utilized. For example, if a provider’s resources
exceed traffic demands of its customers, it can use the
underutilized portion to serve customers of other providers in
its coalition, and enhance its profit. Similarly, even when its
resources are congested, owing to poor propagation quality in
the spectrum it owns, or temporary demand overload, it can
deliver the desired quality of service to its customers using
the resources of its collaborators. Such sharing turns out to
be mutually beneficial as different providers are unlikely to
experience poor quality of transmission and overload at the
same time. Similarly, providers can augment their coverage
areas by utilizing each others service units. Thus, overall,
the providers can substantially enhance their net payoffs by
cooperating.

The success of this setup, however, is contingent on
whether providers, as selfish entities, find the cooperation
worthwhile. More specifically, a provider expects to receive
a payoff commensurate to the resources such as service units
and channels it offers the coalition, and the wealth it gener-
ates. Design of rational cooperation strategies is imperative
to motivate providers to participate in such cooperation. In
particular, the cooperation strategy of each provider involves
the determination of which providers to cooperate with and
how to cooperate with providers (i.e., the allocations of the
service units and the spectrum to the customers). Different
choices for these decision variables determine the individual
payoffs and the efficacy of cooperation. Also, collaborating
providers may be able to share their profits. But again, some
providers may only be willing to collaborate so as to enhance
individual profits, but may not be willing to share the profits,
due to lack of trust, the nontransferable nature of the profit, or
others. In general, providers’ total benefit could be a function
of different types of payoffs, and they may be willing to share
some types but not the rest. In the end, the payoff allocations
also depend on whether and how providers share their
payoffs resulting from the cooperation. Finally, cooperation
among providers could have negative effects on the customer
base of some providers. A successful cooperation strategy
may as well be required to guarantee that such potential
downside of cooperation does not outweigh its upside.

We present a coalitional game framework for cooperation



among providers in a single-hop network using tools from
cooperative game theory (section III). In particular, we first
investigate providers’ cooperative resource allocation in the
scenario, where providers do not engage in payoff sharing.
Using this framework, we show that there exists an operating
point and corresponding payoffs that renders it optimal for all
providers to cooperate. Specifically, if a group of providers
leave the grand coalition, regardless of how they cooperate
among each other, at least one provider or customer will
be worse off (section IV). In the cooperative game theory
terminology, this is equivalent to saying that the core of the
game is nonempty.

To compute such an operating point, we next construct
an ”exchange market” setting, where service providers are
considered to be agents in the market, and service units and
channels are the goods (section V). Agents will then trade
goods so as to maximize their own benefits. We show that
in this setting, market equilibrium exists. Furthermore, we
show that the allocation of goods in the economy given by
the equilibrium can be translated to a cooperation strategy
among providers with the corresponding payoffs in the core.
As a result, we can compute an element of the core, by
computing the market equilibrium, which is possible by
using several available algorithms. This result is also of
independent interest, as it links two different concepts in
this context.

Next we study cooperation in a scenario, where customers
are also decision makers. Particularly, customers can sub-
scribe to the provider of their choice, and that choice can
depend on providers’ cooperation decisions (section VI). We
propose a cooperation model and show that the core of this
game is nonempty. Subsequently, we examine an algorithm
to obtain a core element in this game.

Finally, we generalize our framework to accommodate a)
more general payoff sharing rules, such as when there are
groups of providers, and providers in each group would share
their payoffs, while those in different groups would not,
and b) vector payoff functions that are comprised of mixed
transferable and nontransferable components of different
types. We formulate two coalitional games using the above
generalizations (section VII). Subsequently, we show that the
previous results extend to these scenarios as well.

II. RELATED WORK

Coalitional games have been used recently for modeling
cooperation among nodes in the physical layer [1], [2],
rate allocation in multiple access channels (MAC) [3], and
studying cooperation between single antenna receivers and
transmitters in an interference channel [4]. In this work, we
instead focus on cooperative resource allocation by providers
at the network and MAC layers.

Cooperation among providers in wireless networks has
been previously studied in [5], using transferable payoff
coalitional games. In the current work, we generalize formu-
lations and results in [5], so as to consider (i) the scenario,
where customers are also players in the game, (ii) more
general payoff sharing rules, and (iii) vector payoff functions

with components of various types. In order to obtain these
results, we need different tools and analytical techniques,
e.g., nontransferable payoff coalitional games.

III. SYSTEM MODEL

Consider a network with a set of providers N =
{1, 2, . . . , N} and a set of customers M = {1, 2, . . . ,M}.
Each provider i, owns a set of service units Bi and has a
set of subscribed customers Mi. We assume that Bi ∩Bj =
Mi ∩ Mj = ∅, i, j ∈ N , i 6= j. Providers can then use
their service units to deliver service to their customers. We
assume that service units and customers can communicate
via single-hop links.

We assume that each service unit has access to a single
channel. This assumption, however, causes no loss of gen-
erality. This is because in the case where service units have
access to multiple channels with a radio available for every
channel, each service unit channel combination can be used
as a unit in Bi, instead of a real service unit. We will see
later how the case where service units have limited number
of radios can also be captured by modifying the feasibility
constraints. We also assume that no two service units in a
vicinity have access to the same frequency band. As a result,
communications of different service units with different
customers do not interfere with each other. For instance,
consider two service units k1 and k2. Then these service units
either have access to different channels, or else, they are far
apart and therefore do not cause any interference for each
other. This interference model implies that links forming a
matching can be scheduled simultaneously. Therefore, since
the graph of the network is bipartite, the necessary and
sufficient condition for a feasible schedule is that the fraction
of time each node communicates is below 1 [6].

The instantaneous rates the customers receive depend on
the current quality of the channels accessed by the service
units (which in case of secondary access channels also
includes the current actions of the channels’ primary users)
and the current positions of the customers, which can be
random. We therefore assume that when customer j is served
by service unit k, j receives a rate rkj , a random variable
which is a function of the state of channel k and position of
customer j. Let Ωkj be the state space of rkj . We assume that
|Ωkj | is finite. This assumption is motivated by the fact that
feasible service rates in any practical communication system
belong to a finite set. Thus, we assume that each channel has
a finite number of states. Also, we can partition the service
region in such a way that the service rates received by the
customers inside a member of the partition do not depend
on the locations of the customers. Let Ω =

∏
k∈BN
j∈MN

Ωkj and

P (ω) be the probability of an outcome ω ∈ Ω.
Definition 3.1: A coalition S ⊆ N , is a group of providers

who cooperate. For a coalition S, let BS and MS denote the
set of service units and customers associated with providers
in S . The term grand coalition refers to the coalition N .

When providers cooperate, they allow their service units
to serve customers subscribed to other providers. Such co-



operation has the potential to enhance the quality of service
to customers, which in turn can increase providers’ payoffs.

A service unit owned by provider i can serve a customer
j only if both are associated with the same provider, or
the providers associated with them are in a coalition. Let
αkj ∈ [0, 1] be the fraction of time service unit k serves
customer j. αkjs are determined by the allocation scheme.
Let ySkj denote the rate customer j receives from service unit
k when j ∈ MS . Then, if k ∈ BS , and the outcome is ω,
ySkj(ω) = αkj(ω)rkj(ω). Else, ySkj(ω) = 0, ∀ω ∈ Ω. Now
consider a coalition S and a provider i in S . Define the rate
vector ySi (ω) = (ySkj(ω), k ∈ BN , j ∈ Mi), and yi(ω) =
yNi (ω) . We assume that when provider i is in coalition
S , the outcome is ω, and {αkj , k ∈ BS , j ∈ MS} is the
allocation, provider i receives a payoff equal to fi(ySi (ω)),
which is the difference between the revenue i receives from,
and the costs (e.g., power consumption) it incurs by serving
its customers. fi(.)s are assumed to be concave functions.
Then, the expected payoff provider i ∈ S earns will equal∑

ω∈ΩP(ω)fi(ySi (ω)).
For a coalition S , the allocation {αkj , k ∈ BS , j ∈ MS}

is feasible if it satisfies the following conditions.
1)

∑
j∈MS αkj(ω) ≤ 1, k ∈ BS , ω ∈ Ω

2)
∑

k∈BS αkj(ω) ≤ 1, j ∈MS , ω ∈ Ω
3) αkj ≥ 0, k ∈ BS , j ∈MS .

Constraints (1) ensure that each service unit k communicates
less than 1 unit of time1. The fraction of time customer j is
served is below 1 by (2). Any allocation {αkj , k ∈ BS , j ∈
MS} that satisfies 1 − 3 is called a feasible joint action of
coalition S . Note that for any feasible allocation {αkj , k ∈
BS , j ∈MS}, there is a schedule that allocates service units
to customers, ensuring that for all k ∈ BS , j ∈MS , service
unit k serves customer j an amount of αkj unit of time, by
[6]. Let A(S) denote the joint action space of providers in
coalition S .

Consider a joint action a ∈ A(S) and a vector of payoffs
x ∈ R|S|. Now define FS(a) to be the payoff vector
generated by joint action a. That is x = FS(a) if a)
xi =

∑
ω∈ΩP(ω)fi(ySi (ω)), ∀i ∈ S , and b) (ySi , i ∈ S) is

the vector of service rates resulting from the joint action a.
Associated with each coalition S , there is a set of feasible

payoff vectors v(S) defined as:

v(S) = {x ∈ R|S| : ∃z ∈ R|S|, z ≥ x, z = FS(a)
for some a ∈ A(S)}. (1)

In other words, v(S) contains all payoff vectors which are
less than or equal to at least one payoff vector generated by a
feasible joint action. Any x ∈ v(S) is called a feasible payoff
profile. Now the stage is set for the following definition.

Definition 3.2: A nontransferable payoff cooperative
(NTU) game consists of a pair (N , v), where N is the set

1This condition can be modified to capture the scenario when a service
unit has access to multiple channels with only 1 radio, as follows. The
modified constraint (1) for a service unit, bounds the sum of αkj over
customers j, and channels k accessed by that service unit, by 1. It can be
shown that all the results obtained later extends to this scenario as well.

of players, and v(S) ∀S ⊆ N is the set of feasible payoff
profiles satisfying

1) For each S, v(S) is a closed set.
2) If z ∈ v(S) and x ∈ R|S| with x ≤ z, then x ∈ v(S).
3) The set of vectors in v(S) in which each player in S

receives no less than the maximum that he can obtain
by himself is a nonempty, bounded set.

If providers agree to cooperate and form the grand coali-
tion, they can take any feasible joint action, and conse-
quently, achieve any payoff profile in v(N ). However, there
is a need for a criterion that determines which payoff profile
in v(N ) will be acceptable to the providers.

Definition 3.3: A payoff profile x ∈ v(N ) is said to be
blocked by coalition S , if there is a payoff profile z ∈ v(S)
such that zi > xi for all i ∈ S , i.e., z makes every provider
in S better off.
Note that providers in S can object to a payoff profile x ∈
v(N ) that is blocked by S .

We use the well known solution concept in coalitional
game theory, namely the core. The idea behind the core
in a cooperative game is analogous to that behind a Nash
equilibrium of a noncooperative game: an outcome is stable
if no deviation is profitable. Roughly speaking, a payoff
profile is in the core, if no sub-group of providers have any
incentive to split from the grand coalition. In other words,
the core C of the game is the set of all feasible payoff profiles
which cannot be blocked by any coalition. That is,

C = {x ∈ v(N ) : ∀S, @z ∈ v(S) such that zi > xi ∀i ∈ S}
(2)

We now discuss the importance of the concept of core
in coalitional games. Suppose C 6= ∅. Let providers form
the grand coalition and select a joint action corresponding
to a payoff profile x in the core. Now suppose a group of
providers S leave the grand coalition and choose their own
joint action and a corresponding payoff profile z ∈ v(S).
However, they will do so only if they all receive a higher
payoff than what they could in the grand coalition, i.e., zi >
xi, i ∈ S . But this is in contradiction with the fact that x ∈ C.
In other words, no group of provider has any incentive to split
from the grand coalition. Thus the grand coalition is stable,
which is a desirable outcome since the grand coalition has
the potential to achieve higher efficiency.

Example 3.1: Consider a network setup with 3 providers
N = {1, 2, 3}, and 1 state |Ω| = 1. Suppose each provider
has 1 service unit Bi = {i}, i = 1, 2, 3, and 1 customer
Mi = {i}, i = 1, 2, 3. Now let the service rates be as
follows. rjj = 1∀j, rkj = 3 when j = (k + 1 mod 3) ∀k,
and rkj = 2 when j = (k − 1 mod 3) ∀k. Suppose that
the payoff of each provider equals the service rate of its
customers. When a provider does not cooperate, it is clear
that its maximum feasible payoff equals 1. In other words,
v({i}) = [0, 1] ∀i. For the coalition {1, 2}, we can similarly
specify the feasible payoff profile as v({1, 2}) = {(x1, x2) :
x1 ≤ 2, x2 ≤ 3}. Finally, for the grand coalition we have
v({1, 2, 3}) = {(x1, x2, x3) : xi ≤ 3 ∀i}. It is easy to verify



that the feasible payoff profile (3, 3, 3) it in the core, since
is is not blocked by any coalition.

The core in several coalitional games is empty, i.e., the
grand coalition cannot be stabilized (Example 260.3 p. 260
[7]), and in general it is NP-hard to determine whether the
core of a coalitional game is nonempty( [8]). In the following
sections we show that the core of the game we consider is
nonempty, and obtain a payoff profile in the core of the game.

IV. THE CORE

We now proceed to show that the core of the game (N , v)
is nonempty.

Definition 4.1: A collection of coalitions I ⊂ 2N \∅
is called balanced if there exist nonnegative weights
(λS ,S ∈ I) such that

∑

S∈I: i∈S
λS = 1, ∀i ∈ N .

Accordingly, a game is balanced if for every balanced
collection I, if u ∈ Rn and uS ∈ v(S) for all S ∈ I, then
u ∈ v(N ).2

Example 4.1: Let N = {1, 2, 3}. Then I1 =
{{1, 2}, {2, 3}, {1, 3}} is balanced since every player is
exactly in two of the coalitions. So λ = 1

2 is the balancing
weight for all coalitions in I1. On the other hand I2 =
{{1, 2}, {2, 3}} is not balanced, since there does not exist
nonnegative λ1 and λ2 such that λ1 = 1, λ1 + λ2 = 1, and
λ2 = 1.

We will make use of the following theorem which holds
for any coalitional game [9].

Theorem 4.1: A balanced game always has a nonempty
core.

Here is the main result.
Theorem 4.2: The coalitional game among providers,

(N , v), is balanced and hence has a nonempty core.
Proof: Consider a balanced collection of coalitions I.

Let (λS ,S ∈ I) be the corresponding nonnegative weights.
Also, let u ∈ R|N | be such that uS ∈ v(S) for all S ∈ I,
i.e, there exists joint action {αSkj , k ∈ BS , j ∈MS} for all
S ∈ I such that
1) {αSkj , k ∈ BS , j ∈ MS} satisfies feasibility constraints

1− 3 in section III, for all S ∈ I.
2) ui ≤

∑
ω∈ΩP(ω)fi(ySi (ω)), ∀i ∈ S , where ySi denotes

the rate vector corresponding to joint action {αSkj , k ∈
BS , j ∈MS}.

We next show that u ∈ v(N ). Thus, the game is balanced.
Now define a joint action set {αkj , k ∈ BN , j ∈ MN }

as follows

αkj(ω) =
∑

S∈I: k∈BS
j∈MS

λSαSkj(ω). (3)

The rest of the proof consists of two steps.
Step 1: We show that {αkj , k ∈ BN , j ∈ MN } satisfy

feasibility constraints 1− 3 in section III.

2For any u ∈ Rn, uS ∈ R|S| is defined by uSi = ui,∀i ∈ S.

∑

j∈MN

αkj(ω) =
∑

j∈MN

∑

S∈I: k∈BS
j∈MS

λSαSkj(ω)

=
∑

S∈I: k∈BS
λS

∑

j∈MS

αSkj(ω)

≤
∑

S∈I: k∈BS
λS

=
∑

S∈I: i∈S
λS (where k ∈ Bi)

= 1.

The first equality follows from (3). The inequality follows
by feasibility of {αSkj} and constraint (1) in section III.

Similarly, one can show that constraint 2 is also satisfied.
Constraint 3 is trivial. Thus, the joint action {αkj , k ∈
BN , j ∈MN } satisfies feasibility.

Step 2: We show that ui ≤
∑

ω∈ΩP(ω)fi(yi(ω)),∀i ∈
N , where yi is the rate vector given by joint action
{αkj , k ∈ BN , j ∈MN }.

Using (3), it is easy to verify that yi(ω) satisfies

yi(ω) =
∑

S∈I:i∈S
λSySi (ω) (4)

That is, yi is the convex combination of {ySi ,S ∈ I : i ∈
S}. Since fi(.)s are concave, for each provider i we have:

∑

ω∈Ω

P(ω)fi(yi(ω)) ≥
∑

ω∈Ω

P(ω)
∑

S∈I:i∈S
λSfi(ySi (ω))

=
∑

S∈I:i∈S
λS

∑

ω∈Ω

P(ω)fi(ySi (ω))

≥
∑

S∈I:i∈S
λSui

= ui

It now follows from theorem 4.1 that the core of the game
is nonempty.

V. COMPUTATION OF A PAYOFF PROFILE IN THE CORE

In the previous section, it was shown that the NTU game
(N , v) has a nonempty core. Another interesting issue now
is computing a payoff profile in the core C. Towards that
end, we construct an ”exchange market” setting, a concept
borrowed from microeconomics (section V-A). Next we
show that the market equilibrium in this setting, if existent,
corresponds to a payoff profile in the core of our NTU game
(section V-B). Note that the fact that two different concepts
are equivalent in this context, can be of independent interest.
Finally, we show that the equilibrium exists, which can be
computed using several available algorithms (section V-C).

A. Exchange Market Preliminaries

We now proceed to introduce the ”exchange market”
concept from microeconomic theory. Consider an exchange
market with N = {1, . . . , N} as the set of agents. Let
L = {1, . . . , L} denote the set of goods in the markets. Each



agent has a positive initial endowment of the goods given by
the vector ei = (e1

i , . . . , e
L
i ). Associated with each agent i is

a utility function ui(.) : RL
+ → R, where ui(xi) represents

the satisfaction level of agent i from the allocation of goods
xi = (x1

i , . . . , x
L
i ). Now let vector p = (p1, . . . , pL) denote

the price of goods in the market. The agents will then try to
maximize their utilities through trading of goods according
to prices given by p. We can now present the definition of
the market equilibrium (p.579 [10]).

Definition 5.1: An allocation x∗ and a price vector p =
(p1, . . . , pL) constitute a market equilibrium if

i) x∗i ∈ arg maxxi∈RL
+

ui(xi) subject to p.xi ≤ p.ei;
∀i ∈ N . Note that p.ei is the value of agent i’s
endowment, which clearly cannot be larger that the
value of his allocation after trading (budget constraint).

ii)
∑

i(x
∗
i − ei) = 0, that is, it is possible to provide

the agents’ desired allocation, just by using the total
endowments present in the market (market clearing).

The following well known theorem provides a sufficient
condition for a market equilibrium to exist (p.585 [10]).

Theorem 5.1: Suppose that for every consumer i, ui(.) is
continuous, strictly concave, and strictly increasing. Suppose
also that

∑
i ei ∈ RL

++. Then a market equilibrium exists,
with the property that the price vector is strictly positive, i.e.,
p ∈ RL

++.
Now suppose instead of trading, agents pool their goods

and reallocate them among each other. The amount of goods
allocated to each agent in such manner has to be com-
mensurate with agents initial endowments, or some agents
would not agree to it. Consequently, one can use the core of
the market concept as a policy to determine the allocation
of goods among agents as follows. An allocation x∗ =
(x∗1, . . . , x

∗
N ) ∈ RLN

+ is in the core of the market, C, if
is cannot be blocked by any coalition of agents S ⊆ N , i.e.,
for all S ⊂ N , there does not exist an allocation xi with the
properties:

i) ui(xi) > ui(x∗i ) for every i ∈ S .
ii)

∑
i∈S xi ≤

∑
i∈S ei.

The following well known theorem states the relation
between the market equilibrium and the core of the market
C (p.654 [10]).

Theorem 5.2: Any market equilibrium allocation is in the
core of the market C.

B. Relating the NTU game to An Exchange Market

Consider the NTU game defined in section III. Now think
of the set of providers N as the agents in the market. The
goods in the market will then be the right to access each of
the service units in BN when the outcome is ω, given in unit
of time. Subsequently, the initial endowment of the providers
will be the full access to the set of service units they own.
In other words, for a provider i, ekω

i = 1 if service unit k
belongs to i and ekω

i = 0, otherwise.
Now consider an allocation of goods x in this setup.

We define the providers’ corresponding utility functions to
be the maximum payoff they can obtain by serving their

own customers using their access level to the service units
specified by the allocation x. In other words,
ui(xi) = max

∑
ω∈ΩP(ω)fi(yi(ω))

subject to:
1) yi(ω) = (ykj(ω), k ∈ BN , j ∈Mi).
2) ykj(ω) = αkj(ω)rkj(ω), k ∈ BN , j ∈Mi, ω ∈ Ω.
3)

∑
k∈BN αkj(ω) ≤ 1, j ∈Mi, ω ∈ Ω.

4)
∑

j∈Mi
αkj(ω) ≤ xkω

i , k ∈ BN , ω ∈ Ω.
5) αkj(ω) ≥ 0, k ∈ BN , j ∈Mi.

We next show how an allocation in the core of the market
can be used to obtain a payoff profile in the core of the NTU
game.

Theorem 5.3: Consider any allocation xi, i ∈ N belong-
ing to C. Let {α∗kj , k ∈ BN , j ∈Mi} be an optimal solution
of the optimization defining ui(xi). Now let z be the payoff
profile corresponding to joint action {α∗kj , k ∈ BN , j ∈
MN }. Then, z ∈ C.

Proof: First notice that {α∗kj , k ∈ BN , j ∈ MN }
constitute a feasible joint action of providers in N . Also
note that zi = ui(xi) ∀i ∈ N .

Next, consider any payoff profile ẑ ∈ v(S). We argue that
there exists an allocation x̂i, i ∈ S such that (i)

∑
i∈S x̂i ≤∑

i∈S ei and (ii) ui(x̂i) ≥ ẑi ∀i ∈ S , as follows. Consider
the joint action {αkj , k ∈ BS , j ∈ MS}, corresponding to
payoff profile ẑ. Now define x̂i = (

∑
j∈Mi

αkj(ω), k ∈
BS , ω ∈ Ω). Since {αkj , k ∈ BS , j ∈ MS} is a feasible
joint action of providers in S , it satisfies constraint (1) in
section III. Also, from the definition of x̂i, it follows that
x̂kω

i =
∑

j∈MS αkj(ω) ≤ 1, k ∈ BS , ω ∈ Ω. Now using the
definition of ei, it is clear that (i) holds.

Next, notice that for the given x̂is, {αkj , k ∈ BS , j ∈
Mi} is a feasible solution of the optimization defining
ui(x̂i), while ẑi is the value of its objective function. (ii)
immediately follows.

We now prove the claim by contradiction. Suppose z /∈ C.
Then there exist a coalition S and a payoff profile ẑ ∈ v(S)
such that ẑi > zi for all i ∈ S. Since ẑ ∈ v(S), by the
above argument, there exists an allocation x̂i, i ∈ S such
that (i)

∑
i∈S x̂i ≤

∑
i∈S ei and (ii) ui(x̂i) ≥ ẑi ∀i ∈ S .

Consequently, ui(x̂i) > zi = ui(xi) ∀i ∈ S . This is in
contradiction with x ∈ C.

Theorem 5.4: If the market equilibrium x∗ in the ex-
change market exists, the corresponding payoff profile
(ui(x∗i ), i ∈ N ) is in the core of the NTU game.

Proof: Using theorems 5.2, 5.3, the claim immediately
follows.

C. Existence and Computation of The Market Equilibrium

In this section, we proceed to establish the existence of
the market equilibrium in our model. We make the following
technical assumptions.
1) fis are strictly concave, strictly increasing, and smooth

functions (i.e., the first two derivatives exist and are
continuous).

2) For any arbitrary feasible allocation xi, constraint (3) in
the optimization defining ui(.) is never binding.



We originally considered fis to be concave functions. As-
sumption (1) imposes stronger conditions on fis. Assumption
(2), on the other hand, can be motivated by considering the
number of customers high enough so that it is always sub-
optimal to serve any customer the whole time.

Using assumption (2) we can rewrite the agents i’s utility
function ui(.) as
ui(xi) = max

∑
ω∈ΩP(ω)fi(yi(ω))

subject to:
1) yi(ω) = (ykj(ω), k ∈ BN , j ∈Mi).
2) ykj(ω) = αkj(ω)rkj(ω), k ∈ BN , j ∈Mi, ω ∈ Ω.
3)

∑
j∈Mi

αkj(ω) ≤ xkω
i , k ∈ BN , ω ∈ Ω.

4) αkj(ω) ≥ 0, k ∈ BN , j ∈Mi

It follows by assumptions (1) and (2) that ui(.)s are con-
tinuous, strictly increasing, strictly concave, and smooth
functions. Then it immediately follows from theorem 5.1 that
market equilibrium exists. Then by theorem 5.4, a payoff
profile in the core of the NTU game can be obtained by
computing the market equilibrium.

We next discuss how to compute a market equilibrium.
For a price vector p, define the demand vector of agent i
as di(p) = arg maxxi∈RL

+
ui(xi) subject to p.xi ≤ p.ei,

that is, an allocation of goods to agent i, that maximizes his
utility, subject to his budget constraint. Then the aggregate
excess demand in the market is the function ξ given by
ξ(p) =

∑
i(di(p) − ei), i.e., the aggregate demand minus

the total endowment. From definition 5.1, p is an equilibrium
price vector, if ξ(p) = 0. This equation can be solved by
using the global Newton method proposed in [11]. Having
the equilibrium prices, the equilibrium allocation x∗ can
then be computed as the maximizer of agents utilities ui(xi.
The payoff vector in the NTU game corresponding to this
equilibrium is then (ui(x∗i ), i ∈ N ), which is in the core, by
theorem 5.4.

VI. CUSTOMERS AS DECISION MAKERS

In this section, we consider another type of cooperative
game in which customers are also players in the game
and choose their providers. We formulate this problem as
a nontransferable payoff coalitional game, and show that it
has a nonempty core (section VI-A). We then investigate a
method to compute a payoff profile in the core of this game
(section VI-B).

A. An NTU Game Formulation

So far, we investigated how to incentivize providers to
cooperate with each other by adopting a cooperation strategy
that makes it sub-optimal for any group of providers to
split from the grand coalition. We showed that such a
strategy indeed exists, and as a result, the grand coalition is
stabilizable. In this model, we did not consider customers’
actions, and assumed that they will stick to the same provider
irrespective of whether providers cooperate. However, this
may not be the case if customers can decide their providers.
To elucidate this further, consider a simple setting with 2
providers. Let the link rates be functions over a space with
two states, i.e., Ω = {ω1, ω2}. There is a customer who

intends to subscribe to one of the 2 providers. Suppose this
customer requires a minimum service rate in both states (note
that this can be implemented by appropriately selecting the
utility function of the customer), and that only provider 2
has the resources to satisfy it in both states. Consequently,
under noncooperative regime, the customer subscribes to
provider 2. Now if providers cooperate by sharing parts of
their resources with each other, provider 1 may be able
to satisfy the customer’s constraints in both states, and
offer a high enough rate in 1 state to win the customer
over. In this scenario, if the customer were aware of the
cooperation between the 2 providers, he would subscribe
to 1, which is a different decision than in noncooperative
regime. Therefore, by merely deciding to cooperate, some
providers may improve their customer base, while some
incur losses. At the end of the day, this very reason can
weaken the cooperation scheme. To summarize this, we say
that cooperation may turn out to be sub-optimal for some
providers ex ante, although we proved in section IV that it
is always ex post efficient.

In this section, we propose a revised cooperation strat-
egy, in which customers are also decision makers and can
subscribe to the network of their choice. Towards that end,
consider the network model as in section III. We now
redefine a coalition as follows.

Definition 6.1: A coalition (S, T ),S ⊆ N , T ⊆M, is a
group of providers and customers who cooperate, that is each
customer in T agrees to subscribe to one of the providers
in S , and providers in S will jointly serve customers in T .
The grand coalition now refers to the coalition (N ,M).

Let yS,T
kj denote the rate customer j ∈ T receives from

service unit k. yS,T
kj (ω) = αkj(ω)rkj(ω) if k ∈ BS , and

0, otherwise. Now define yS,T
j (ω) = (yS,T

kj (ω), k ∈ BN ).
We assume that for serving customer j, provider i receives a
payoff equal to fij(y

S,T
j ), while customer j attains a payoff

(or, utility) gj(y
S,T
j ), which can be a function of j’s received

rate, power consumption, etc. fij(.)s and gj(.)s are consid-
ered to be concave functions. Consequently, the expected
payoff of provider i ∈ S will be

∑
j∈T
ω∈Ω

P(ω)fij(y
S,T
j (ω)).

Likewise, the expected payoff of customer j ∈ T is∑
ω∈ΩP(ω)gj(y

S,T
j (ω)).

Similar to that in section III, we can define a feasible joint
action of coalition (S, T ) as an allocation {αkj , k ∈ BS , j ∈
T } that satisfies the following conditions.

1)
∑

j∈T αkj(ω) ≤ 1, k ∈ BS , ω ∈ Ω
2)

∑
k∈BS αkj(ω) ≤ 1, j ∈ T , ω ∈ Ω

3) αkj ≥ 0, k ∈ BS , j ∈ T .

Note that for any feasible allocation {αkj , k ∈ BS , j ∈
T }, there is a schedule that allocates service units to cus-
tomers, ensuring that for all k ∈ BS , j ∈ T , service unit k
serves customer j an amount of αkj unit of time, by [6]. Let
A(S, T ) denote the joint action space of coalition (S, T ).
For a joint action a ∈ A(S, T ), let FS,T (a) be the payoff
profile resulting from a. We now define the set of feasible
payoff profiles v(S, T ) as follows.



v(S, T ) = {x ∈ R|S|+|T | : ∃z ∈ R|S|+|T |, z ≥ x,

z = FS,T (a) for some a ∈ A(S, T )}. (5)

That is, v(S, T ) is the set of all payoff profiles which are
achievable through some joint action of coalition (S, T ), and
all the payoffs lower than those. Now according to definition
3.2, ((N ,M), v) is a well defined NTU game. The core of
the game is then defined as follows.

C = {x ∈ v(N ,M) : ∀(S, T ),@z ∈ v(S, T ) such that
zi > xi, zj > xj ∀i ∈ S, j ∈ T }

(6)

We now demonstrate the significance of the core. Suppose
C 6= ∅. Now let customers subscribe to the network of
their choice, and together with their providers then form
the grand coalition and produce a payoff profile in the core.
Now suppose a group of providers S and customers T are
not satisfied with this outcome. Thus they split from the
grand coalition. Then each customer in T subscribes to one
of the providers in S according to his own preferences,
and they altogether, form the coalition (S, T ). But, by the
definition of the core, there exists no joint action of coalition
(S, T ) that makes every one better off. Therefore, no subset
of providers and customers has any incentive to leave the
grand coalition. Thus, if the core is nonempty, the grand
coalition is stabilizable. Also note that the condition for a
payoff profile to be in the core, as given in (6), does not
depend on which provider an arbitrary customer j subscribes
to. Therefore, a customer cannot improve his payoff by
changing subscription, provided that the grand coalition has
been formed.

We now proceed to prove that the core of this game
is nonempty. Recall that by theorem 4.1, any balanced
coalitional game has a nonempty core. Then is suffices to
show that ((N ,M), v) is balanced.

Theorem 6.1: The nontransferable payoff game
((N ,M), v) is balanced, and therefore, has a nonempty
core.

Proof: Consider a balanced collection of coalitions
I = 2N∪M\∅ and the corresponding nonnegative weights
(λS,T , (S, T ) ∈ I). Now consider the payoff profile u ∈
R|N |+|T | be such that uS,T ∈ v(S, T ) for all (S, T ) ∈ I. In
other words, there exists joint action {αS,T

kj , k ∈ BS , j ∈ T }
for all (S, T ) ∈ I such that
a) {αS,T

kj , k ∈ BS , j ∈ T } satisfies feasibility constraints
1− 3 introduced in this section, for all (S, T ) ∈ I.

b) ui ≤
∑

j∈T
ω∈Ω

P(ω)fij(y
S,T
j (ω)),∀i ∈ S , where yS,T

j s

denote the rate vectors corresponding to joint action
{αS,T

kj , k ∈ BS , j ∈ T }.
c) uj ≤

∑
ω∈ΩP(ω)gj(y

S,T
j (ω)), ∀j ∈ T

By definition, if we show that u ∈ v(N ,M), the game is
balanced. Then by theorem 4.1, it has a nonempty core. The
procedure is similar to that in the proof of theorem 4.2. First
define a joint action set {αkj , k ∈ BN , j ∈M} as follows

αkj(ω) =
∑

(S,T )∈I:k∈BSj∈T

λS,T αS,T
kj (ω) (7)

The following two steps, concludes the proof.
Step 1: We need to show that {αkj , k ∈ BN , j ∈ M}

satisfy feasibility constraints 1− 3. The argument is similar
to that in step 1 of the proof of theorem 4.2, and is eliminated
for brevity.

Step 2: (i) ui ≤
∑

j∈M
ω∈Ω

P(ω)fij(y
N ,M
j (ω)), ∀i ∈ N

and (ii) uj ≤
∑

ω∈ΩP(ω)gj(y
N ,M
j (ω)), ∀j ∈ M , where

yN ,M
j s are the rate vectors given by joint action {αkj , k ∈
BN , j ∈M}. Using the concavity of fij(.)s and gj(.)s, it is
straightforward to show (i) and (ii) (Refer to step 2 of the
proof of theorem 4.2 for a similar argument).

It follows from Steps 1 and 2 that u ∈ v(N ), and the
claim follows

B. Computation of A Payoff Profile In The Core

In section V, we showed how the concept of market
equilibrium can be used to obtain a payoff profile in the
core. However, the coalitional game ((N ,M), v) cannot
be similarly related to the exchange market setting we
constructed in section V. Consequently, we turn to a more
general method to obtain an element of the core, proposed
in [9].

Consider a coalitional game (Q, V ), where Q is the set of
players and V S is the set of feasible payoff profiles for all
coalitions S ⊆ Q. For all proper coalitions S ⊂ N , consider
an arbitrary finite list of payoffs u1,S , u2,S , . . . , ukS ,S be-
longing to v(S). Using this finite list as input, the algorithm
in [9] will then calculate a pay off vector x̂ ∈ R|Q| such that
x̂ cannot be blocked by any proper coalition, using a payoff
vector from this finite list to block. If, in addition, the game
is balanced, we have x̂ ∈ V (Q). Although the computed
payoff vector x̂ need not be in the core of (Q, V ), it can
be made arbitrarily close to the core by selecting the above
finite list of payoffs appropriately. A notion of proximity to
the core will be discussed shortly.

We now proceed to discuss the above procedure in de-
tails, in the following 3 steps. 1) Introducing the notion of
approximate core. 2) Construction of an appropriate finite list
of payoffs to be used by the algorithm to generate a payoff
profile in the approximate core with arbitrary precision. 3)
Apply the algorithm to the finite list.

Step 1: Consider the coalitional game ((N ,M), v) de-
fined earlier in this section. We defined the core of this game
to be the set of all feasible payoff profiles that cannot be
blocked by any coalition. We can generalize this definition
as follows. A feasible payoff profile is said to be in the
approximate core of the game ((N ,M), v) , Cε, if it cannot
be blocked by at least a margin of ε, by any coalition.
Formally,



Cε = {x ∈ v(N ,M) : ∀(S, T ),@z ∈ v(S, T ) such that
zi > xi + ε, zj > xj + ε ∀i ∈ S, j ∈ T }

(8)

It is straightforward that for ε < 0, ε = 0, and ε > 0, Cε is a
subset of, equal to, and superset of the core, respectively.
Here we are naturally interested in the approximate core
for strictly positive values of ε. It is now evident from the
definition of the approximate core (8), that by letting ε go to
0, payoff profiles in the approximate core get closer to those
in the core of the game, hence the term approximate core.

Step 2: We next discuss how to construct a finite list of
payoff profiles such that, the payoff profile x̂ computed by
the algorithm using this finite list is in Cε, for any arbitrary
ε > 0.

Suppose that for all coalitions (S, T ) $ (N ,M), we can
find a finite list of payoff profiles in v(S, T ), V (S,T ) =
{u1,(S,T ), u2,(S,T ), . . . , ukS,T ,(S,T )}, such that every other
payoff profile in v(S, T ) is within ε distance of at least one
vector in V (S,T ). In other words

∀x ∈ v(S, T ), ∃um,(S,T ) ∈ V (S,T ) s.t.

x− um,(S,T ) ≤ ε.11×(|S|+|T |).
(9)

Now consider any arbitrary payoff profile x ∈ v(N ,M)
that is not blocked by any payoff vector in V (S,T ) for all
proper coalitions (S, T ). That is, ∀(S, T ) ⊂ (N ,M), there
does not exist ẑ ∈ V (S,T ) such that ẑi > xi ∀i ∈ S and
ẑj > xj ∀j ∈ T . Then it follows from (9) that there does
not exist z ∈ v(S, T ) such that zi > xi + ε ∀i ∈ S
and zj > xj + ε ∀j ∈ T . Thus x ∈ Cε. Since x ∈
v(N ,M) was arbitrarily selected, it might as well be the
payoff profile x̂ computed by the algorithm (Note that x̂
is guaranteed to be in v(N ,M)). Consequently, x̂ ∈ Cε.
Therefore, (V (S,T ), (S, T ) ⊂ (N ,M)) is indeed the finite
list of payoffs we seek.

It remains to show how to construct V (S,T ), for all
(S, T ) ⊂ (N ,M). First notice that we can restrict our search
to the payoff profiles in v(S, T ) that are Pareto-optimal, that
is, no other payoff profile in v(S, T ) can be found that gives
every one in (S, T ) a strictly higher payoff. Also, every
Pareto-optimal payoff profile x in v(S, T ), can be obtained
as a solution of the following optimization OPT (λS,T ),
for different values of λS,T , where λS,T 6= 0 is a set of
nonnegative weights.
OPT(λS,T ) : Maximize

∑
i∈S λS,T

i xi +
∑

j∈T λS,T
j xj

1) xi =
∑

j∈T
ω∈Ω

P(ω)fij(y
S,T
j (ω))

2) xj =
∑

ω∈ΩP(ω)gj(y
S,T
j (ω))

3) yS,T
kj (ω) = αkj(ω)rkj(ω), k ∈ BS , j ∈ T , ω ∈ Ω

4)
∑

j∈T αkj(ω) ≤ 1, k ∈ BS , ω ∈ Ω
5)

∑
k∈BS αkj(ω) ≤ 1, j ∈ T , ω ∈ Ω

6) αkj ≥ 0, k ∈ BS , j ∈ T .

Let x(λS,T ) be the solution of OPT (λS,T ). Notice that
the function x(λS,T ) is continuous in λS,T . Also note that
since scaling λS,T does not change the solution of the above

optimization, we can set
∑

i∈S λS,T
i +

∑
j∈T λS,T

j = 1.
As a result, we have a continuous function over a bounded
set {λS,T :

∑
i∈S λS,T

i +
∑

j∈T λS,T
j = 1}, whose range

covers the set of Pareto-optimal feasible payoff profiles.
It then follows that by selecting a collection of weights
{λ1,S,T , . . . , λk(S,T ),(S,T )} appropriately, the set of feasible
payoff profiles obtained by solving the above optimization,
will be the desired set V (S,T ).

Step 3: Now, we can apply the algorithm presented in [9]
to V (S,T ), ∀(S, T ) ⊂ (N ,M) to obtain a payoff profile x̂ ∈
v(N ,M). This algorithm is similar to the simplex method,
and performs several consecutive row and column operations
on a matrix containing the payoffs in V (S,T ) to reach the
answer. We have the following.

Theorem 6.2: The payoff profile x̂ computed by the algo-
rithm is in Cε.

Proof: Using the result in [9] and the above steps, the
claim follows

Discussion: Note that to compute a payoff profile in the
core by this method, we first have to construct a finite list of
payoff profiles, whose size is exponential in parameters of
the network and ε. As a result, regardless of the efficiency
of the algorithm proposed in [9], the computational time
will be exponential. The computational time of the algorithm
discussed in section V-C, on the other hand, is dominated by
the Global Newton Method. This method, despite not being
guaranteed to run in polynomial time, it has demonstrated
the capability of handling real world applications (see [12],
p. 670).

VII. GENERALIZATION

The cooperative games studied in previous sections have
the following two properties. (i) Each player (providers and
customers) benefits exclusively from the payoff he earned
by himself. In other words, the players do not share their
payoffs. (ii) All players have scaler payoff functions. In
this section, we first relax (i) and generalize this framework
to accommodate more general payoff sharing rules, such
as when there are groups of providers, and providers in
each group are willing to share their payoffs. We formulate
this problem as a coalitional game and show that it has a
nonempty core (section VII-A). Subsequently, we relax (ii)
and let players have vector payoff functions. Each component
of this payoff vector can then follow different sharing rules.
For instance, one component could be nontransferable, while
another could be shared by the players in specific groups. We
formulate a coalitional game based on such payoff functions,
and investigate it core VII-B.

A. Payoff Sharing

In this section, we reexamine the game ((N ,M), v)
defined in section VI in presence of a more general payoff
sharing rule. Payoff sharing has its potential advantages,
as well as some practical difficulties. When a group of
providers, for instance, agree to share their payoffs, instead
of each one trying to maximize its own payoff, they attempt
to maximize their aggregate payoff, which can be generally



higher than the sum of the maximized individual payoffs.
As a result, providers can enjoy higher payoffs, when they
share. On the other hand, trust relations of certain individuals
can prevent them from payoff sharing. For instance, two
providers are unlikely to share their revenues with each
other, unless both parties believe that the other is honest
in reporting its actual revenue. In addition, not all types of
payoffs can be shared, since they may not have monetary
equivalence. For example, fairness in the offered service
may contribute to a provider’s total payoff, but it would be
difficult to translate this into monetary units.

We consider a general sharing model, in which there are
several groups of providers. If providers in the same group
decide to cooperate, they will share their payoffs. Providers
from different groups, on the other hand, cannot share in
any case. Let P = {N1, . . . ,NL} be a partition of the set
of providers. We assume that for all l ∈ {1, . . . , L}, the
providers in Nl that are in coalition, share their payoffs. For
example, if P = {N}, then all providers that are in coalition
will share payoffs, and if P = {{1}, {2}, . . . , {N}}, then no
one shares payoffs. Now consider a coalition (S, T ). Define
Sl = S ∩ Nl. Then it follows from the above construction
that for all l ∈ {1, . . . , L}, providers in Sl engage in payoff
sharing. Note that for simplicity, we consider sharing only
among providers. All the formulations and results extend to
the scenario where there are groups of customers, and those
from the same group can share payoffs.

Consider the network setup in section VI. The feasibility
constraints, and consequently the set of feasible joint actions
do not vary due to payoff sharing. However, we need to
redefine the set of feasible payoff profiles. Previously, this
set included every payoff vector that is less than or equal to
some payoff profile obtained through a feasible joint action.
But since now some providers share their payoffs, for a
payoff vector to be in the set of feasible payoff profiles, we
only need the aggregate payoffs of each sharing group to be
less than or equal to that in some payoff profile given by a
feasible joint action. Formally, we define the set of feasible
payoff profiles v(S, T ) as follows

v(S, T ) = {x ∈ R|S|+|T | : ∃z ∈ R|S|+|T |,
∑

i∈Sl

zi ≥
∑

i∈Sl

xi

∀i ∈ {1, . . . , L}, zj ≥ xj ∀j ∈ T ,

z = FS,T (a) for some a ∈ A(S, T )}.
(10)

With this definition, the coalitional game ((N ,M), v) is
now well defined. The definition of the core of this game
then will be the same as (6). Using a similar technique as
that used in the proof of theorems 4.2 and 6.1, one can show
that this game is balanced. It then follows from theorem 4.1
that the core of the game is nonempty, and thus the grand
coalition is stabilizable. Also, a payoff profile in the core of
this game can be computed by an algorithm similar to one
discussed in section VI-B.

B. Modeling Individuals’ Profits By Vector Functions

We have so far focused on coalitional games with scaler
payoff functions. In this section, we examine the scenario
where players have vector payoff functions. Such payoff
functions can have several utility components of different
types. For instance, a provider’s payoff can be a vector of its
total revenue, its competitive power in the market, fairness
in the network, reputational issues, social welfare, among
others. A customer’s payoff, on the other hand, may consist
of his service rate and cost, power consumption, the size of
the network, and so on. Note that it is possible to have payoff
vectors with mixed transferable and nontransferable utility
components. Then payoff sharing can be feasible, which not
only depend on the players in a coalition, but also on the type
of utilities. Specifically, there could be groups of players, and
players in each group would share the transferable types of
utility, provided that they are in a coalition.

In this section, we investigate cooperation among
providers in presence of a vector payoff function of two
components; a transferable utility and a nontransferable one.
We consider the scenario where all providers is a coalition
would share the transferable utility. The formulations and
results can extend to more general cases, where payoff
functions have several components, and payoff sharing of
individual components occurs only among providers from
the same group, for given groups of providers.

Consider the scenario that when a provider i is in coalition
S and the state is ω, i enjoys utilities f t

i (y
S
i (ω)) and

fn
i (ySi (ω)), where the superscripts t, n stand for transfer-

able and nontransferable, respectively. f t
i (.)s and fn

i (.)s
are considered to be concave functions. The definitions of
a rate vector ySi (ω), a feasible payoff profile {αkj , k ∈
BS , j ∈ MS}, and the joint action space A(S) are exactly
the same as those in section III. Now consider a joint
action a ∈ A(S). We define FS(a) to be the payoff
profile corresponding to joint action a. In other words,
FS(a) = (xt,xn) if a) xt

i =
∑

ω∈ΩP(ω)f t
i (y

S
i (ω)) and

xn
i =

∑
ω∈ΩP(ω)fn

i (ySi (ω)) ∀i ∈ S , and b) (ySi , i ∈ S) is
the vector of service rates generated by joint action a.

We now define the set of feasible payoff profiles v(S) as
follows.

v(S) = {(xt,xn) ∈ R|S| ×R|S| : ∃(zt, zn) ∈ R|S| ×R|S| s.t.

zt.11×|S| ≥ xt.11×|S|, zn ≥ xn, z = FS(a)
for some a ∈ A(S)}.

(11)

In words, v(S) is the set of all payoff profiles for which
the nontransferable utilities of providers in S , as well as the
sum of their transferable utilities, are either equal or less than
that of a payoff profile generated by a feasible joint action.

We now proceed to define the core of this game. Note that
to define the core of the game, an ordering relation between
two different payoff vectors of a provider is necessary, i.e.,
we have to know which of the two payoffs (xt

i,x
n
i ) and

(zt
i, z

n
i ) provider i prefers. We consider a lexicographic



ordering relation, in which providers prefer the payoff profile
that offers the highest of nontransferable utility. In case there
are several payoff profiles with this property, the one among
them that offers more of the transferable utility is preferred.

With lexicographic ordering relation, the core of the game
is defined as follows: the set of payoff profiles that cannot
be blocked lexicographically, by any coalition, i.e.,

C = {(xt,xn) ∈ v(N ) : ∀S, @(yt,yn) ∈ v(S) such that
yn

i > xn
i ∀i ∈ S or yn ≥ xn and yt

i > xt
i ∀i ∈ S.}

(12)

We seek to show that C is nonempty. First note that as
f t

i (.)s and fn
i (.)s are concave, using a similar technique

used in the proof of theorem 4.2, it is straightforward to
verify that this game is balanced. But since the coalitional
games considered in [9] have scaler payoff functions, it is
not evident whether balancedness lead to nonemptiness of
the core. However, with a slight twist in the definition of the
core, we can use this theorem and derive interesting results.
Towards that end, we first define the approximate core for
this game as follows.

Cε = {(xt,xn) ∈ v(N ) : ∀S, @(yt,yn) ∈ v(S) such that
yn

i > xn
i + ε ∀i ∈ S or yn ≥ xn + ε and yt

i > xt
i ∀i ∈ S}

(13)

In words, Cε is the set of all payoff profiles that cannot be
lexicographically blocked by a margin of ε, by any coalition
S ⊂ N . Here is the main result.

Theorem 7.1: For any ε > 0, Cε is nonempty.
Remark: Note that theorem 7.1 does not imply that C is

nonempty, however, in practice it is as desirable.
Proof: Suppose that instead of lexicographic ordering

relation, providers use a linear ordering to compare different
payoff profiles. That is (xt

i,x
n
i ) is preferred over (zt

i, z
n
i ) if

λxt
i + xn

i ≥ λzt
i + zn

i , for some given λ > 0. We can then
define the core, Ĉ(λ), based on this ordering relation as the
following.

Ĉ(λ) = {(xt,xn) ∈ v(N ) : ∀S,@(yt,yn) ∈ v(S) such that
λyt

i + yn
i > λxt

i + xn
i ∀i ∈ S.}

(14)

We first argue that Ĉ(λ) 6= ∅ ∀λ > 0. The reason is
that now, we can assume that providers have a scaler payoff
function given by λf t

i (.) + fn
i (.) and redefine the set of

feasible payoff profile v̂(S) according to the new payoff
function. The definition of the core will be the same as
Ĉ(λ). Now theorem 4.1 applies. It is then straightforward
to verify that the coalitional game (N , v̂) is balanced. Then
by theorem 4.1, we conclude that Ĉ(λ) is nonempty.

We now claim that Ĉ(λ) ⊂ Cε, if λ =
ε/(maxi∈N ,(zt,zn)∈v(N ) zt

i). We prove this claim by
contradiction. Consider a payoff profile (xt,xn) ∈ Ĉ(λ).
Suppose that (xt,xn) /∈ Cε. Then by (13), ∃(yt,yn) ∈ v(S)
such that either of the following holds

i) yn
i > xn

i + ε ∀i ∈ S
ii) yn ≥ xn + ε and yt

i > xt
i ∀i ∈ S.

If (ii) holds, then λyt + yn > λxt + xn, and thus
(xt,xn) /∈ Ĉ(λ), which is a contradiction. Therefore, only
(i) holds. Thus, we have

yn
i > xn

i + ε ∀i ∈ S (15)

Also, since (xt,xn) ∈ Ĉ(λ), it cannot be blocked in linear
ordering sense, by any coalition, i.e.,

λyt
i +yn

i ≤ λxt
i +xn

I ⇒ yn
i −xn

i ≤ λ(xt
i −yt

i) ≤ ε ∀i ∈ S
(16)

The last inequality follows by
λ = ε/(maxi∈N ,(zt,zn)∈v(N ) zt

i). It is clear that (16) is in
contradiction with (15). Thus, the claim and subsequently,
the theorem follows.

Discussion: We now discuss computing a payoff profile in
the approximate core. As Ĉ(λ) ⊂ Cε, we can obtain a payoff
profile in Cε by finding one in Ĉ(λ). And since Ĉ(λ) can be
considered as the core of a corresponding coalitional game
with scaler payoff functions λf t

i (.) + fn
i (.) i ∈ N , a payoff

profile in Ĉ(λ) can be computed by the algorithm discussed
in section VI-B.

REFERENCES

[1] Z. Han and H. V. Poor, “Coalitional games with cooperative trans-
mission: A cure for the curse of boundary nodes in selfish packet-
forwarding wireless networks,” in 5th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks,
2007.

[2] S. Mathur, L. Sankaranarayanan, and N. Mandayam, “Coalitional
games in cooperative radio networks,” Fortieth Asilomar Conference
on Signals, Systems and Computers, pp. 1927–1931, Oct.-Nov. 2006.

[3] R. La and V. Anantharam, “A game theoretic look at the gaussian
multiaccess channel,” in Proc. of the DIMACS Workshop on Network
Information Theory, (New Jersey, NY, USA), Mar. 2003.

[4] S. Mathur, L. Sankaranarayanan, and N. Mandayam, “Coalitions
in cooperative wireless network,” IEEE J. Select. Areas Commun.,
vol. vol. 26, p. 11041115, Sep. 2008.

[5] A. Aram, C. Singh, S. Sarkar, and A. Kumar, “Cooperative profit
sharing in coalition based resource allocation in wireless networks,”
in Proc. of IEEE INFOCOM, (Rio de Janeiro, Brazil), Apr. 2009.

[6] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” IEEE
Transactions on Information Theory, vol. 34, no. 5, 1988.

[7] M. Osborne and A. Rubinstein, A Course in Game Theory. The MIT
press, 1999.

[8] V. Conitzer and T. Sandholm, “Complexity of determining nonempti-
ness of the core,” Technical Reprt CS-02-137, CMU, 2002.

[9] H. E. Scarf, “The core of an n person game,” Econometrica, vol. 35,
pp. 50–69, January 1967.

[10] A. Mas-colell, M. D. Whinston, and J. R. Green, Microeconomic
Theory. Oxford University Press.

[11] S. Smale, “A convergent process of price adjustment,” Journal of
Mathematical Economics, vol. 3, pp. 107–120, 1976.

[12] M. Ferris and J. Pang, “Engineering and economic applications of
complementarity problems,” SIAM Review, vol. 39, pp. 669–713, 1997.


