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Abstract—Given the flexibility that software-based operation Specifically, the hosts can simply drop packets sent to them
provides, it is unreasonable to expect that new malware will hefore processing them, reduce the reception gain of their
demonstrate a fixed behavior over time. Instead, malware can gntennas [3], or even refuse some connection requests
dynamically change the parameters of their infective hostsn . L . "
response to the dynamics of the network, in order to maximize . CIVEN the flexibility that software-based operation presid
their overall damage. However, in return, the network can aso it iS unreasonable to expect that new malware will demotestra
dynamically change its counter-measure parameters in ordeto  a fixed behavior over time. Instead, malware can dynamically
attain a robust defense against the spread of malware while change its modus operandi in response to the dynamics of
minimally affecting the normal performance of the network. ihe network, in order to maximize the overall damage it

The infinite dimension of freedom introduced by variation ower . flicts. H - i th twork Iso d cal
time and antagonistic and strategic optimization of malwae and INflicts. However, in return, the network can also dynantyca

network against each other demand new attempts for modeling change its counter-measure poli.cy. to more effgctively S8ppo

and analysis. We develop a zero-sum dynamic game model andthe spread of the infection. The infinite dimension of freedo

investigate the structural properties of the saddle-poinstrategies. introduced by variation over time and antagonistic optaniz

We specifically show that saddle-point strategies are simel iy of malware and network against each other demand new

threshold-based policies and hence, a robust dynamic defse . . . .

is practicable. attempts for_mod(_allng and analysis of t_helr confrqntatl_o_n.

This paper investigates such confrontations and identifies

. INTRODUCTION maximum damage dynamic strategies of attack and devises

I ) . . _robust dynamic defense before such threats emerge.
a) Motivation and Overture:New wireless technologies b) Defense and Attack Decision ProblenBue to the

with increasing communication and computation capaediti common media of the wireless network and unreliable chan
transcend our mere person-to-person mobile communicatio

- - o : nels, the bandwidth consumed for distribution of the seéguri
needs. Sensitive and critical applications are rapidlyetgped . . : ; :
and popularized, thanks to tﬁg software-baselzad (ﬁeraﬂonpggches can itself disrupt the normal functionality of theg-n

wireless devices. The added flexibility, however, comes Work. Excgssive quarantinirjg through_reception rate redac
a price: malware writers are expected to launch malicio So deteriorates the quality of service (QoS) for the data

e . . L - traffic. Such quarantining can not usually discriminateeloas
applications which threaten to compromise critical saguri on the identity of the transmitters, since the hosts applyin

privacy and in case of e-health, vitality of the users. the reception rate control in general do not know which other
Worms spread during data or control message transmissiof P 9

from nodes that are infectedn{ective$ and those that are nodes are infected; the reception rate itself may however

vulnerable, but not yet infectedisceptibles Worms can dis- 2(6) \,Jvug'Ctg)l;ilﬁfigfg?"ﬁgrg\ﬁé;hmeér:oﬁfngﬁggoék Ssglr;?:?i?\ n the
rupt the normal functionalities of the hosts, steal theivaie 9 P y 9

information, and use them to eavesdrop on other nodes. T %tantaneous (Q) rate Of _paf[chlng and (b) reception rate of
theé nodes, that jointly minimizes the overall damage due to

worm can also render the host dysfunctional by deliberatet the subversive activities of the malware that is capable
draining its battery, or by executing a pernicious code th P; O . . . P
annihilating infectives, and (ii) the additional resoer

incurs irretrievable critical hardware or software damagg., . o ; o
by re-fleshing the BIOS corrupting the bootstrap prograﬁfnsumpt'on and deterioration of QoS owing to the applcati

required to initialize the OS [1]. We call these inoperative the countermeasures. The design must adapt over time,
remaining cognizant of the malware’s ability to dynamigall

nodesdead. Upon an outbreak of a new malware, anomalx LS . g .
. . ; . imize its spread in response to the network’s dynamic
detection techniques can be used to identify the presence %

. " . strategy.
malicious activities and generate security patches [2] ¢_ha The malware also faces an interesting trade-off: shoulidl it k
then be distributed among the nodes.Such patches éither . . ; Co , )

; ; : . . its host as soon as feasible after infecting it? While a quick
munize susceptible nodes against future attacks, by reCtﬁy'%ﬁ'\nihiIation of a host inflicts a high instantaneous costhen t
their underlying vulnerability, otheal the infectives of the network. it also rules out the uge of that node in infectin
infection and render them robust against future attacksleo ' 9

. : the remaining susceptibles. Thus, early mutilation of étife
that have been immunized or healed are denoteda@wered ;
. . o .~ _nodes may thwart the spread of malware itself. Moreover,
In the meanwhile, reducing the communication rates in thellin a node deprives the malware of the other malicious
network can quarantine the worm by slowing down its sprea‘&. ng P .
activities the node can be used for, such as eavesdropping,
The contributions of MHR. Khouzani and S. Sarkar are suggottirough stealing private information, etc. Deferral of killing, dhe

grants NSF-CNS-0914955, NSF-CNS-0915203, NSF-CNS-(BL56 other hand, is at the risk of losing that node through instiaih
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of security patches and recovery of that node by the netwodemic modeling based on the classic Kermack-Mckendrick
The annihilation strategy should therefore depend onivelatmodel [5] has extensively been used to analyze the spread of
benefits for the malware and the damages for the netwarlalware in wired and cellular networks [4], [6], [€t¢ and
incurred by each of the above factors. For instance, if tlmore recently in wireless networks [8]. These works show,
malware is primarily interested in stealing a node’s pevathrough simulations and matching with actual data, thatrwhe
information or eavesdropping on others, it ought to deféhhe number of nodes in a network is large, the deterministic
killing for some time, but again not too long lest the nodepidemic models can successfully represent the dynamics of
recovers. If on the other hand its primary goal is to degradee spread of the malware.

network functions by disabling as many nodes as possible an
as soon as possible, it ought to start the slaughter as soon,

It rf?oﬁtjifé%ﬂri:rl-zmagfsﬁfepﬁskglnoen tﬁ;thggésk's to minimize ttEJapers, however, allow only one of the network or malware
§ dynamically change their parameters, and assume that the

damage |_an|cted by the malware assuming that the m‘f’"Wa& er’s choice of parameters is not only static but also kmow
chooses its strategy so as to maximize this damage with f the opponent. In contrast, we consider a dynamic game

knowl_edge of the_counter-measure. Due to the above traide- here the network chooses its patching and communication
and since an optimal strategy of the malware depends on s d icall inimize th Ild h
strategy of the network andice versa,determination of the es dynamically so as to minimize the overall damage when
robust strateqies of either is non-trivi,al This paper the malware also intelligently varies its parameters, #pec

9 ' Paper oSS cally, killing the infective nodes, over time so as to maxmi

a method to answer these questions. Ithis damage; also each player remains cognizant of the other

c) Contributions: First, we construct a mathematica laver's ability to obtimallv respond to the opbonent's ides
framework which cogently models the strategic confrootai play y P yresp PP '

between the malware and the network as a zero-sum dynami€&ame theory has been used in the context of security in
game (sec. IlI-A) drawing from (i) existing epidemic modelsietworks as it is apt to model the interactions of attackers
that have earlier been proposed and validated for worm progdnd defenders, e.g. in [13]-[16]. [14] presents modelsiier t
gation in wireless networks (sec. II-A), and (ii) damagedun inference of the intents, objectives and strategies of a new
tions that we introduce to investigate the trade-offs tasyl attacker and apply it to a DDoS attack. In their work, however
from different decisions of the entities concerned (se®)ll the sets of actions of both the attack and the defense are, finit
We then prove the existence of ti@bust (or saddle-point and structural property of Nash Equilibriums or saddlenfi
strategies of the network and the malware (sec. II-A), arffdive not been obtained; the work focuses on the modeling
compute them (sec. llI-B). Existence of such strategies aadd numerical evaluations. Algorithmic implementatiorfs o
also their computations are not clear a priori, as the glyatet (variations of) models in [14] are pursued in [15], [16}c.
of each player is uncountably infinite and consists of fuonti We apply dynamic zero-sum games to model the strategic
over time. confrontations of a malware and the defense in a wireless

We prove that the robust defense strategy has a simpletwork, and delve into the structural properties of thedsad
two-phased structure (sec. lI-C): (i) patch at the maximugoint strategies, when the attack and defense can intellige
possible rate until a threshold time, and then stop pat¢hirgnoose the annihilation, patching and reception rateseresp
(i) choose the minimum possible reception rate (i.e., tH&ely. Thus, unlike most of the existing work, the defense
maximum packet drop rate at the receivers) until a threshalgerates also at the MAC and physical layers, as opposed to
time and subsequently revert to the normal reception rdte. Tonly at the routing or application layers. Indeed, we analyz
initial aggressive defense limits the spread of infectionl a not only the security risks (fraction of infectives, deadies),
thereby the pool of nodes that can potentially be exploitduit also the QoS degradations (packet drops) and the lower
or killed; this guarantees an upper bound on the damagger bandwidth consumptions (in transmission of patches)
inflicted irrespective of the malware’s choice of annilidat associated with the trade-offs. Also, the strategy setsaohe
rates. Given its simple structure, the defense control @n flayer is uncountably infinite since the strategies aretfans
readily implemented in resource constrained wirelessagsvi of continuous times with continuous ranges. The differerice
From a game-theoretical point of view, the structure resaile  the contexts and the nature of choices require a substgntial
somewhat surprising given the non-linear dynamics of staféferent analytical approach. Our contributions compéemn
evolutions and the non-monotonicity of the state functjongl3], which focuses on detecting the intrusion of a worm that
and their proofs rely on non-standard techniques. dynamically controls the intensity of its activity, but dorot

The game formulations, and in particular the epidemiovestigate subsequent defense. [17], [18] assume a rietwor
models, rely on some abstractions which have been maslkich each user autonomously decides whether or not install
for analytical tractability. Using simulations, we valtdathe a security measure, depending on his/her utility functand
formulations when these assumptions are relaxed (sec. Wey show that a pure Nash equilibrium (of these decisions)
Our numerical computations reveal that our robust dynanmexist. They however, assume the actions of the malware, and
defense strategy attains substantially lower value of th&-m of the users once decided, are fixed over time, and the game
imum damage inflicted by the malware as compared to tHatbetween the users. In contrast, in our model, the actibns o
for heuristic static choice of defense parameters. the users and the malware can dynamically and strategically

d) Related Works:Malware outbreaks in wireless net-vary over time and the game is between the network and the

works constitute an emerging research topic (e.g., [4]) Ephalware.

cbynamic control of parameters of the network or the worm
& been investigated in several papers [3], [9]-[12].s€he



Il. SYSTEM MODEL scan for the susceptibles, node velocities, transmissinges,
A. Dynamics of State Evolution node densities, and uplink and downlink communicationsrate
) . . ) o (the last two for cellular networks).
A susceptiblenode is a mobile wireless devicahichis not A susceptible accepts a communication request with a prob-
contaminated by the worm, but is prone to infection. A ”Od;?oility uNr(t).4 At any givent, there arens(t)n;(t) infective-

is infective if it is contaminated_ by the_ worm. An ,i“feaivesusceptible pairs. Susceptibles are therefore transtbrime
spreads the worm to a susceptible while transmitting data ffactives at ratefuN" (t)ns (t)nr(t). Infection propagation,

control messages toit. The worm dalt an infective host, i.e., therefore, can be contained through appropriate regalatfo
render it completely dysfunctional - such nodes are denotgd'r(t)s subject to:

dead A functional node that is immune to the worm is referred
to asrecovered 0 <ulr <ol (t) <l ateacht.

Nodes are roaming in a vast 2-D region of aréavith an
average velocitys. No node is aware of the state of othefrhe lower boundu.y arises due to the minimum quality
nodes. Specifically, if a susceptible node knew a priori Whic®f service (QoS) requirements for data traffic (since the
nodes are infective, then it would have just blacklistedrthi ~acceptance probability is the same irrespective of whetreer
is also difficult for the malware to constantly measure nekworequest arrives from another infective, susceptible, cove
states given that a large number of nodes are roaming ovegrad node). The upper boung; ., (which can be normalized
large area, and given that the set of neighbors of the infescti to 1) provides the reception rate that nodes use for providing
are constantly changing owing to node mobility. the desired QoS in absence of security considerations.

Let the total number of nodes in the network Ne Let the We now consider the dissemination of security patches in
number of susceptible, infective, recovered and dead nodee network. A pre-determined set of nodes, referred to as
at time ¢ be respectively denoted bys(t),n;(t),nr(t) and dispatchers (e.g., BS for cellular and exit-points for gela
np(t), and the corresponding fractions 5¢t) = ng(t)/N, tolerant networks) are pre-loaded with the patches. Wenassu
I(t) = n;(t)/N, R(t) = ng(t)/N, and D(t) = np(t)/N. thatthe dispatchers can not be infected, and that ther® &g
Thus, S(t) + I(t) + R(t) + D(t) = 1. At the time of the dispatchers where the network paramdtgy is betweert) and
outbreak of the infection, that is at time zero, some nodésEach node communicates with the dispatchers, and thereby
are infected0 < I(0) = I, < 1. For simplicity, we assume fetches security patches, at an overall ra®¥ Rou™i(t) at
R(0) = D(0) = 0. Thus,S(0) = 1 — I,. any timet. The parametef depends on node density, mobility

We now model the dynamics of the propagation of thearameters, allowable transmission rates etc., wher8gs)®
infection as an epidemic model that has been validated fiér a control function which can be used to regulate the
mobile wireless networks through experiments as well &andwidth consumed in propagation of patches - the higher
network simulations (see e.g. [20], [21]). A susceptible e value ofu®i(t), the higher is the recovery rate but so is
infected whenever it receives a message from an infectitge resource consumption in patch transmission. Clearly,

The epidemic models consider homogeneous mixing (which N,
we later relax using simulations) where an infective is digua 0<wu™(t) <1ateach.

likely to initiate communication with each node, and hencg the node that receives the patch is a susceptible node, it
each susceptible, say at rate This represents worm propa-instalis the patch and its state changes to recovered. If an
gation in 3G and 4G ceIIuIar_networks where infective mabil§nfective receives the patch, the patch may fail to healrit, o
try to infect randomly and uniformly generated addresseeN he worm may prevent its installation. We capture the above
that in any such mobile to mobile communication, irespegsssibility by introducing a coefficiert < 7 < 1: 7 = 0

tive of the locations of the mobiles, there are two wireles§ecurs when the patch is completely unable to remove the
communications between access points and mobiles and {agm from infectives and only immunizes the susceptibles,
rest of the communications are through the backbone netwafKereasr = 1 represents the other extreme scenario where
where the delays and congestions are relatively limitece Th patch can equally well immunize and heal susceptibles and

homogeneous mixing can also be justified in delay toleragfective noded. Now, if the patch heals an infective, its state
networks (DTN) where the infectives initiate communNICatiochanges to recovered, else it continues to remain an inéecti

only with nodes that are within their transmission rangés. The worm at an infective host kills the host with rate
fact, under mpb|ll'§y models such as the random waypoint Bfoportional tou (¢) at a given timet; this is accomplished
the random direction model [22], Groenevettal. [23] have  executing specific codes with a probability of choice. The

established the homogeneous mixing assumptiem.both \yorm regulates the death process by appropriately choosing
scenariosf3 depends only on the rates at which the mfectwqgw(t) at eacht, subject to:

1Related state dynamics can be motivated for a p2p netwoike(@ [19]). 0< uM(t) < u%ax at eacht.
2Infectives do not initiate connection with other nodes a®TNs mobile

nodes roam a vast area which is much larger than their conwation 4 ) )

ranges, and there is no backbone network and more often titaend-to-end The subscript- representseaception.

connectivity does not exist. 5Superscript N designates control functions of trework, and M desig-
3The result has been proven when the communication rangeeafiddes Nates control functions of the atware.

is small compared to the total area of the region and nodecitgle is 5The subscript denotes inmunization.

sufficiently high. Numerical computations in [23] show ttia¢ result mostly “In order to avoid immediate detection and blacklisting, itifectives may
extend even when these assumptions are relaxed. choose not to refuse all connection requests from the dispet.



The upper bound arises due to processor constraints and the e
resulting limitations on the maximum rate of execution aftsu
codes.

The rates of changes ¢hs(t),n;(t),np(t)) are therefore:

Ang(t)/At = —pul (t)n(tns(t) — Bu™ (()N Rons (t)
Ang(t)/At = Bu™NT ()n(t)ns(t) — mBu™i (£)N Rony (t)
—uM(t)ng(t)
Anp(t)/ At = uM (t)n(t)
Let B := N3 andB; := NAR,. Dividing both sides byV

and lettingN' goes to infinity,S(¢), I(t) and D(t) converge to
the solution of the following system of differential equomts®

Fig. 1: State transitionsu™?(t) andu™" (¢) are the control parameters of the
network whilew” (¢) is the control parameter of the malware.

S(t) = —Boul"(#)I(£)S(t) — B1uNi (t)RoS(t) (2a) resources consumed for spreading the security patches, and
. N, N, M the QoS deterioration due to the reduction of reception. rate
1(t) = Pou™r (I(6)S(t) = mru™ () Rol(t) —u™ ()I(t)  |nfectives can perform harmful activities over time, ethey
' (2b) can (i) eavesdrop and analyze traffic that is generated or
D(t) = uM(t)I(t) (2c) relayed by the infected hosts, or the traffic that traverses i
the hosts’ vicinity, and (ii) alter or destroy the traffic tha
is generated or relayed by the infected hosts. Dead nodes
I(0) = lim n;(0)/N =1y, S(0)=1-1, D@0)=0 are inoperative and thus inflict a time-accumulative cost on
N—oo 3) the network. The bandwidth overhead at timelue to the
media scanning and transmission of the security packets by
the dispatchers i®,u™i (¢). Due to the reception rate control,
0 < S(t),I(t),D(t) (4a) the susceptibles lose &) ~— u™~(t) fraction of packets
S@t)+1I(t)+ D(t) < 1. (4b) transmitted by all nodes which degrades the overall QoS. We
therefore consider the aggregate network damage atttiase
Thus, (S(.),1(.), D(.)) constitute the system state functionsg combination of (t), D(t), u: (t), ulNr(t).10
u™(.) = (u™(.),uNi(.)) constitutes the network control func- Note that the damage function can be scaled so that one of
tions anduM(.) constitutes the malware’s control functidn. the coefficients may be chosen as unity: we choose the one
Note that nodes usiglentical reception, patching and killing associated with the instantaneous bandwidth overheads, Thu
rate functions irrespective of the states in their neighbods the damage over the time horizém 7] is:**
since they do not know these states. Nevertheless, sinse the T
rates are allowed to vary with time, they can be chosen iny, N M) :/ [k11(t) + kpD(t) + Rou™i(t)
accordance with how the network states expectedo evolve. 0
Henceforth, wherever not ambiguous, we drop the depen- — mruNT(t)] dt + KpD(T). (5)

dence ort and make it implicit. Fig. 1 illustrates the transitions i
between different states of nodes and the notations used. XpD(T) relates to the final tally of the dead nodes. The
coefficients are all non-negative and represent the relativ

B. Defense and Attack objectives importance of each corresponding term in the overall damage

We first quantify the total damage inflicted by the malwar@-g-, if the worm gains the most by killing, and thereby
during the network operation intervél, T]. This damage is completely disabling nodes,p >> r;. Let k; > 0,k > 0.

due to the presence of infectives, the death of nodes, thélhe network seeks to choose its control veatdi(.) so as
to minimize the above while the malware seeks to choose

8Throughout the paper, variables with dot marks (eSt)) will represent  its control «* (.) so as to maximize the above, subject to

with initial constraints:

and also satisfy the following constraints at all

their time derivatives (e.g., time derivative 5{t)). satisfying the state constraints (4) and ensuring that

9This convergence can be made rigorous if further technisaumptions
are made. Specifically, ifns(t), nz(t), np(t)) constitutes a Continuous- wlNr < N (t) < ulr 0<uli(t) <1 (6a)
Time Markov Chain (CTMC), then ‘according to the results o#][2as mn o v porm? = -
N grows, S(t), I(t) and D(t) convergeto the solution of the the sys- 0 < u™(t) < Uy (6b)
tem of differential equation in the following sensg: e > 0V ¢t > L. . .
0, limy_ o pr{suqu‘%_s(T” > ¢} = 0. Likewise for I(t) and In sec. lll, we model their interactions resulting from

D(t). Note that the CTMC property entails assuming that the iotetact 0pposing objectives as a dynamic game. The formulatioageli

times are exponentially distributed. For DTN networkss fhioperty is shown i i i
for by Groeneveltet al. [23] under a number of mobility models such ason the fOllOWIﬂg result (WhICh We prove in [25]) that allows u

random waypoint or random direction model [22]. Also, whiensidering O ignore the state constraints without any loss of gertgrali
the limits, 8o, 81 are limits of the respective R.H.S. According to the results

of [23], 3,3 are inversely proportional to the area of the roaming region ‘°We adopt a linear structure for analytical tractabilitydaaiso because
(A). Thus, the limitslimn_, o0 N8, limn_,c N exist as long as the node non-linear functions may be approximated by (piece-wigealr versions.
density limy —, o IN/A exists for largeN, and are also positive since the 1INote that(ufl\?.@m —u™N") inside the integral is replaced withu™>~ as
node densitimy _, o N/A, 3, 8 are all positive. nrurl,\i,’}mT does not depend on the evolution of the states or the controls



Lemma 1: Any pair of strategiesu™ (.), v (.)) that satisfy

for any strategyu’V of the network and:™ of the malware,

the control constraints (6a) and (6b), satisfy the state- caand thenV is the value of the game, ardd =V, = V'*.

straints (4), and furher ensure th&t) > 0, S(¢) > 0 for all
t € 0,T].

IIl. NETWORK-MALWARE DYNAMIC GAME
A. Formulation

Consider a system with two playerd (network) and
M (malware), specified by a system afdifferential equa-
tions [26, P.83]:

#(t) = f (t,x(t), ™ (1), u™ (1))t € [to, T, (7a)
uN e UN crR™, WM eUM cR?, (7b)

and initial conditionz(ty) = zo, and a damage function

T
Juf uF] = g(2(T)) +/ h(z,u®,u® t)dt. (7c)

to

wherez(t) is then-dimensional state vectoPlayer N seeks
to minimize J by controlling the m-dimensional control

Thus, if the network selects its saddle-point stratedy,
irrespective of the strategy of the malware, the damage it
incurs is at mosV/, which is also the minimum damage that
the malware can inflict if it has the upper-hand. Thus, the
network’s saddle-point strategy is alsontbuststrategy, in the
sense, that it minimizes the maximum possible damage it can
incur. Conversely, the malware’s saddle point strategylds a
its robust strategy, since it maximizes the minimum possibl
damage it can inflict. Also, the network’s and the malware’s
saddle point strategies are their respective best respdnse
the other’s robust strategy.

Theorem 1:The dynamic game game defined above has a
saddle-point pair of strategies.

We prove this theorem in [25].

B. A framework for computation of the saddle-point stragegi

Since the set of deterministic strategies of each player is
uncountably-infinite, the saddle-point strategies andvtidae
of the game can not be computed using convex or linear

functionu™(.), and playerM seeks to maximiz&/ by con- programming. We now present a framework for numerical
trolling the s-dimensional control function (.). The game is computation of the saddle-point strategies.
therefore referred to as a dynamic two-player zero-sum gamepefine theHamiltonianfor a given policy pair(uV, u*) in

The players’ payoffs, and the set of strategies availabledm an arbitrary two-person dynamic game as follows:

are calledrules of the gameBoth players know the rules of
the game and each player knows that its opponent knows

rule and ad infinitunt? In this paper we consider open-loop

strategies, which is, the controls only depend on time (agd s
not on the state, or the previous history). This is approgri
in the context of the security in networks, as the instardase

state of the network (exact fraction of the nodes of each)type

is impossible (or very costly) to follow, for both of the plxg.
In our context, (2) provides thég(.) functions, the initial
conditions are provided by (3), (5) provides tlg¢.), i(.)
functions, (6a), (6b) providé/~, UM. Also, we have;n =
3,m = 2, s = 1. Note that thef(.), h(.) functions in our
context depends on timeonly implicitly, that is through the
state and control functions. Also, the formulation does n
capture any other constraints on the state functions, and
our context it does not need to either, owing to Lemma 1.
We now consider the values of the game. Tbwer value

denoted byV,, is the overall damage when the minimizing

player (N) is given the upper-hand, i.e., selects its sgsate
after learning its opponent’s strategy. Mathematically:

V. = maxmin J[u, uM]
uM 4N

Conversely, theupper valueof the gamel’* is defined as
V* = minmax J[u", uM]

ulN M

Thus, V. (V*, resp.) is the maximum (minimum, resp.) dam
age that the malware (network, resp.) can inflict (incumpres
if the other player has the upper-hand. Hende,< V*. A
pair of strategiegu’~*, u**) is called asaddle-pointf

J(UN*,UM) S J(UN*,UIM*) :VS J(UN,UIM*)

L2each player knows that each player knows that the opponentetc.

the H(u™, u™) = (\, f(z,u™,u™ 1)) + h(z,u™, u, t)

where the state functions.) are those that correspond to the
strategy paifu”,u™), and \, the co-state(or adjoint) func-

a\ions, are continuous and piecewise differentiable fumstiof

time that satisfy the following system of differential etjoas
Wherever the controléu’Y, ™) are continuous:

A= —EH(:C, A\t)
x

0
and the final value (transversality) condition
9(g(x))

in
In our context,
H(WM, uN) =
kil +kpD + uNiRO — KTUNT + (/\] — As)ﬂouNTIS
—)xsﬂlRouNiS — /\]BQRouNiI + (/\D - /\])UMI

where again the state functiofS(.), I(.), D(.)) are obtained
from (2) with (u™V'(.),u*(.)) as the control functions, and the
co-state functiongAs(.), Az(.), Ap(.)) are obtained from the
following system of differential equations (witt (.), u(.)
as the control functions)

- . OH '
As=—%5 =~ (A1 = As)Bou™"T + AsBrRou™'  (8a)
OH ;
A\ = o1 T (A1 — As)Bou™"S + A1 Bou™' Ry
— ()\D — )\I)uM (8b)
. OH



with the final conditions C. Structural Properties of Saddle-Point Defense Strategy

We establish that the saddle-point defense strategy has a
simple threshold-based structure that ought to facilifege
gnplementation in a localized manner in resource constdhin
Nvireless devices. Specifically, we prove that:

Theorem 2:For the saddle-point defense strategy(.)

As(T) =0, A(T)=0, Ap(T)=Kp. (9)

Then, following [26, P.31], a necessary condition for th
pair (u¥, u*) to be a saddle-point strategy pair is that for a

tel0,71]: g ~
[0.7] (uNr(.),uMi(.)), there exists times;, t2, 0 < t; < T, 0 <
(u™,uM) € argmin max H(a,aM) and (10a) t2 <T such that:
oo ulNr(t) = ullr for 0 < t < t1, anduNr(t) = uly . for
(u™, uM) € argmaxmin H (@, @) (10Db) i b - norm
’ ) M EN ) : th<t<T.

o ulNi(t) =1for 0 <t <ty andu®i(t) =0forty <t <
Henceforth, we denote the saddle point strategy pair as T.
(u™(.), (), and(S(.),I(.),D(.)), ()\s(-),)\{(-),)\D(-)) as The overall strategy therefore has the following three
the corresp_ondlng state. and co-state functions Hnds the phases. In the initiabggressive defensphase, i.e., during
corresponding Hamiltonian. We now expre@s’(.), u™(.)) (0, min(ty,t)), the susceptibles select the minimum possi-
in terms of (S(.), I(.), D(.)), (As(.), A1(.), Ap(.)) using the pje reception rate, and the dispatchers transmit the patche
necessary conditions (10). Let whenever they are in contact with any other node. Thus, the
Nr o guarantining is the most stringent, and the recovery magetira
ZM - 5%/\1__/\/\5’95}(%15: ;Tﬁ Rl during this phase. Then, in the interimatchful phase, i.e.,
Mo /\0 _/\S 1[ 0 172770 during (min(t,t2), max(t1,t2)), one of the defense controls
M= (Ap = A1) subside while the other continues as beforetf < t,,
then the reception rate control subsides (i.e., the sustept
select their normal reception ratg,..). If, howevert; > t,,
H = kil + kpD + NN NN MM (1) then instead the dispatchers stop transmitting the patdhes
t; = to, there is no watchful period. Finally, in the terminal
Thus, the Hamiltonian is a separable function of differemelaxedphase, i.e., iMmax(t¢1,t2),T"), both defense controls
components of the defense contréls"~(.),u™:(.)) and the subside, that is, the susceptibles select their normaptiere
attack controlu(.), that is, each of these appear in differrate and the dispatchers do not transmit the patches. Thaus, t
ent terms in the R.H.S of the above characterization. No®0S in data traffic is back to its normal value and the resource
from the necessary conditions in (10) subject to the contradnsumption overhead due to patch transmission ends.

Now, the Hamiltonian can be rewritten as:

constraints in (6), the saddle-point strategies are derage Note that the defense strategy always chooses either the
maximum or the minimum values of the parameters except
N u if Y >0, possibly in a set of measure zero (i.e., except possibly at
u T — min . (12) . K
N, f N <0 t1,t2). Such strategies are referred to lasng-bangin the
unorm I 1/] <

control literature. The durations of the phases (i.e., tlees
yNi {0 if Nt >0, (13) of the threshold times;,¢,) and which defense subsides in
)1 ifyNi<o0 the interim watchful period, depend on the damage coeffisien
M e m,m?,KD,nT. F_or example, if the last two are very high
WM = ) Umax if > 0. (14) (relative to the first three),; and/ort, may turn out to be
0 if vM <0, zero. Ift; = 0, then the susceptibles always select their normal
reception rate, and the system never quarantines theioriect
Since N+, N yM are uniquely specified once the stat&imilarly, if ¢ = 0, the dispatchers never transmit patches and
and the co-state functions are known, the above relatidn@nce there is no immunization, nor healing. We conclude thi
express the saddle-point strategies in terms of the state stb-section by proving Theorem 2.

co-state functions. The strategies'(.),u™Vi(.),u(.) can Proof: The continuity of ¢~ (.),¢Ni(.) follows from
be substituted by the above characterizations in (2) and (8)ose of the co-state functions. From the final conditions
resulting in a system of differential equations involving only on the co-state functions, i.e., (N (T) = —k, < 0,

the state and the co-state functions. Using standard noaheri/™:(T) = Ry > 0. We show that)™(.) (»Vi(.), resp.) are
methods for solving differential equations, this system ba strictly decreasing (increasing, resp.) functions of tiffileus,
solved (very fast) using the initial and final conditions,(3)each has at most one zero-crossing point{(inT’); denote
(9). The state and co-state functions obtained as solutidhsse as, to. If ¥~ (¢, resp.) has no zero crossing point
will now provide they™N~, i ™ functions, and thereby thein (0,7), t; = 0 (t2 = 0, resp.). Thus, from the continuity of
saddle-point strategies via (12), (13), (14). The resgltet of thev(.) functions, and from their terminal values, )V~ (.)
differential equations is non-linear and a close-form gotu is negative in(¢;, ') and positive in(0, t,), and (i) " (.) is
is unknown. However, as we will show in the next sectiorpositive in(¢2,T) and negative if0, t2). The theorem follows
using novel techniques, even without access to the closébm (12) and (13).

form solution, we can establish the type of behavior that theWe prove the strict monotonicity af™~(.), 1":(.), using:
saddle-point strategies exhibit. Lemma 2:Ag >0 andA; > Ag, \p >0V t,0<t<T.



The lemma is intuitive since the shadow prices (i.e., co- 0
state variables) associated with the susceptibles andrebes os paly
ought to be positive, and also the shadow price associatixd wi o4
the infectives ought to be at least as high as that associated
with susceptibles. But, the proofs that require detailealyasis O
of the state and co-state differential equations (2), (8pee-
tively, are less direct, and have been relegated to [25]. od

1) Strict monotonicity of)™(.): We show that)™¥~(¢) is
strictly negativeat all t € (0,7)*3 02

States

Controls

: 0
,[Z)NT _ Ed]NT —
Y3 _ ; _ 5 Fig. 2: State evolution and saddle-point strategies. The parasete
(A — As)BoLS + (A1 — As)BoIS + (A1 — As)BolS the game are as follows:; = 10, kp = 20, K, = 10, K, = 15,

. . L . = = = 0.109, K; = Kp = 0, and initial fractions
which after replacement and simplification yields % _ ng Ro 500.1, Do — 0. andT — 4 hous.

INT
= v —rr —uM(\p — Ng) = Biau®Ni + Badgu®i = .
PolS once. We establish this slightly differently: we show thjelf
—kr = (Ap = ADuM — (Ar = As)u™ — (81 — B2)A\ru™ s strictly positive at its zero-crossing point (as opposed
—(A1 — As)B2u™:  showing it for allt). But this is also sufficient to conclude
M has at most one zero-crossing point.

From (14), lemma 2 and since; > 0, 31 > fa, u™M(t) >

0,uMi(t) > 0 at all £, the right hand side is negative. The " =TI(Ap — A1)+ ™ =k —kp +u™(Ap — A1)

Eleesmulrtn;o!?ws sincedy > 0 and S(t) > 0,I(¢t) > 0 at all ¢ —BoruN? + SBouNT(A; — Ag) + TypM
2) Strict monotonicity of)™Vi(.): At a zero-crossing point of™ . the last term vanishes. Now,
P kp = P2 = 0, and the remaining terms are all non-negative
PN = Ewm = because of (14) and lemma 2. The result follows singce- 0.
. . . . [ |
(A1 = As)BolS + (A1 — As)BolS + (A1 — As)BolS The saddle-point attack strategy may however be more
PN v N involved when eithey > 0 or kp > 0. For example, fig. 2
= = k1B + B2u™ Ap + Bof1Su"" (A1 — As) depicts the saddle point strategies and the state evolirtion

. - ) an example scenario wherg, = 20, 82 = 0.109. The initial
The R"}VS is positive from lemma 2 and since> 0, 5 > 0. jnfection is relatively high [, = 0.3) and the dispatchers
Thus,s™ > 0 sincefo > 0 andI(t) > 0 at all¢ (lemma 1). gre relatively few &, = 0.1). The malware starts killing the
®  nhodes from the beginning, but around the time that the defens

D. Structure results for the saddle point attack strategy ~ Strategy relaxes the reception rate of the nodes to nortl, t
. _— malware stops the killing and infects the newly accessible
The saddle-point attack has a simpliest-amass, then

. ; susceptible nodes, boosting the fraction of the infectind a
slaughterstructure in the special case that the worm benef'éﬁortly starts to kill them all again

from killing only through the final tally of the dead (i.e., ' '

kp = 0), and the patches can only immunize the susceptibles, IV. 1 SSUES RELATED TO IMPLEMENTATION

but can not heal the infectives (i.¢1; = 0). Specifically:

Theorem 3:For the saddle-point attack strategy” (.), The simple structure of the saddle-point defense stragegie

there exists a times, 0 < 3 < T such thatu (1) — 0 as e_stabllshed in Theor_em 2, are conduqve to implementa-
for 0 < ¢ < ts, andu™ (t) = uM_for ty < t < T. t!on in resource constrained wireless deylces. Thg thidsho
’ max pmes can be computed by a central unit that estimates the

Thus, the worm does not kill any infective during the initiaS stem parametery, 5 and knows the damage coefficients
amass period of(0,¢;) when it uses them to spread the?Y p L 9

infection; it slaughters them at the maximum rate subse(d},uen“é ’C'Z\D i it(tD—’KOT ’ I'{é wgseg??epgteéﬁ;?ar} Sﬁﬁ?zat:;ffhgerigggﬁge
The intuition behind this structure is as follows. Once th@/cS: R, P

worm infects a host, it never loses it to the recovery prqceg the worm in the system), and transmitted to all devices

and thus, snce 1 benefs fom Il  hostonly becaudle, 3 SEcLre boagoast Srce 1 o8 one e tansmisio,
this enhances the final tally of the dead, it ought to Kill Bost '

towards the end and utilize them before. The proof foIIows.SeOluently execute the robust strategies without cooidgat

Proof: Note thaty™(T) = K;I(T) > 0 (because of any further among themselves or with the central unit.

lemma 1). Thus, as in the proof of Theorem 2, the resuol} NGOLe.ﬁg:gx.léer cagt. c?r?s dg;erdrg'g;qb:g .iojs\ggglﬁ_;ysste::nh
follows if we can show that)(t) crosses zero at most ! 1al equations, ! ! ) - U

systems can be solved very fast due to the existence of efficie
Bpartial derivative w.r.t time, only because of the depecdealso on the numer'ca! algquthms for solvmg dlfferentlal equationsd the
initial values for the states. Otherwisejs the only independent variable. ~computation time is constant in that it does not depend on the
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number of nodesV. For example, we obtained computation
times of1 second using an 2.66 GHz Intel Xeon CPU X 5355.
Given that many mobile devices have computing capabilities
and that this is a one time computation, it can even be exeécute
at each mobile device once they have estimated and/or &arne
Bo, B1, k1, Dy KD, iy K-

In practice, due to drifts in local clocks, different nodei w S T AN D SR e 4time
increase (decrease, resp.) the reception (patching) mreges ' ' ' '
to nor_mal V"’_"“es at dlfferent_ times instead qf exactlyiat.. ig. 4. Saddle-point defense and attack strategies for the game
Our simulations presented in the next section reveal thet ¥hnsidered in sec. V. Herey — 10, kp = 20, Ky = 10, #, = 15,

overall costs are robust to clock drifts. B = Bo = 0.109, B2 = K; = Kp = 0, and initial fractions
In=0.1, Rp = 0.1, Do = 0, andT = 4 hours.

o
©
T

ue) uNe

o
>

N
ot
O

Controls
o
»

o
N
T

V. PERFORMANCE EVALUATION
Epidemic models have been validated for several mobile

wireless networks through experiments as well as network ol

simulations (see e.g. [20], [21]). Our simulations in [2B} f B PRI TRttt et it
specific wireless networks such as DTNs and cellular netsvork B 30

also show a close match, even in cases where homogeneous S

mixing assumption does not hold. Here, we compare the over- g%

all damages predicted by the epidemic differential equatio © iz

(2) and obtained through simulations in three differenhace s

ios. First, we consider a DTN withl nodes (the numbef1 o}
is in accordance with the experiment reported in [27]), wher Max. Clock Drift (D)

nodes communicate only when they move to communication
range of each other, i.e., when they meet. We allow t

nodes to move as per a uniform mobility model [23], with
average speed = 15km/h and with communication range

50m, Defense and attack strategies are saddle-point strategi
calculated based on the estimatégl and 3, for each Iy (
[25]). We consider different initial fraction of the inféwts,

. 5: Robustness of the saddle-point strategy with respect tkclo
ift. The increase in the overall cost is less tg#.

e\?\/e next evaluate the performance, i.e., the overall damage,
when nodes’ clocks drift from the global clocks by different
specificallyT, € {0.01,0.02,0.05,0.10, 0.15, 0.20, 0.25}. amounts, and hence they choose different threshold times

Fig. 3(a) reveals that the average of the total damaﬁ%ﬁmaltshreshﬂd tlr_r;e * |nd|k\)/!|(jtual dr(;ft)l. Wed C(?nsll(dzre.?
over 20 runs of the simulation with the above paramete setling with uniform mobility model, and clock aritts

closely match those predicted by the epidemic model: al &ich are statistically independent and uniformly disitéxl

: W o etween— A and A. Fig. 5 depicts the overall damage as a
as expected the damage increases with increae Bimilar Jl.mction of A averaged over 100 simulation runs. Note that

S o . : ven forA as large ag'/2 (i.e., 50% inaccuracy in the value
and random direction mobility models (defined in [23]). Such the threshold times) the increase in the overall damage is

close match is expected since homogeneous mixing horﬁ{s thar%
for these models [23]. We next consider the mobility patte fi>S tharb7. . : . . .
reported in [27] (based on measurements on human mobilifi/M this step, using epidemic representations, we will asses

during Infocom 2005) that does not satisfy homogeneo e ﬁ!d"a”tage of ponsidering a dynamic game and "'?P'e'
menting saddle-point strategies as robust defense against

mixing. Here, inter-contact times are power-law distréuijt > i
gnamlcally optimizing malware. We now measure the gap

which arises since nodes which have just met are more lik " th : I { the i dd it th
to meet in near future than those who had met a long time adg, oo '€ Mmaximum value ot Tie incutred damage 1 the
efense parameters, i.e;;'” and ‘i, do not change with

Nevertheless, the average2if runs (fig. 3(b)) shows that the d that wh ddl int def trateai b
overall damage follow similar trends as under the epide fine, and that when saddle-point defense strategies are use
e will refer to the former as static strategies. Fig. 6 depic

representations, with universally lower overall damages : q . db stati dd '
compared with the calculated damage (as discussed in [25 € maximum damages incurred by eSIstatic and dynamic
ddle-point defense strategies for different valueseftttial

Finally, we consider a cellular network composed of 40 . . ) . .
nodes and 8 base stations. Nodes follow uniform mobility at Ct'?ﬂ of |nfect|vet nodes (I{ﬁlo IS betweet[(r)].l 100.6) Wthedn. th
are associated with the nearest base-station. Infectidesio"'¢ ON€r parameters are the same as hose reported in the
ption of fig. 4. By best static, we mean the fixed reception

try to transmit the malware to randomly chosen IDs (cefi® . ) -
y y ( @e, as well as the fixed dissemination rate of patches are

phone number) - the communication proceeds through t . ; ,
base stations serving the node-pair. The security patatees ose that achieve Fhe least damage among all possible fixed
choices. Saddle-point defense strategies result 2208 to

distributed by base stations to the mobiles via control okeém
The overall data (and control message) exchange bandwid
of each base-station is divided equally among the assdciate CONCLUSION

nodes [25]. Fig. 3(c) shows acceptable match between oufve have investigated strategic confrontations of malware a
simulation and the epidemic model. tack and network defense in mobile wireless networks thnoug

ﬁq% reduction in the overall damage.
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Fig. 3: Average of 20 different runs of the overall damage underr ttesipective saddle point strategies for DTNs of 41 and 12&aavith
homogeneous mixing (uniform mobility model) in (a), DTNsthvé41 nodes with non-homogeneous mixing (power-law inteetimg times)
in (b), and for a cellular network of 400 nodes and 8 BST's in Fg. 3(a) also shows that the match improves with increasi.
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