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Abstract— We address the question of attaining stability guar-
antees through distributed scheduling in wireless networks. We
consider a simple, local information based, distributed schedul-
ing strategy, maximal scheduling, and prove that it attains
a guaranteed fraction of the maximum stability region. By
considering the notion of queue-length stability, we strengthen
existing rate stability results for maximal scheduling. The queue-
length stability guarantees provided by maximal scheduling can
differ across sessions, and depends on the “interference degree”
in the two-hop neighborhood of the session.

I. I NTRODUCTION

Until recently, the question of attaining throughput guaran-
tees through distributed scheduling had remained largely un-
explored. Maximizing the network throughput, or equivalently,
attaining the maximum stability region of the network, through
appropriately scheduling is a key design goal in wireless
networks. Tassiulaset al. characterize the maximum attainable
stability region in an arbitrary wireless network, and provide
a scheduling strategy that attains this region [11]. The policy,
however, is centralized and can have exponential complexity
depending on the network topology considered. Tassiulas [10]
and Shahet al. [9] provide linear complexity randomized
scheduling schemes that attain the maximum stability region;
however, these scheduling strategies also require centralized
control. Although [5], [6] consider distributed scheduling
policies, these do not provide any analytical performance
characterization of the policies.

In this paper, we study the throughput performance of
a class of distributed scheduling policies calledmaximal
scheduling. Maximal scheduling only ensures that if a trans-
mitteru has a packet to transmit to a receiverv, either(u, v) or
a transmitter-receiver pair that can not simultaneously transmit
with (u, v) is scheduled for transmission; the scheduling is
otherwise arbitrary. It is worth noting that a maximal schedul-
ing policy can be implemented using only local topology
information. Several recent works have obtained performance
guarantees for maximal scheduling under various interference
models. Linet. al. [4] have shown that for the node-exclusive
spectrum sharing model (in which case the maximal schedul-
ing policy reduces to the maximal matching policy), maximal
scheduling attains at least half of the maximum throughput

This work was supported by the National Science Foundation under grants
NCR-0238340, CNS-0435306 and CNS-0448316.

region. Daiet. al. [2] have also obtained a similar guarantee
for the maximal matching policy in input-queued switches
where the scheduling constraints are similar to that in the node-
exclusive spectrum sharing model. Chaporkaret. al. [1], [8]
and Wuet. al. [12] have studied the performance of maximal
scheduling under generalized as well as certain specialized
interference models.

In this paper, we extend the results in [1], [8] by proving
stronger performance guarantees for the maximal scheduling
policy under arbitrary interference models. More specifically,
whereas [1], [8] obtain stability results in terms of rates, our
stability results are in terms of the queue-lengths. Rate stability
results, as shown in [1], [8] only imply that the arrival and
departure rates are the same. Queue-length stability results, as
provided in this paper, however imply that the queue-lengths
remain bounded at all times. Therefore, although queue-length
stability implies rate stability, the converse is not necessarily
true.

Although our stability results are similar in nature to the
queue-length stability results provided in [12], the performance
bounds that we provide are significantly tighter than those
provided in the latter. More specifically, we provide session-
specific stability guarantees which depend only on the “inter-
ference degree” in the two-hop neighborhood of every session.
The “interference degree” of any session is defined as the
maximum number of sessions that interfere with the given
sessionand do not interfere with each other. The stability
guarantees in [12] however depend on the maximum number
of sessions that interfere with any session in the network,
which could be significantly larger than the session-specific
interference degree, as defined above.

The paper is structured as follows. In Section II, we describe
the system model and provide the necessary definitions used
later in the paper. In Section III, we state and prove our result
on the queue-length stability guarantee provided by maximal
scheduling. We conclude in Section IV.

II. SYSTEM MODEL

We consider scheduling at the medium access control
(MAC) layer in a wireless network. We assume that time is
slotted. The topology in a wireless network can be modeled
as a directed graphG = (V, E), whereV andE respectively
denote the sets of nodes and links. A link exists from a node



u to another nodev if and only if v can receiveu’s signals.
The link setE depends on the transmission power levels of
nodes and the propagation conditions in different directions.

Next we introduce terminologies that we use throughout
the paper. These are also defined in [1], [8], some of these
being well-known in graph theory. We mention these for
completeness.

Definition 1: A node i is a neighbor of a nodej, if there
exists a link fromi to j, i.e., (i, j) ∈ E.

At the MAC layer, each session traverses only one link. If a
sessioni traverses link(u, v) thenu andv are i’s transmitter
and receiver respectively, and the session is completely spec-
ified by the3−tuple, (i, u, v). Multiple sessions may traverse
the same link. Without loss of generality, we assume that every
node inV is either the transmitter or the receiver of at least
one session. If this assumption does not hold, we can consider
G to be a subgraph obtained from the original topology by
removing the nodes that are not the end points of sessions.

Definition 2: A sessioni interfereswith sessionj if j can
not successfully transmit a packet wheni is transmitting.

A wireless networkN can be described by the topology
G = (V,E), the 3−tuple specifications of the sessions and
the pair-wise interference relations between the sessions. We
consider a network withN sessions.

Definition 3: The interference setof a sessioni, Si, is the
set of sessionsj such that eitheri interferes with j or j
interferes withi.
Note that if j ∈ Si, theni ∈ Sj .

We elucidate these definitions through examples in Fig. 1.
Note that the interference sets of the sessions will depend on
the communication and interference models; [1] describes the
broad classes of communication and interference models, and
how pairwise interference relations can be obtained for these
classes.

We now describe the arrival process. We assume that at
most αmax packets arrive for any session in any slot. Let
αj(t) andD̃j(t) denote the number of arrivals and departures,
respectively, for sessionj in slot t. We assume that the
arrival process(α1(.), . . . , αN (.)) constitutes an irreducible,
aperiodic markov chain with a finite number of states. We
refer to this assumption as thejointly markovian assumption.
Note that such an arrival process satisfies a strong law of
large numbers (SLLN). In other words, ifAi(n) denotes the
number of packets that sessioni generates in interval(0, n],
i = 1, . . . , N , then there exist non-negative real numbers
λi, i = 1, . . . , N , such that with probability1,

lim
n→∞

Ai(n)/n = λi, i = 1, . . . , N. (1)

Definition 4: The arrival rate of sessioni is λi, i =
1, . . . , N . The arrival rate vector ~λ is an N−dimensional
vector whose components are the arrival rates.

Definition 5: A scheduling policyis an algorithm that de-
cides in each slot the subset of sessions that would transmit
packets in the slot.
Clearly, a subsetS of sessions can transmit packets in any slot
if no two sessions inS interfere with each other and every

session inS has a packet to transmit. Every packet has length
1 slot. Thus if a session is scheduled in a slot, it transmits a
packet in the slot.

We now describe the “maximal scheduling” policy we con-
sider. This policy schedules a subsetS of sessions such that (i)
every session inS has a packet to transmit, (ii) no session inS
interferes with any other session inS, (iii) if a sessioni has a
packet to transmit, then eitheri or a session inSi, is included
in S. Clearly, many subsets of sessions satisfy the above
criteria in each slot, e.g., in Fig. 1(b),{S1, S7}, {S2, S3, S6}
satisfy the above criteria in any slot in which all sessions have
packets to transmit. Maximal scheduling can select any such
subset. If each session knows its interference set, maximal
scheduling can be implemented in distributed manner using
standard algorithms [7]. In most cases of practical interest,
sessions can determine their interference sets using local
message exchange.

Now we define our notion of stability,queue-length stability,
which guarantees that the expected queue-lengths of sessions
are finite in stable systems. LetQi(n) be the number of
packets waiting for transmission at the source of sessioni at
the beginning of slotn.

Definition 6: The network is said to bequeue-length stable
if there exists non-negative real numbersqi, i = 1, . . . , N,
such that with probability1,

lim
n→∞

Qi(n)/n = qi, i = 1, . . . , N. (2)

The queue-length stability regionof a scheduling policy is
the set of arrival rate vectors~λ such that the network is
queue-length stable under the policy, for any arrival process
that satisfies the jointly markovian assumption and has arrival
rate vector~λ. The maximum queue-length-stability region
ΛQ is the union of the queue-length-stability regions of all
scheduling policies. LetΛMS

Q denote the queue-length stability
region attained by maximal scheduling.

III. QUEUE-LENGTH STABILITY GUARANTEES WITH

MAXIMAL SCHEDULING

In this section, we state and prove our main result on queue-
length stability. More specifically, we relate the queue-length
stability region attained by maximal scheduling to the maxi-
mum queue-length stability region by providing neighborhood-
specific throughput guarantees for the individual sessions.

We consider the notion of “interference degree” of a session,
as introduced in [1]. Theinterference degreeof a sessioni in
networkN , Ki(N ) is (i) the maximum number of sessions
in its interference setSi that can simultaneously transmit,
if Si is non-empty, and (ii)1, if Si is empty. Thetwo-hop
interference degreeof session-linki, is defined asβi(N ) =
maxj∈Si∪{i}Ki(N ).

In the following result, we show that the performance of
each sessioni under maximal scheduling can be characterized
by the its two-hop interference degree,βi(N ). More specifi-
cally, the result shows that maximal scheduling ensures queue-
length stability as long as the arrival rates of every sessioni
is within a factor of1/βi(N ) of the stable arrival rates of
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Fig. 1. Panel (a) shows a directed graph withV = {M1, . . . , M10}. The arrows between the nodes indicate the directed links. There are7 sessions:
S1, . . . , S7. NodesM2, M5, M3, M6, M1, M8 andM10 are the transmitters of sessionsS1, S2, S3, S4, S5, S6 andS7, respectively. NodeM2 has 3
neighbors:M1, M5, M6. SessionsS5 andS6 interfere with each other, asM4 has a single transceiver.
Panels (b) and (c) show the interference graphs for the network shown in (a) under bidirectional and unidirectional communication models, respectively. As
panels (b) and (c) show, the interference sets ofS6 are{S1, S5} and{S5} under the bidirectional and unidirectional communication models, respectively.

the sessions. Thus, due to the use of local information based
scheduling, the performance of each sessioni decreases by a
factor ofβi(N ); the penalty for each session therefore depends
only on its two-hop neighborhood.

Theorem 1:Consider an arrival rate vector(λ
′
1, . . . , λ

′
N )

such thatλ
′
1 < λ1/β1(N ), . . . , λ

′
N < λN/βN (N ), where

(λ1, . . . , λN ) ∈ ΛQ. Then,(λ
′
1, . . . , λ

′
N ) ∈ ΛMS

Q .

Proof: Let ~λ ∈ ΛQ. Then, under~λ, for some scheduling
policy π, there exists a non-negative real vector(q1, . . . , qN )
such that for all i, limn→∞

∑
n Qi(n)/n = qi w.p. 1.

Now, since Qi(n) = Qi(0) + Ai(n − 1) − Di(n − 1),∑
n Qi(n)/n = Qi(0) +

∑
n

Ai(n−1)−Di(n−1)
n . Thus, for all

i, limn→∞
Ai(n−1)−Di(n−1)

n = 0 w.p. 1. Since for all i,
limn→∞Ai(n − 1)/n = limn→∞Ai(n)/n = λi w.p. 1, for
all i, limn→∞Di(n)/n = limn→∞Di(n− 1)/n = λi w.p. 1.
Thus, the arrival and departure rates are the same, and the sys-
tem is rate stable. Therefore, for alli,

∑
j∈Si∪{i} λj/βj(N ) ≤

1 (Lemma 5, [8]). Hence
∑

j∈Si∪{i}
λ′j < 1 ∀ i. (3)

Let the arrival rate vector be(λ′1, . . . , λ
′
N ). Consider a max-

imal scheduling policy. Clearly,~Q(.) constitutes an irreducible
aperiodic markov chain.

Consider the lyapunov functionf(t), where

f(t) =
∑

i

∑

j∈Si∪{i}
Qi(t)Qj(t).

Clearly, f(t) > 0 if Qi(t) > 0 for somei.

E[f(n + 1)− f(n)| ~Q(n)]

=
∑

i

∑

j∈Si∪{i}
E[Qi(n + 1)Qj(n + 1)−Qi(n)Qj(n)| ~Q(t)]

=
∑

i

∑

j∈Si∪{i}
E

[(
Qi(n) + αi(n)− D̃i(n)

)
(Qj(n)

+αj(n)− D̃j(n)
)
−Qi(n)Qj(n)| ~Q(n)

]

≤
∑

i

∑

j∈Si∪{i}
E[Qi(n)αj(n)−Qi(n)D̃j(n)

+Qj(n)αi(n)−Qj(n)D̃i(n)| ~Q(n)]
+(N + 1)N(α2

max + 1). (4)

Now,
∑

i

∑

j∈Si∪{i}
Qi(n)αj(n) =

∑

i

∑

j∈Si∪{i}
Qj(n)αi(n),

and
∑

i

∑

j∈Si∪{i}
Qi(n)D̃j(n) =

∑

i

∑

j∈Si∪{i}
Qj(n)D̃i(n).

Thus,

E[f(n + 1)− f(n)| ~Q(n)]

≤ 2
∑

i

Qi(n)
∑

j∈Si∪{i}
E[αj(n)− D̃j(n)| ~Q(n)]

+(N + 1)N(α2
max + 1)

= 2
∑

i

Qi(n)


 ∑

j∈Si∪{i}
λ′j − E[

∑

j∈Si∪{i}
D̃j(n)| ~Q(n)




+(N + 1)N(α2
max + 1).

Let δ = 1 − maxi

∑
j∈Si∪{i} λ′j . From (3), δ > 0. Next,

under maximal scheduling, ifQi(n) > 0,
∑

j∈Si∪{i} D̃j(n) =
1. Thus, for all ~Q(n),

E[f(n+1)−f(n)| ~Q(n)] ≤ −2δ
∑

i

Qi(n)+(N+1)N(α2
max+1).

Hence, by Foster’s theorem (Theorem 2.2.3 in [3]),~Q(.)
is a positive recurrent markov chain. Thus, under maximal
scheduling, there exists a non-negative real vector(q1, . . . , qN )
such that for alli, limn→∞

∑
n Qi(n)/n = qi w.p. 1. Thus,

(λ′1, . . . , λ
′
N ) ∈ ΛMS

Q . This concludes the proof.



IV. CONCLUDING REMARKS

In this paper, we have investigated the question of attaining
stability guarantees using a simple distributed scheduling
policy, maximal scheduling, in an arbitrary wireless network.
We consider the notion of queue-length stability, and show
that guarantees provided by maximal scheduling can be char-
acterized in terms of the local interference degree of every
session.

REFERENCES

[1] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through
maximal scheduling in multihop wireless networks. InProceedings
of 43d Annual Allerton Conference on Communication, Control and
Computing, Allerton, Monticello, Illinois, September 28-30 2005.

[2] J. Dai and B. Prabhakar. The throughput of data switches with and
without speedup. InProceedings of INFOCOM, pages 556–564, Tel
Aviv, Israel, Mar 2000.

[3] G. Fayolle, V. A. Malyshev, and M. V. Menshikov.Topics in the Con-
structive Theory of Countable Markov Chains. Cambridge University
Press, 1995.

[4] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks. InProceedings of
INFOCOM, Miami, FL, Mar 2005.

[5] H. Luo, S. Lu, and V. Bharghavan. A new model for packet scheduling
in multihop wireless networks. InProceedings of MOBICOM, pages
76–86, Boston, MA, August 2000.

[6] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan. Achieving
mac layer fairness in wireless packet networks. InProceedings of
MOBICOM, pages 87–98, Boston, MA, August 2000.

[7] D. Peleg.Distributed Computing: A Locality-sensitive Approach. Soci-
ety of Industrial and Applied Mathematics, Philadelphia, PA, 2000.

[8] S. Sarkar, P. Chaporkar, and K. Kar. Fairness and throughput guarantees
through maximal scheduling in multihop wirel ess networks. InProceed-
ings of the 4th International Symposium on Modeling and Optimization
in Mobile, Ad-hoc and Wireless Networks, Boston, MA, April 2006.

[9] D. Shah, P. Giaccone, and B. Prabhakar. An efficient randomized
algorithm for input-queued switch scheduling.IEEE Micro, 22(1):19–
25, Jan-Feb 2002.

[10] L. Tassiulas. Linear complexity algorithms for maximum throughput
in radio networks and input queued switches. InProceedings of
INFOCOM, pages 533–539, 1998.

[11] L. Tassiulas and A. Ephremidis. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control,
37(12):1936–1948, Dec 1992.

[12] X. Wu and R. Srikant. Bounds on the capacity region of multihop
wireless networks under distributed greedy scheduling. InProceedings
of INFOCOM, Barcelona, Spain, April 2006.


