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Abstract—We address the question of attaining stability guar- region. Daiet. al. [2] have also obtained a similar guarantee
antet_es thl’OUgh distribute_d sched_uling in Wirel_es§ networks. We for the maximal matching policy in input-queued switches
consider a simple, 'Ocla' '“Ijozjm?t'on b?jsed* d's”'r?”te.d schedul- \yhere the scheduling constraints are similar to that in the node-
Ing strategy, maximal scheduling and prove that it attains exclusive spectrum sharing model. Chaporkaral. [1], [8]

a guaranteed fraction of the maximum stability region. By . ,
considering the notion of queue-length stability, we strengthen and Wuet. al.[12] have studied the performance of maximal

existing rate stability results for maximal scheduling. The queue- scheduling under generalized as well as certain specialized
length stability guarantees provided by maximal scheduling can jnterference models.

differ across sessions, and depends on the “interference degree” ; ; .
in the two-hop neighborhood of the session. In this paper, we extend the results in [1], [_8] by proving
stronger performance guarantees for the maximal scheduling
|. INTRODUCTION policy under arbitrary interference models. More specifically,

. . - whereas [1], [8] obtain stability results in terms of rates, our
Until recently, the question of attaining throughput guaran-_ . . .
S ) . stability results are in terms of the queue-lengths. Rate stability

tees through distributed scheduling had remained largely un- . : .
L : results, as shown in [1], [8] only imply that the arrival and

explored. Maximizing the network throughput, or equivalently

attaining the maximum stability region of the network, througﬂeparture rates are the same. Queue-length stability results, as

aoprooriately scheduling is a kev desian qoal in. wirele Srovided in this paper, however imply that the queue-lengths
pprop y S 9 €y gn g : remain bounded at all times. Therefore, although queue-length
networks. Tassiulast al. characterize the maximum attainable . ="~ . o . ;
- S : . . Stability implies rate stability, the converse is not necessarily
stability region in an arbitrary wireless network, and prowd{eue

a scheduling strategy that attains this region [11]. The polic{/,

however, is centralized and can have exponential complexit . : :
depending on the network topology considered. Tassiulas [ eue-length stability results provided in [12], the performance
' unds that we provide are significantly tighter than those

and Shahet al. [9] provide linear complexity randomized . . o . .
X . ) " . provided in the latter. More specifically, we provide session-
scheduling schemes that attain the maximum stability region

. . . .sg&\cific stability guarantees which depend only on the “inter-
however, these scheduling strategies also require Cemra“%erence degree” in the two-hop neighborhaod of every session.

control. Although [5], [6] consider distributed scheduling]_ i o .
L . . he “interference degree” of any session is defined as the
policies, these do not provide any analytical performance

characterization of the policies. maximum number of sessions that interfere with the given

In this paper, we study the throughput performance SFssionand do not interfere with each otheirhe stability
a class of dist,ributed scheduling policies callethximal guarantees in [12] however depend on the maximum number

scheduling Maximal scheduling only ensures that if a transof sessions that interfere with any session in the network,

mitter « has a packet to transmit to a receivegither(u, v) or which could be significantly larger than the session-specific

. ) : ) interference degree, as defined above.
a transmitter-receiver pair that can not simultaneously transmi : : .
he paper is structured as follows. In Section Il, we describe

with (u,v) is scheduled for transmission; the scheduling i% . e
. . . . ; e system model and provide the necessary definitions used
otherwise arbitrary. It is worth noting that a maximal schedul-

) . . . ater in the paper. In Section IIl, we state and prove our result
ing policy can be implemented using only local topolog

information. Several recent works have obtained performancréhthe queue-length stab|_||ty gua_rantee provided by maximal
cheduling. We conclude in Section IV.

Although our stability results are similar in nature to the

. . . . S
guarantees for maximal scheduling under various interferencée

models. Linet. al.[4] have shown that for the node-exclusive Il. SYSTEM MODEL
spectrum sharing model (in which case the maximal schedul- . . .
; . : : . . We consider scheduling at the medium access control
ing policy reduces to the maximal matching policy), maxim

X . . AC) layer in a wireless network. We assume that time is
scheduling attains at least half of the maximum throughp : X
Slotted. The topology in a wireless network can be modeled

This work was supported by the National Science Foundation under graﬁé a directed graptr = (Vv E)' v_vhereV _andE_rESpeCtively
NCR-0238340, CNS-0435306 and CNS-0448316. denote the sets of nodes and links. A link exists from a node



u to another node if and only if v can receiveu’s signals. session inS has a packet to transmit. Every packet has length
The link setE depends on the transmission power levels df slot. Thus if a session is scheduled in a slot, it transmits a
nodes and the propagation conditions in different directiongacket in the slot.

Next we introduce terminologies that we use throughout We now describe the “maximal scheduling” policy we con-
the paper. These are also defined in [1], [8], some of thesider. This policy schedules a subsetf sessions such that (i)
being well-known in graph theory. We mention these fogvery session it has a packet to transmit, (ii) no sessionsin

completeness. interferes with any other session i (iii) if a sessioni has a
Definition 1: A node: is aneighbor of a nodey, if there packet to transmit, then eithémwr a session irf;, is included
exists a link from: to j, i.e., (i,7) € E. in S. Clearly, many subsets of sessions satisfy the above

At the MAC layer, each session traverses only one link. Iferiteria in each slot, e.g., in Fig. 1(b)S1, 57},{52, 53,56}
session traverses link(u, v) thenw andv aresd’s transmitter satisfy the above criteria in any slot in which all sessions have
and receiver respectively, and the session is completely sppaekets to transmit. Maximal scheduling can select any such
ified by the3—tuple, (i, u, v). Multiple sessions may traversesubset. If each session knows its interference set, maximal
the same link. Without loss of generality, we assume that evesgheduling can be implemented in distributed manner using
node inV is either the transmitter or the receiver of at leastandard algorithms [7]. In most cases of practical interest,
one session. If this assumption does not hold, we can considessions can determine their interference sets using local
G to be a subgraph obtained from the original topology byessage exchange.
removing the nodes that are not the end points of sessions. Now we define our notion of stabilitgueue-length stability

Definition 2: A session: interfereswith sessionj if j can which guarantees that the expected queue-lengths of sessions
not successfully transmit a packet wheis transmitting. are finite in stable systems. Lé&);(n) be the number of

A wireless network\ can be described by the topologypackets waiting for transmission at the source of sessian
G = (V,E), the 3—tuple specifications of the sessions anthe beginning of slot.
the pair-wise interference relations between the sessions. W@®efinition 6: The network is said to bgueue-length stable
consider a network withV sessions. if there exists non-negative real numbegs i = 1,..., N,

Definition 3: The interference sebf a session, S;, is the such that with probabilityl

set of sessiong such that either interferes withj or j ) )
interferes withi. Jim Qi(n)/n=gq; i=1,...,N. (2)

Note that if j € S;, theni € 5;. ___ The queue-length stability regiomf a scheduling policy is
We elucidate these definitions through examples in Fig. the set of arrival rate vectors such that the network is

Note that thg int_erferenc_e sets of the sessions will depend @kue-length stable under the policy, for any arrival process
the communication and interference models; [1] describes g satisfies the jointly markovian assumption and has arrival

broad classes of communication and interference models, 3¢k yector X. The maximum queue-length-stability region
how pairwise interference relations can be obtained for the&g is the union of the queue-length-stability regions of all

classes. _ _ scheduling policies. LeAMS denote the queue-length stability
We now describe the arrival process. We assume thatré‘bion attained by maximal scheduling.

most o, packets arrive for any session in any slot. Let

a;(t) and D;(t) denote the number of arrivals and departures, Ill. QUEUE-LENGTH STABILITY GUARANTEES WITH
respectively, for sessiory in slot t. We assume that the MAXIMAL SCHEDULING
arrival process(a;(.),...,an(.)) constitutes an irreducible, |n this section, we state and prove our main result on queue-

aperiodic markov chain with a finite number of states. Wength stability. More specifically, we relate the queue-length
refer to this assumption as tf@intly markovian assumption. stability region attained by maximal scheduling to the maxi-
Note that such an arrival process satisfies a strong law afim queue-length stability region by providing neighborhood-
large numbers (SLLN). In other words, if;(n) denotes the specific throughput guarantees for the individual sessions.

number of packets that sessiomgenerates in intervalo, n], We consider the notion of “interference degree” of a session,

i = 1,...,N, then there exist non-negative real numbergs introduced in [1]. Thénterference degreef a session in

Aiyi=1,..., N, such that with probabilityt, network A/, K;(N\) is (i) the maximum number of sessions
lim A;(n)/n =X\, i=1,...,N. 1) in its interference set; that can simultaneously transmit,
n—o0 if S; is non-empty, and (ii)l, if S; is empty. Thetwo-hop

Definition 4: The arrival rate of sessioni is \;, i = interference degreef session-linki, is defined as3;(N) =
1,...,N. The arrival rate vector X is an N—dimensional max;eg, (i} Ki(N).
vector whose components are the arrival rates. In the following result, we show that the performance of

Definition 5: A scheduling policyis an algorithm that de- each sessionunder maximal scheduling can be characterized
cides in each slot the subset of sessions that would transhytthe its two-hop interference degreg&(N'). More specifi-
packets in the slot. cally, the result shows that maximal scheduling ensures queue-
Clearly, a subsef of sessions can transmit packets in any sldéngth stability as long as the arrival rates of every session
if no two sessions inS interfere with each other and everyis within a factor of1/3;(N) of the stable arrival rates of
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Fig. 1. Panel (a) shows a directed graph with= {M1,..., M10}. The arrows between the nodes indicate the directed links. Therg sessions:
S1,...,S7. NodesM2, M5, M3, M6, M1, M8 and M 10 are the transmitters of sessiofg, 52, 53,54, 55,56 and S7, respectively. Node\/2 has 3
neighbors:M1, M5, M6. SessionsS5 and S6 interfere with each other, a4 has a single transceiver.

Panels (b) and (c) show the interference graphs for the network shown in (a) under bidirectional and unidirectional communication models, respectively. As
panels (b) and (c) show, the interference set§éfare {S1, S5} and {S5} under the bidirectional and unidirectional communication models, respectively.

the sessions. Thus, due to the use of local information based  +a;(n) — Dj(n)) - Qi(n)Qj(n)|Q(n)
scheduling, the performance of each sessidecreases by a -
factor of 3;(N\); the penalty for each session therefore depends— Z Z (n) = Qi(n)D;(n)
only on its two-hop neighborhood. ¢ jesiufi} )

Theorem 1:Consider an arrival rate vectof);,..., Ay) +Q;(n)ai(n) — Q;(n)Di(n)|Q(n)]
such that\; < Ay /Bi(N),. )\N < An/By(N), where H(N+1)N(a2, +1). (4)
(As-es AN) eAQ Then, ()\1,.. ) € AYS.

Proof: Let X € Ag. Then, under, for some scheduling ~ Now,

olicy m, there exists a non-negative real vectgy, ..., qyN
Euchythat for alli, lim,_ o Zgn Qi(n)/n ([qi w.p. 1) Z Z ' j - Z Z Qj
Now, since Q;(n) = Q;(0) + A;(n — 1) — D;(n — 1), ¢ogesivii LgeSiVi}
ZQ()/n_ ()+Z%Thus foral andd > Qim)D;n) = > Y Qin)Di(n

, lim,, o A= - Diln = 0 w.p. 1. Since for alli, i jesiu{i} i jES;U{i}

hmnﬁooA (n — 1)/n = lim, o 4;(n)/n = \; w.p. 1, for Thus
all 4, lim,, o, D;(n)/n = lim, o D;(n—1)/n = \; w.p. L. '

Thus, the arrival and departure rates are the same, and the sys- E[f(n+1) — f(n)\@(n)]
tem is rate stable. Therefore, for &lly"; 5. iy Aj/8;(N) <

1 (Lemma 5, [8). Hence 1 T = 220w Y Bl - Diido)
j jeS u{i}
D N<1vi ®) +(N + DN (020 + 1)
jESiU{i}
Let the arrival rate vector b@\;,. .., Xy). Consider amax- = 2 Z Qi(n) Z A; —EJ Z D;(n)|Q(n)
imal scheduling policy. Clearly)(.) constitutes an irreducible ' 765 u{i} jesiuii}
aperiodic markov chain. +(N +1)N(a?,, +1).
Consider the lyapunov functiofi(t), where
Let 6 = 1 —max; Y cq,,q) Aj- From (3),6 > 0. Next,
= Z | > @O (- under maximal scheduling, @;(n) > 0, 3" ¢y Dj(n) =
¢aesiuti 1. Thus, for allG(n),

Clearly, 0if Qi(t) >0 f i
early, f(t) > 0 if Q;(t) > 0 for some E[f(n+1)—f(n) ] < 252@ H(NF)N (afax+1).

E[f(n+1 9]
i )~ Fm)Q(n) Hence, by Foster's theorem (Theorem 2.2.3 in [3])()
Z Z E[Qi(n +1)Q;j(n +1) = Qi(n)Q;(n )|Q( )l is a positive recurrent markov chain. Thus, under maximal
©gesiuii} scheduling, there exists a non-negative real ve@tor. . ., gn )

>y [( ) + ai(n) — i(n)> (Q,(n) such that for all, lim, .o 3_, Qi(n)/n = ¢; w.p. 1. Thus,

i jes,u{i} (X, ..., Ny) € Ag®. This concludes the proof. [ ]



IV. CONCLUDING REMARKS

In this paper, we have investigated the question of attaining
stability guarantees using a simple distributed scheduling
policy, maximal scheduling, in an arbitrary wireless network.
We consider the notion of queue-length stability, and show
that guarantees provided by maximal scheduling can be char-
acterized in terms of the local interference degree of every
session.
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