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Abstract—We consider a network in which several ser-
vice providers offer wireless access service to their respective
subscribed customers through potentially multi-hop routes. If
providers cooperate, i.e., pool their resources, such as spectrum
and base stations, and agree to serve each others’ customers,
their aggregate payoffs, and individual shares, can potentially
substantially increase through efficient utilization of resources
and statistical multiplexing. The potential of such cooperation can
however be realized only if each provider intelligently determines
who it would cooperate with, when it would cooperate, and
how it would share its resources during such cooperation. Also,
when the providers share their aggregate revenues, developing
a rational basis for such sharing is imperative for the stability
of the coalitions. We model such cooperation using transferable
payoff coalitional game theory. We first consider the scenario that
locations of the base stations and the channels that each provider
can use have already been decided apriori (spectrum pooling
game). We show that the optimum cooperation strategy, which
involves the allocations of the channels and the base stations
to mobile customers, can be obtained as solutions of convex
optimizations. We next show that if all providers cooperate,
there is always an operating point that maximizes the providers’
aggregate payoff, while offering each such a share that removes
any incentive to split from the coalition. Next, we show that
when the providers can choose the locations of their base stations
and decide which channels to acquire, the above results hold in
important special cases. Finally, we examine cooperation when
providers do not share their payoffs, but still share their resources
so as to enhance individual payoffs. We show that, in the spectrum
pooling game, if all providers cooperate, there is always a joint
action that fetches payoffs such that no subset of providers would
break away from the coalition.

I. INTRODUCTION

We have witnessed a significant growth in commercial
wireless services in the past few years, and the trend is
likely to continue in the foreseeable future. Satisfaction of
this increasing demand is contingent upon efficient utilization
of the transmission resources, which are either limited (e.g.,
spectrum), or costly (e.g. infrastructure). Currently, most of
the available resources are substantially under-utilized, e.g.,
utilization of licensed spectrum is at times only 15%! ( [1]).

Cooperation among different wireless providers has the
potential for substantially improving the utilization of the
available resources, and should therefore enhance the prolifer-
ation of wireless services. In particular, different providers may
form a coalition and pool their resources, such as spectrum
and infrastructure like base stations and relay nodes, and
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serve each others customers. Such coalitions may lead to
substantially higher throughput through statistical multiplexing
and lower overall energy consumptions of the users through
multi-hop relaying. Both of these in turn lead to higher user
satisfaction, and higher payoff for the providers. Cooperation
may also be instrumental in reducing the costs incurred by the
providers in acquiring spectrum and deploying infrastructure
like base stations. This would again lead to higher net payoff
for the providers. We now elucidate the above benefits using
a sequence of examples.

We first demonstrate how cooperation may substantially
enhance throughput and decrease energy consumption of
users. Transmission qualities of available channels randomly
fluctuate with time and space, owing to user mobility and
propagation conditions. Also, in secondary access networks,
the providers may be secondary users who do not license
channels but communicate when the license holders (primary
users) do not use the channels. Such access opportunities
may only arise sporadically. Since all users of all providers
do not need to be served simultaneously, and the channels
of different providers may not be unavailable or have poor
transmission qualities simultaneously, spectrum pooling can
mitigate service fluctuations caused by occasional variations
in channel qualities and availabilities and instantaneous traffic
overloads. This enhances throughput and delivers stringent
service qualities demanded by the customers. In multi-hop
wireless networks (e.g., mesh networks), cooperation can
reduce the power usage of the customers. Coalitions in these
networks increases the number of available relays mesh-points.
This in turn increases the number of multi-hop routes to each
customer. Thus, the total power usage of the customers could
significantly decrease, and total throughput may significantly
increase. In addition, the users may be induced to serve
as relays, perhaps, in lieu of service discounts. Then the
enhancement in throughput and energy consumption owing
to cooperation magnifies as the coalitions have a larger set of
users, and therefore a larger number of multi-hop routes.

We now demonstrate how cooperation may substantially
reduce the costs incurred by the providers. A provider can ac-
quire a channel by paying a fixed licensing cost or usage based
charges, or a combination of the two. The first case arises
when the providers are primary users who license the channels
from government agencies, and the other options arise when
they are secondary users who use the channels licensed by
the primaries. When the providers do not cooperate, they may
need to operate as secondary users and opt primarily for usage
based charges, as the volume of their individual traffic may not
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justify other options. Since cooperation allows the providers to
pool the customers, the resulting higher aggregate traffic may
allow them to license channels, share the licensing fees and
thereby reduce the individual costs. Next, deploying new base
stations (access points) and subsequently maintaining them, is
one of the major costs in expanding the networks. Cooperation
may allow the individual providers to deliver desired coverage
and throughput guarantees to their customers while deploying
fewer base stations. We demonstrate this advantage using a
specific scenario which arises in practice. Consider a provider
whose customer base is concentrated in a particular region.
Traffic demand is therefore high in this region and low, but
non-zero, in other regions. This low traffic demand in other
regions is generated primarily because of the mobility of
its customers. In order to provide universal coverage to its
customers (otherwise they would desert), the provider must
deploy base stations throughout, i.e., even in the regions where
its traffic demand is low. These base stations would however be
used very little. If instead the provider cooperates with another
whose traffic demand is concentrated in a different region,
both may satisfy coverage requirements by deploying base
stations only in the regions where their individual demands
are concentrated. This would in turn significantly reduce the
expenses incurred by each. Such cooperation would also allow
the providers to expand their networks without deploying new
base stations in the regions where they are expanding to.

Several research challenges must however be addressed be-
fore large scale cooperation can be realized. First, commercial
service providers are selfish entities who seek to maximize
their individual payoffs. Therefore, they will cooperate with
others only when this increases their individual incomes. Even
so, a provider is still likely to refuse to join a coalition if it
perceives that its share of the aggregate payoff is not propor-
tional to the amount it invested and the wealth it generated.
The former depends on the transmission rates in the channels
it has acquired and the locations and the number of base
stations it has deployed. The latter depends on its customer
base. So, developing a rational basis for determining the
individual shares of the aggregate payoff is imperative. Note
that the aggregate payoff and the individual shares depend on
the cooperation strategies of the providers. Specifically, each
provider needs to decide which provider it would cooperate
with, which channels it is going to use, the locations where it is
going to construct new base stations, and when it should serve
the customers of another provider. The sharing mechanism and
the optimal cooperation strategies for each provider depend on
each other and must be obtained jointly.

We present a framework to determine the optimal decisions
of the providers using tools from cooperative game theory.
The framework also provides a rational basis for sharing
the aggregate payoff. Using tools from transferable payoff
coalitional game theory, we first develop this framework
assuming that the providers can share the aggregate payoff in
any manner they wish to. The first network setup we consider
is an access network where providers pool their spectrum, base
stations and customers. We assume that the locations of the

base stations and the set of channels they have access to, are
determined apriori, but the providers decide how they would
allocate the base stations and the channels of the coalition,
to the customers who have subscribed to the providers in
the coalition. We then obtain optimal decision rules for the
providers and a strategy for sharing the resulting aggregate
payoff as solutions of concave optimization problems. This
sharing strategy ensures that it is optimal for all providers to
cooperate (section III). Specifically, if any subset of providers
split from the grand coalition (the coalition of all providers),
irrespective of how they cooperate and the way they share
their aggregate payoff, at least one provider in this subset
will receive less net payoff than when it was in the grand
coalition. In coalitional game terminology, such a sharing
scheme exists only when the core of the game is nonempty.
This result is of interest in itself as many cooperative games
have empty cores, and the specific games we consider do not
satisfy some standard sufficiency conditions for non-emptiness
of the core (e.g., convexity of the game). We then consider the
case where in addition, the providers need to determine the
locations and numbers of base stations, and the set of channels
for each base station. We obtain the optimal decision rules
and the payoff sharing mechanism in some important special
cases of this general problem (section IV). Subsequently, we
generalize the formulations and the results to include multi-
hop transmissions. Finally, we consider a setting where the
providers serve the customers by pooling their resources as
before, but can not share the aggregate payoff in any manner
they wish to. Now, each can only claim the payoff it generates,
i.e., the payoff fetched by its customers minus the cost it
incurs to acquire channels and deploy its base stations. Note
that cooperation may still increase the individual earnings as
the customers are served using the aggregated resources. We
formulate this problem as a nontransferable payoff coalition
game problem (section VI) and show that the grand coalition
is still stable. That is, there always exists a joint action of the
providers that makes it sub-optimal for any subset of them to
leave the grand coalition.

II. MODEL

Consider a network with a set of providers N and a set
of customers. Each provider i owns a set of end users M i.
In order to serve the customers, provider i intends to open a
number of base stations (access points) from a set of candidate
locations Bi . Let Bi1 ∩Bi2 = ∅ and Mi1 ∩Mi2 = ∅ for i1 �=
i2. In figure 1, for instance, N = {1, 2}, M1 = {1}, and B2 =
{2, 3}. Let BN and MN be the sets of candidate locations and
customers in the system respectively. We assume that each
provider uses its base stations to serve customers through a
set of channels it has access to. Unless mentioned otherwise,
base stations and customers communicate through single-hop
links. In order to get access to the channels, providers need to
pay the corresponding charges. Each end user j negotiates a
minimum rate guarantee of mj with its provider apriori.

We assume that each base station k can have access to a
set of channels Ck. That is, base station k is allowed to use
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Fig. 1. An example of a network with two providers

any subset of channels in Ck if the provider associated with
k pays the corresponding charges. For instance in figure 1,
C1 = {1, 4}. We also assume that no two base stations in
a vicinity can have access to the same channel, i.e., Ck1 ∩
Ck2 = ∅ for k1 �= k2 if k1 and k2 are in the vicinity. Thus,
the communications of different base stations with different
customers do not interfere. So, channels can be numbered such
that each channel belongs in only one Ck. In other words we
can assume, without loss of generality, that Ck1 ∩Ck2 = ∅ for
all k1 �= k2. For example in figure 1, channels 1 and 3 could
be the same frequency band. But since base stations 1 and 3
are far apart, they can simultaneously use the channel without
interfering with each other. So we can assume that they are
two different channels. Let CN be the set of all the numbered
channels in the system.

The instantaneous rates the customers receive on differ-
ent channels depend on the current quality of the channels
(which in case of secondary access channels also includes
the current actions of the channels’ primary users) and the
current positions of the customers, which can be random. We
therefore assume that when customer j is served by channel l
, j receives a rate Rlj , a random variable which is a function
of the state of channel l and position of customer j. Let Ω lj

be the state space of Rlj . We assume that |Ωlj | is finite. This
assumption is motivated by the fact that feasible service rates
in any practical communication system belong to a finite set.
Also, we assume that each channel has a finite number of
states. Thus, we can partition the service region in such a
way that the service rates received by the customers inside a
member of the partition do not depend on the locations of the
customers. Let Ω =

∏
l∈CN
j∈MN

Ωlj and P (ω) be the probability

of an outcome ω ∈ Ω.
We now discuss the charging mechanisms used by spectrum

regulators, which are government agencies or license holders
(primary users). The charging mechanisms can be usage based,
membership based, or a combination of these. As the names

imply, membership charge is to be paid for a channel l by a
provider i, if it intends to use l at some point in the operation,
regardless of the amount of usage. Usage based charge for
each channel depends only on the amount of usage and is 0
if the channel is not used. Also, different spectrum regulators
may use different charging mechanisms, and different channels
may provide different statistics for the transmission rates.
The expected payoff a provider earns depends on the rates
it provides to its customers and the cost it incurs in using
the channels. So, in order to maximize its payoff, a provider
may need to judiciously decide (a) the set of channel to be
used by each of its base stations, and (b) allocation of its
customers to the base stations and the corresponding channels.
Note that the allocations may vary with the rates available in
these channels which in turn vary with time. Such payoffs are
likely to increase if multiple providers cooperate, i.e., pool in
their resources (base stations, channels) to serve the joint set
of customers. We now propose a framework based on coalition
game theory so as to capture the above interactions.

Definition II.1. A coalition S ⊆ N is a subset of players (e.g.,
service providers) who cooperate. For a coalition S, BS and
MS are the set of base station candidate locations and cus-
tomers associated with providers in S, and CS = ∪k∈BS Ck.
We refer to N as the grand coalition.

Definition II.2. A coalitional game with transferable payoff
< N, v > consists of a finite set N (set of providers)
and a characteristic function v(.) that associates with every
nonempty subset S of N , a real number v(S). For each
coalition S, the number v(S) is the aggregate payoff available
for any arbitrary division among the members of S.

A channel l ∈ Ck can serve customer j only when both are
associated with the same provider or the providers associated
with them are in a coalition. Let random variable α lj ∈ [0, 1]
be the fraction of time channel l serves user j. α ljs are
determined by the allocation scheme. When the provider
associated with customer j is in coalition S, the rate received
by j is a random variable yj(ω) =

∑
l∈CS

αlj(ω)Rlj(ω).
Suppose when customers associated with provider i receive
rates Yi(ω) = {yj(ω), j ∈ Mi}, they pay i the amount
Ui(Yi(ω)), where Ui(.) is an increasing concave function
and equal to 0 at the origin. Similarly, provider i needs to
pay the spectrum regulators a usage-based cost of V l(zl(ω)),
where zl(ω) =

∑
j∈MS

αlj(ω) is the total fraction of time
channel l is used and Vl(.) is an increasing convex function.
Then the total payoff available to a coalition S will be the
sum of the Uis for i ∈ S, reduced by a) the sum of
the Vls for l ∈ CS , and b) channels’ membership-based
charges and the costs of opening base stations. Therefore,
providers in a coalition S have to decide which base stations
to open, which channels’ memberships to buy, and how to
schedule those base stations and channels to customers, based
on their positions and utility and cost functions, subject to
possible minimum rate constraints. Now v(S) is the maximum
aggregate payoff available to a coalition S. We will show in
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the next sections how v(S) can be obtained as a solution of
an optimization problem. This optimization problem presents
the optimum cooperation strategies among providers and a
set of optimal values for their set of decision variables. Note
that the customers might as well have maximum service rate
constraints. This, however, is captured in our model, since the
utility functions are concave and thus include upper-bounded
functions.

Another important question now is how should these
providers divide the aggregate payoff among each other. To
answer this question, we introduce a solution concept in
coalitional games known as the core. The idea behind the
core in a cooperative game is analogous to that behind a Nash
equilibrium of a noncooperative game: an outcome is stable if
no deviation is profitable.

Definition II.3. For any real valued vector x =
{x1, x2, . . . , xn} and any coalition S, we let x(S) =

∑
i∈S xi.

Such a vector is said to be an imputation if x(N) = v(N) and
xi ≥ v({i}) for all i ∈ N. The core of the coalitional game
with transferable payoff 〈N, v〉 is the set of all imputations x
for which x(S) ≥ v(S) for all S ⊂ N . In other words

C = {x ∈ Rn :
∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S), ∀S ⊂ N}.

The significance of the core, comes from the fact that,
every imputation in the core renders the grand coalition stable.
Consider an imputation x ∈ C. Let providers form the grand
coalition and share v(N) as per x. Now, suppose a set of
providers S ⊂ N separate from the grand coalition and share
their aggregate payoff v(S) as per w. Now, if w i ≤ xi for all
providers i ∈ S, they have no incentive to leave the grand
coalition. Thus, ∃i1 ∈ S such that wi1 > xi1 . However,
since x belongs to the core, w(S) ≤ x(S) which requires
the existence of a provider i2 ∈ S for which wi2 < xi2 . Thus,
provider i2 would object to separating from the grand coali-
tion. Therefore, the grand coalition is stable. This is a globally
desirable outcome, since the grand coalition maximizes the
aggregate payoff1.

The core in several coalitional games is empty, i.e., the
grand coalition cannot be stabilized, even if the grand coalition
maximizes the aggregate payoff (Example 260.3 p. 260 [2]),
and in general it is NP-hard to determine whether the core of
a coalitional game is nonempty( [3]). Convexity 2 of a game
is a sufficient condition for the nonemptiness of the core,
however, the games we consider are not convex. We illustrate
this in the next section. Nevertheless, in the following sections
we formulate several coalitional games for different network
setups, and show that they have nonempty cores.

1The fact that the grand coalition maximizes the aggregate payoff in
the games we study, will be clarified once we introduce the corresponding
optimization problems.

2A coalitional game is convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T )
for all S, T ⊆ N .

III. SPECTRUM POOLING GAME

In this section, we formulate the cooperation among
providers as a nontransferable payoff coalitional game and
prove that it has a nonempty core. We assume that all providers
have already decided where to open their base stations and
which channels memberships to buy. In this scenario, the only
decision variables to be determined are the scheduling of base
stations and channels to customers. Thus for simplicity, we
assume that all base station opening and channel membership
costs are zero. Consider the following convex optimization
problem which returns v(S) for any coalition S ⊆ N if
feasible, else v(S) = −∞.
P(S):- Max:

∑
i∈S
ω∈Ω

Ui(Yi(ω))P (ω) −
∑

l∈CS
ω∈Ω

Vl(zl(ω))P (ω)

Subject to:
1) yj(ω) =

∑
l∈CS

αlj(ω)Rlj(ω), j ∈ MS , ω ∈ Ω
2) zl(ω) =

∑
j∈MS

αlj(ω), l ∈ CS , ω ∈ Ω
3)

∑
l∈CS

αlj(ω) ≤ 1, j ∈ MS , ω ∈ Ω
4)

∑
j∈MS

αlj(ω) ≤ 1, l ∈ CS , ω ∈ Ω
5)

∑
ω∈Ω P (ω)yj(ω) ≥ mj , j ∈ MS

6) αlj(ω), yj(ω), zl(ω) ≥ 0, j ∈ MS , l ∈ CS , ω ∈ Ω
Constraints (3) ensure that the total fraction of time each
customer is served, is at most 1. A channel can serve at most
the whole fraction of time by (4). Constraints (5) guarantee
the minimum service rates. Note that the decision variables of
the grand coalition can always be chosen as the union of the
decision variables of the members of any partition of N . This
means that the payoff of the grand coalition is at least equal
to the sum of the payoffs of members of any partition.

The following examples elucidate how cooperation can alter
the optimal decision variables of providers (example III.1), and
that this is not a convex game (example VI.1).

Example III.1. Consider the network in figure 1 with N =
{1, 2} and Bi = Ci = {i} (we do not consider base station
3 or channel 3 and 4 here.). Let R12 = R21 = R22 = P
and R11 = R23 = Q, where Q < P , and Rlj = 0 otherwise.
Let mj = Q

2 for j = 1 . . . 3. Suppose the payoffs equal the
sum of the service rates. Then we have v({1}) = Q and
v({2}) = P+Q

2 . But if the two providers cooperate, with
α11 = α22 = 0, α12 = 1 and α21 = α23 = 1

2 , we have
v({1, 2}) = 3P+Q

2 . So, cooperation helps provider 1 make
a better use of its base station, while adding to the service
rate of a customer of provider 2, and as a result increases the
aggregate payoff.

Example III.2. Let N = {1, 2, 3}, Bi = Ci = {i}, i = 1, 2, 3,
M1 = ∅, Mi = {i − 1}, i = 2, 3. Let R1j = P, j ∈ MN and
Rlj = Q, l ∈ {2, 3}, j ∈ MN and P > Q. Let mj = 0, j ∈
MN . Let the payoffs equal the sum of the service rates. Thus
v({1}) = 0, v({2}) = v({3}) = Q, v({1, 2}) = v({1, 3}) =
P, v({2, 3}) = 2Q, and v({1, 2, 3}) = P + Q. Now, let S =
{1, 2} and T = {1, 3}. Then v(S) + v(T ) = 2P , v(S ∪ T ) +
v(S∩T ) = P +Q. Thus v(S)+v(T ) > v(S∪T )+v(S∩T ).
We showed that the game we are considering is not convex.
However, it is easy to check that in this example the core of
the game is nonempty. In fact, C = {(P − Q, Q, Q)}.
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Using the duality technique, we now show that this
game has a nonempty core. Let λ, β ∈ R |MS×Ω|,
ν, γ ∈ R|CS×Ω|, and ρ ∈ R|MS |. Let giω(λ, ρ) =
maxyj(ω)≥0

(
P (ω)Ui(Yi(ω)) +

∑
j∈Mi

yj(ω)(λj(ω) +
ρjP (ω))

)
and hlω(ν) = maxzl(ω)≥0

(
− P (ω)Vl(zl(ω)) +

zl(ω)νl(ω)
)
. Then we have the following as the dual of P(S):

D(S):- Minimize:
∑

i∈S

( ∑
ω∈Ω giω +

∑
l∈Ci
ω∈Ω

(hlω +γl(ω))+
∑

j∈Mi

ω∈Ω
βj(ω) −

∑
j∈Mi

mjρj

)

Subject to:

I) λj(ω)Rlj(ω) + νl(ω) + βj(ω) + γl(ω) ≥ 0, l ∈ CS , j ∈
MS , ω ∈ Ω

II) βj(ω), γl(ω), ρj ≥ 0, l ∈ CS , j ∈ MS, ω ∈ Ω
Formulate D(N) by appropriately defining vectors

λ, β, γ, ν, ρ and let D constitutes the set of optimal solutions
of D(N). Clearly, D(S) is feasible for each S ⊆ N . Thus,
D �= ∅. Let

I ={x∗ ∈ R|N | : x∗
i =

∑

ω∈Ω

giω +
∑

j∈Mi

ω∈Ω

βj(ω) −
∑

j∈Mi

mjρj

+
∑

l∈Ci
ω∈Ω

(
hlω + γl(ω)

)
for some (λ∗, ν∗, β∗.γ∗, ρ∗) ∈ D}

Here is the main result:

Theorem III.1. I �= ∅ and I ⊆ C.

Discussion: Note that D(S) is a convex optimization with
linear constraints. Therefore, the time required to find an
imputation in the core is polynomial in the number of decision
variables. In future, whenever we obtain an imputation in the
core using the duality technique, the same argument follows.

Proof of theorem III.1: Since D �= ∅, I �= ∅. We
show that for an arbitrary x∗ ∈ I, x∗ ∈ C. Note that, since
Uis and Vks are (increasing) concave and convex functions
respectively, the objective function of P(S) is concave. Also,
the constraints of P(S) are all linear. Therefore, P(S) is
maximizing a concave function over a convex set. Thus, strong
duality holds.
Now, consider an arbitrary x∗ ∈ I, corresponding to one
(λ∗, ν∗, β∗.γ∗, ρ∗) ∈ D. Clearly x∗(N) =

∑
i∈N x∗

i is the
optimal value of D(N). Since D(S) is the dual of P(S) for
each S ⊆ N , by strong duality x∗(N) = v(N). Now we only
need to show that x∗(S) ≥ v(S) for any S ⊂ N . If P(S)
is infeasible, the claim is trivial for v(S) = −∞. Suppose
P(S) is feasible. By strong duality, v(S) equals the optimum
value of D(S). Consider the sub-vectors λ∗

S , ν∗
S , β∗

S .γ∗
S , ρ∗S

consisting of the components of λ∗, ν∗, β∗.γ∗, ρ∗ in S. Clearly
these sub-vectors constitute a feasible solution of D(S) and
x∗(S) is the value of the objective function of D(S) for the
above feasible solution. Therefor, the optimal value of D(S)
is a lower bound for x∗(S), i.e., x∗(S) ≥ v(S).

Now we discuss how this framework can provide useful
insights into the relations between a provider’s payoff share,
the resources it contributes, and the wealth it generates.
Among the resources in possession of a provider, one could

be more constrained than the others. For instance, a provider
might have a lot of customers, but few base stations. Then,
increasing the number of base stations could boost the payoff
generated by the provider, while adding to the number of
customers might not change it. The situation may be reversed
for a different provider. Using the rule of thumb that more
demand adds to the value of an asset, an intuitive observation
then is that in a coalition, the provider that shares more of the
resource that is sought most by the majority of the members of
the coalition, is likely to receive a larger share of the aggregate
payoff. The following example will further elucidate this.

Example III.3. Let N = {1, 2, 3}, |M1| = 5, and |M2| =
|M3| = 2. Also, let |C1| = 2, |C2| = 3, and |C3| = 4. Suppose
Rlj = P for all l ∈ CN and j ∈ MN . Let the payoffs be equal
to sum of the customers’ service rates. It is easy to check that,
v({i}) = 2P for i ∈ N , v({1, 2}) = 5P , v({1, 3}) = 6P ,
v({2, 3}) = 4P , and v({1, 2, 3}) = 9P . In other words the
core of the game is the set C = {(x1, x2, x3) : x1 +x2 +x3 =
9P, xi ≥ 2P, x1+x2 ≥ 5P, x1+x3 ≥ 6P, x2+x3 ≥ 4p}. Note
that all providers receive the same payoff when they do not
cooperate. Now, if they form the grand coalition and share
the aggregate payoff as per an imputation picked randomly
from the core (equiprobably distributed), provider 1 is likely to
receive the largest share. This is in agreement with out intuitive
observation. Another important issue to be pointed out is that,
the providers’ share of the aggregate payoff is usually largely
determined by parameters other than their decision variables.
E.g., the number of customers here is not a decision variable
and yet it is critical in determining the payoff shares.

Remark: A provider can decide how to upgrade its re-
sources, based on the above observation. For instance, in
example III.3, if provider 2 can somehow increase its customer
base, its share increases, although the aggregate payoff remains
the same. This could be a direction for future work.

IV. BASE STATION GAME

We now examine the cooperation in a setup where providers
can decide which channels to rent and where to open base
stations. More specifically, a provider i needs to choose a
subset of candidate locations Bi for the base stations it is
going to open. Let fk be the cost of opening base station k.
Let bk = 1 if base station k is open and 0 otherwise. Also,
i should determine which channels, base station k ∈ B i will
have access to, which is selected from the set Ck . Once the
provider pays the corresponding channel membership costs,
the base station is allowed to use those channels to serve the
customers anytime during the operation (we say the channel is
open). Let gl be the membership-based charge of using channel
l ∈ Ck. Let cl = 1 if base station k is allowed to use channel l
and 0 otherwise. If cl = 1, the associated provider has to pay
the corresponding membership fee, g l, a constant number, plus
usage-based charges which was discussed before. A channel
l ∈ Ck, for some k ∈ Bi, can serve user j if a)Base station k is
open, b)Channel l is open, and c)Base station k and user j are
associated with same provider or the provider associated with
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them are in a coalition. We assume mj = 0 for all j ∈ MN .
Note that, bks and cl are deterministic variables and cannot
depend on ω, in contrast to αljs that are decided to best suit
each outcome ω ∈ Ω accordingly.
We assume that all utility and cost functions are linear, and
ulj(ω) ∈ R is the payment of customer j subtracted by
the usage-based charges of channel l, per fraction of time of
service. Now we have the tools to formulate the optimization
which provides v(S) for all ⊆ N .
PG(S):- Max:

∑
l∈CS
j∈MS

ω∈Ω

αlj(ω)ulj(ω)P (ω) −
∑

k∈BS
fkbk −

∑
l∈CS

glcl

Subject to:
1)

∑
l∈CS

αlj(ω) ≤ 1, j ∈ MS , ω ∈ Ω
2)

∑
j∈MS

αlj(ω) ≤ cl, l ∈ CS , ω ∈ Ω
3) cl ≤ bk, l ∈ Ck, k ∈ BS

4) αkj(ω) ∈ [0, α], k ∈ BS , j ∈ MS, ω ∈ Ω
5) bk, cl ∈ {0, 1}, l ∈ CS , k ∈ BS

Constraints (1) ensure that the total fraction of time a customer
is being served, is upper bounded by 1. A channel can serve at
most the whole fraction of time if it is open and cannot serve
otherwise, by constraints (2). Finally, constraints (3) guarantee
that only opened base stations can have open channels.

We now elucidate the impact of cooperation on the total
payoff, as well as the providers’ decision variables, using the
following examples.

Example IV.1. Consider the setup in figure 1 with B1 = C1 =
{1} and B2 = C2 = {2, 3}, where gl = 0 for l ∈ CN , f1 = 0,
and f2 = f3 = f . Let R11 = R21 = R23 = Q, R12 = R22 =
R33 = P , and Rlj = 0 otherwise. Let mj = 0 for j = 1 . . . 3
and Q < P . Let payoffs consist of the sum of the service rates.
Now v({1}) = Q. Also v({2}) = max[P − f, 2P − 2f ] and
v({1, 2}) = max[2P − f, 2P + Q − 2f ], where the former
payoffs are the result of opening just base station 3, while
the latter ones are in the event of opening both. Intuitively, if
provider 2 cooperate with 1, opening base station 2 may not be
necessary. In fact if Q < f < P , opening both base stations is
optimal when not in coalition, while opening just base station
3 is optimal under cooperation. This is in agreement with the
intuition that opening a base station in the area that is covered
by other base stations might be redundant. However, if there is
a relatively large traffic demand in that area, opening the base
station could become optimal. For instance, in our example,
if R21 = P , v({1, 2}) = max[2P − f, 3P − 2f ]. Then it is
optimal to to open both base stations if f < P .

Example IV.2. Consider the network in example III.1 where
now base station 1 can choose to use any of the two channels,
1 and 4 (figure 1). Channel 1 (as in example III.1) has no
membership cost, while channel 4 has a membership cost of g
and in return it offers twice the rates of channel 1, i.e. R3j =
2R1j for j = 1 . . . 3. Let mj = 0 for j = 1 . . . 3. Let payoffs
consist of the sum of the service rates. Suppose Q < P < 2Q.
Then v({2}) = P and v({1}) = max[Q, 2Q− g]. Thus, when
the providers do not cooperate, if Q < g, it is not optimal
to use channel 4. However, cooperation between the providers

can change their optimal decisions. Specifically, v({1, 2}) =
max[2P, 2P+2Q−g] and if 2Q > g, using channel 4 becomes
optimal. Thus cooperation changes the optimal decisions. Also
note that even if provider 1 follows the same decisions whether
in coalition or not (which in this case means no to use channel
4 at all), its payoff is still higher under cooperation. In this
case, for instance, if channel 4 was not used, the total payoff
would be 2P which is higher than v({1})+ v({2}) = P +Q.

Note that the same approach taken in section III to show
that the core is nonempty, is inadequate here. The reason is
that, this optimization problem involves integer variables and
therefore strong duality does not hold in general. However,
there are important special cases where similar results extend.

A. Case I

Consider the special case where customers do not move and
the channels do not change in quality with time, i.e. |Ω| = 1.
We also assume that an open base station is allowed to use
only one given channel, which has no membership fee, i.e.
|Ck| = 1 for all k ∈ BN , and cl = 0 for all l ∈ CN . Then
PG(S) will reduce to the following IP:
Pb(S):- Maximize:

∑
k∈BS
j∈MS

αkjukj −
∑

k∈BS
fkbk

Subject to:

1)
∑

k∈BS
αkj ≤ 1, j ∈ MS

2)
∑

j∈MS
αkj ≤ bk, k ∈ BS

3) αkj ≥ 0, k ∈ BS , j ∈ MS

4) bk ∈ {0, 1}, k ∈ BS

In the following we proceed to prove that the core of the
coalitional game < N, v >, with characteristic function v(.)
given by Pb(S), is nonempty. The proof consists of three steps.

Step I) Consider the coalitional game < N, v̂ >, where N is
the same set of providers and the characteristic function v̂(.) is
given by the LP, Prelaxed(S). Prelaxed(S) is the linear relaxation
of Pb(S), where the constraints bk ∈ {0, 1} are now replaced
by bk ∈ [0, 1]. We show that the core of the coalitional game
< N, v̂ >, Ĉ, is nonempty.
Using λ ∈ R|MS |, and ν, γ ∈ R|BS |, we construct the
following LP as the dual of Pb(S)
Drelaxed(N):- Minimize:

∑
j∈MN

λj +
∑

k∈BN
γk

Subject to:

1) λj + νk ≥ ukj , k ∈ BN , j ∈ MN

2) νk − γk ≤ fk, k ∈ BN

3) λj , νk, γk ≥ 0, k ∈ BN , j ∈ MN

Let Drelaxed constitute the set of optimal solutions of
Drelaxed(N). Define: Ib = {x∗ ∈ R|N | : x∗

i =
∑

j∈Mi
λj +∑

k∈Bi
γk for some (λ∗, ν∗, β∗, γ∗) ∈ Drelaxed}.

Theorem IV.1. Ib �= ∅, and Ib ⊆ Ĉ

Proof: The proof is the same as that presented in the
proof of theorem III.1.

Step II) In the following we prove that If Pb(N) has zero
integrality gap, the core of < N, v >, C, includes the core of
the coalitional game < N, v̂ >, or consequently Ib ⊆ C.
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Theorem IV.2. If Pb(N) has zero integrality gap, i.e. v(N) =
v̂(N), then Ĉ ⊆ C.

Proof: Consider an arbitrary imputation x ∈ Ĉ. We show
that x ∈ C. We need to check the two properties of a core
element. First note that, by the hypothesis, v(N) = v̂(N) =
x(N). Second, x ∈ Ĉ implies that x(S) ≥ v̂(S), S ⊂ N ,
and because any feasible solution of Pb(S) is feasible for
Prelaxed(S), we have v̂(S) ≥ v(S), S ⊂ N . Thus, x(S) ≥
v(S), S ⊂ N . Hence, x ∈ C and the lemma follows.

Step III) Finally, we prove that Pb(N) has zero integrality
gap. In other words, Prelaxed(N) has an integral optimum
solution. We will make use of the following results.

Definition IV.1. A matrix A is totally unimodular if every
square submatrix of A has determinant either 0, 1 or −1.

We have the following sufficient conditions for the matrix A
to be totally unimodular [4].

Theorem IV.3. Let rows of A can be partitioned into two
disjoint sets B and C, with the following properties:

1) Every column of A contains at most two non-zero entries;
2) Every entry in A is 0, +1, or −1;
3) If two non-zero entries in a column of A have the same

sign, then the row of one is in B, and the other in C;
4) If two non-zero entries in a column of A have opposite

signs, then the rows of both are in B or both in C.

Then A is totally unimodular.

Now, consider the following linear programming

P:- Maximize: cT x

subject to Ax ≤ b, x ≥ 0

We have the following theorem [5].

Theorem IV.4. If (1)A is totally unimodular, and (2)b con-
tains only integers, then linear program P has an optimal
integral solution.

Using the above, we have

Theorem IV.5. The integer programming Pb(N) has zero
integrality gap. In other words, v(N) = v̂(N).

Proof: Once we write Pb(N) in the form of P, it is
trivial to verify that A, thus obtained, satisfies the sufficiency
conditions of Theorem IV.3. Hence A is totally unimodular.
Also, b contains only 0 and 1. Thus, from Theorem IV.4,
Pb(N) will have an integral optimum solution.

Here is the main result

Theorem IV.6. Ib �= ∅, and Ib ⊆ C

Proof: Using theorems IV.1, IV.2, and IV.5, the claim
immediately follows.

The following example provides insights into how this
framework distributes the aggregate payoff.

Example IV.3. Let N = {1, 2, 3}, |M1| = 1, and |M2| =
|M3| = 2. Suppose each provider has 3 candidate locations

for base stations. Let the cost of opening any base station
be equal to f . Let Rkj = 2P for k ∈ B1 and 1.5P for
k ∈ B2 ∪ B3 and suppose f < 1.5P . We have v({1}) =
2P−f , v({2}) = v({3}) = 3P−2f , v({1, 2}) = v({1, 3}) =
6P − 3f , v({2, 3}) = 6P − 4f , and v({1, 2, 3}) = 9P −
5f . Now if the providers divide the aggregate payoff as per
and imputation randomly chosen from the core (equiprobably
distributed), provider 1 is likely to receive the largest share.
Note that all providers have the same base station opening
and provider 1 has even less customers. However, provider
1’s candidate locations are in better positions and therefore
offer higher rates than those of providers 2 and 3.
Note that, similar to what we observed in example III.3, the
providers’ shares are mainly determined by parameters other
than the decision variables of the game, which in this case is
the base station candidate locations.

B. Case II

Consider the case, where now opposite to that in subsection
IV-A, fk = 0 for all k ∈ BN and channels can have
membership costs. Each base station can now rent more than
one channel. Also, |Ω| = 1. Under these assumptions, PG(S)
reduces to an IP with the exact same structure as Pb(S). Thus,
all the formulations and results extend.

C. Case III

We consider another special case. Suppose that in order to
maintain a certain degree of fairness in the network, providers
impose an upper bound on the scheduling decision variables,
which is αlj(ω) ≤ α for all l ∈ CN , j ∈ MN , ω ∈ Ω, for an α
such that α|CN | ≤ 1. With this assumption, the characteristic
function vf(.), is then given by an optimization problem P f(S)
derived by omitting constraints (1) in PG(S). In the following,
we proceed to show that the core of the coalitional game <
N, vf >, Cf , is nonempty.

Let τ ∈ R|CS×Ω| and ϕ ∈ R|CS|. Define3

hS
k (τ, ϕ) = maxαlj∈[0,α], bk,cl∈{0,1}

(
− fkbk −∑

l∈Ck
glcl +

∑
l∈Ckj∈MS

ω∈Ω

αlj(ω)ulj(ω)P (ω) −
∑

l∈Ck
ω∈Ω

τl(ω)(
∑

l∈Ck
j∈MS

αlj(ω) − cl)+ −
∑

l∈Ck
ϕl(cl − bk)+

)

Df(S): Minimize:
∑

k∈BS
hS

k (τ, ϕ)
Subject to: τ, ϕ ≥ 0

Df(S) is called the extended dual of Pf(S). Formulate
Df(N) by defining vectors τ and ϕ appropriately. Let D f

constitute the set of optimal solutions of Df(N). Note
that Df �= ∅. Now let If = {x∗ ∈ R|N | : x∗

i =∑
k∈Bi

hN
k (τ, ϕ), for some (τ ∗, ϕ∗) ∈ Df}.

Theorem IV.7. If �= ∅, and If ⊆ Cf .

We use the following result [6].

Theorem IV.8. Consider the following optimization:

min
z

f(z)

subject to g(z) ≤ 0.

3A+ � max[A, 0]
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where z = (x, y), x ∈ X is the continuous part, where X is
a compact set of Rn, and y ∈ Y is the discrete part, where Y
is a finite discrete set of K-element integer vectors. f is lower
bounded and continuous and differentiable with respect to x,
whereas the constraints g = (g1, . . . , gr) is continuous in the
continuous subspace X for any given y ∈ Y . Then there in
no duality gap for the extended dual problem
maxλ≥0

(
minz∈X×Y f(z) + λg+(z)

)
.

Proof of theorem IV.7: According to theorem IV.8, D f(S)
has zero duality gap. Note that since Df �= ∅, it is clear that
If �= ∅. Now let x∗ be an arbitrary vector in If corresponding
to vectors τ ∗, ϕ∗. We show x∗ ∈ Cf .
x∗(N) =

∑
i∈N x∗

i is the optimal value of the optimiza-
tion Df(N) and by strong duality equals vf(N). Now we
only need to show that x∗(S) ≥ vf(S) for all S ⊂ N .
We have x∗(S) =

∑
k∈BS

hN
k (τ∗, ϕ∗). It is easy to check

that hN
k (τ, ϕ) ≥ hS

k (τ, ϕ) for all τ and ϕ. Therefore we
have x∗(S) =

∑
k∈BS

hN
k (τ∗, ϕ∗) ≥

∑
k∈BS

hS
k (τ∗, ϕ∗).

On the other hand, since vf(S) is equal to the optimal
value of

∑
k∈BS

hS
k (τ, ϕ), it follows that that vf(S) ≤∑

k∈BS
hS

k (τ∗, ϕ∗). Thus, x∗(S) ≥ vf(S) and the claim
follows.

V. COOPERATION IN MULTI-HOP NETWORKS

We now study cooperation among providers in multi-hop
networks. Intuitively, cooperation in multi-hop networks has
all the advantages of that in single hop ones, which is
sharing the base stations and spectrum. In addition, it has
another benefit which we call power sharing. That is, having
the providers cooperate, will let them redirect their traffic
through possibly better multi-hop routes, which in turn could
reduce their transmission power consumption. In this section,
we generalize our model to incorporate multi-hop networks.
Subsequently, we examine the spectrum pooling coalitional
game with transferable payoff in this model and show that the
core of the game is nonempty.

Consider a network, where a provider deploys a set of
base stations (which might include mobile base stations), to
serve a set of end users. Customers communicate with base
stations via potentially multi-hop links, that is, customers can
relay packets of other customers. However, when a customer
relays others’ packets, it uses power without transmitting its
own packets. In order to motivate customers, providers agree
to discount their charges based on how much they relay.
Nevertheless, a customer might want to have a maximum
relaying agreement with its provider. In this type of networks,
providers must decide the communication routes as well as the
allocation of base stations. If now a group of providers agree
to cooperate by pooling their base stations and customers, not
only can they benefit from sharing other’s base stations, but
they also enjoy a lager set of relay nodes. This, in turn, can
increase the capacity of the network, as well as its power

efficiency 4. Therefore, cooperation in multi-hop networks has
even higher potential than that in a single hop network. We
now present a framework that captures all these issues.

Let N be the set of providers. Let Bi and Mi be the sets
of provider i’s base stations and customers respectively. We
assume that each provider uses its base stations to serve the
customers through possibly multi-hop links. We also assume
that each customer can communicate with all base stations
and customers. However, the transmission rates depend on the
quality of the channels and the source-destination distances,
which could be random. Each customer can either communi-
cate directly with base stations, or act as a relay and transmit
packets to other customers. Then the service rate of a customer
j is defined as the total rate at which j’s packets are delivered
to any base station, either via a single or multi-hop route 5. Let
mj be the minimum service rate requirement of customer j.

Suppose customer j can transmit to a base station or another
customer l at a rate equal to Rjl, a random variable which is a
function of the quality of the channel and location of j and l.
Let Ω be the state space of the channel qualities and customer
locations. We assume |Ω| is finite. Let ω be an outcome of
this state space and P(ω) be its probability.

Let S ⊆ N be coalition of providers who cooperate.
Suppose, a base station k and a customer j, or two customers,
can communicate only when both are associated with the
same provider or the providers associated with them are in
a coalition. Let random variable β j2

j1l ∈ [0, 1] be the fraction
of time, customer j1 transmits packets of customer j2, to base
station or customer l. Without loss of generality we can assume
that βj2

j1l = 0 for l = j1 or l = j2. βj2
j1ls are determined by the

allocation scheme.
We assume that base stations in the same area use different
channels, and thus their communications do not interfere with
each other. Also, Suppose that customers and base stations
cannot transmit or receive through multiple channels simulta-
neously, or transmit and receive at the same time. Therefore,
the necessary and sufficient condition for the simultaneous
transmissions to be successful is that the set of transmitter-
receiver pairs form a matching (Similar transmission model
has extensively been assumed in related contexts [7], [8]).
Using a result in graph theory, a sufficient condition for
feasibility of a set of βj2

j1ls is that the fraction of time each
customer or base station is communicating be upper bounded
by θ, where θ is a constant between 0 and 1 which depends
on the topology of the network [9]. For instance θ = 1 for
bipartite networks and 2

3 for general networks. We assume this
to be also a necessary condition for feasibility of a scheduling.

We now discuss the mechanism which determines the
payoffs providers receive and the costs they incur from
serving the customers. We assume the costs are limited to
power. Let Tj be the maximum fraction of time customer

4Note that for certain customers, the increase in the power usage may not
be proportional to that in their service rates, but considering the network
globally, cooperation increase the power efficiency.

5We assume base stations are downlinks. The model and results can easily
be extended to the case where base stations are also uplinks at the same time.
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j relays. When the provider associated with customer j1

is in coalition S, j1 receives a service rate equal to the
random variable yj1(ω) =

∑
k∈BS ,j2∈MS

Rj2k(ω)βj1
j2k(ω).

Besides, j1 relays the traffic the fraction of time equal to
tj1(ω) =

∑
j2,j3∈MS ,k∈BS

(βj2
j3j1

+ βj2
j1j3

+ βj2
j1k). Suppose

when a node j receives a service rate yj and relays traffic tj

fraction of time, it pays the associated provider, an amount
of Uj(yj , tj), where Uj(y, t) is a concave function increasing
in y and decreasing in t. Let random variables p jl(ω)
represent the power usage per unit time of transmission
of customer j to base station or customer l. Then a
customer j1 in a coalition S, has a total power usage of
zj1(ω) =

∑
l∈BS∪MS ,j2∈MS

βj2
j1l(ω)pj1l(ω). This in turn

inflicts a cost equal to Vj(zj), where Vj(.) is an increasing
convex function.
The net of these costs and utilities constitute the aggregate
payoff available to providers in a coalition. Therefore, in order
to maximize their aggregate payoff, providers in a coalition S
must decide the routes along which they communicate with
each node, and schedule the base stations to those routes
based on the position of customers, and payoff and cost
functions, subject to minimum rate and maximum relaying
constraints. Let v(S) represent the maximum aggregate
payoff available to a coalition S. Then, v(S) is the solution
to the following convex optimization:
Pm (S): Maximize:

∑
ω∈Ω

j∈MS

P(ω)Uj(yj(ω), tj(ω)) −
∑

ω∈Ω
j∈MS

P(ω)Vj(zj(ω))

Subject to:

1) yj1(ω) =
∑

k∈BS
j2∈MS

Rj2k(ω)βj1
j2k(ω), j1 ∈ MS, ω ∈ Ω.

2) tj1(ω) =
∑

j2,j3∈MS\j1
k∈BS

(βj2
j3j1

+ βj2
j1j3

+ βj2
j1k), j1 ∈

MS , ω ∈ Ω.
3) zj1(ω) =

∑
l∈BS∪MS

j2∈MS

βj2
j1l(ω)pj1l(ω), j1 ∈ MS, ω ∈ Ω.

4)
∑

j3∈MS
(βj2

j1j3
(ω)Rj1j3(ω) + βj2

j3j1
(ω)Rj3j1(ω)) =

∑
k∈BS

βj2
j1k(ω)Rj1k, j1 �= j2 ∈ MS, ω ∈ Ω.

5) tj(ω) +
∑

l∈BS∪MS
βj

jl(ω) ≤ θ, j ∈ MS , ω ∈ Ω.
6)

∑
j∈MS

ω∈Ω

P(ω)yj(ω) ≥ mj , j ∈ MS .

7) tj(ω) ≤ Tj, j ∈ MS, ω ∈ Ω.
8) βj2

j1l ≥ 0, j1, j2 ∈ MS, l ∈ BS ∪ MS , ω ∈ Ω

Constraints 4 ensure that the set of βj2
j1ls satisfy the flow

feasibility constraints, while constraints 5 guarantee that they
constitute a feasible allocation. Constraints 6 and 7 impose
minimum service and maximum relaying guarantees, respec-
tively.

We can now form the dual problem and define a set I the
same as in section III. All the results extend.

VI. NONTRANSFERABLE PAYOFF GAME

We have so far discussed cooperation among providers,
using coalitional games with transferable payoff framework.
We assumed that the provider can share the aggregate payoff.
This might not be always the case. For instance, providers
might not have a unique method of cost or payoff appraisal

agreed on, or even if they have, it may not be possible to
confirm their income reports. Also, a provider’s satisfaction
could depend on factors that cannot be converted to monetary
units, and thus cannot be shared with others. Under these
circumstances, the payoff of each provider could only consist
of whatever it receives from its own subscribers reduced
by its own operation costs. Nevertheless, cooperation among
provides may still be beneficial.

Example VI.1. Consider the example III.1, where now the
payoff of each provider is the service rate of its own customer.
Let Q < P < 2Q. Consider the allocation: α11 = 3P−Q

4P ,
α12 = Q+P

4P , α21 = Q
2P , α22 = P−2Q

2P , and α23 = 1
2 . Then

the payoffs are x1 = Q(5P−Q)
4P > v({1}) and x2 = 3P+Q

4 >
v({2}). Thus the cooperation is beneficial. Now consider the
optimum allocation that maximized the aggregate payoff in
example III.1. Then, x1 = P

2 and x2 = P + Q
2 . Note that,

x1 < v({1}) = Q. Thus in nontransferable payoff framework,
the allocation that maximizes the aggregate payoff may not
motivate the providers to cooperate.

In these cases, we need to resort to the theory of nontrans-
ferable payoff cooperative games to develop a framework for
cooperation among providers. In doing so, we first take a short
detour to the basic theory of nontransferable payoff games.

A. Nontransferable payoff cooperative games

Let N = {1, . . . , n} be the set of players. A coalition S ⊆
N is a subset of players who cooperate. Let A(S) be the
joint action space of the players in coalition S. Each joint
action a ∈ A(S) leads to a payoff vector x ∈ R |S|. Each
coalition S has an associated set v(S) defined as v(S) = {x ∈
R|S| : ∃y ∈ R|S|, y ≥ x,y corresponds to some a ∈ A(S)}.
For instance, in example VI.1 for coalition S = {1, 2}, the
scheduling α11 = α22 = 0, α12 = 1 and α21 = α23 = 1

2
is in A(S) and its corresponding payoff profile (x1, x2) =
(P

2 , P + Q
2 ) is in v(S).

The core in nontransferable payoff cooperative games sta-
bilizes the grand coalition, similar to its transferable payoff
counterpart (section II). Now the stage is set to introduce the
following definition [10].

Definition VI.1. A non transferable payoff cooperative game
is a pair (N , V ), where N = {1, . . . , n} is the set of players,
and V = (v(S) ∈ R|S|,S ⊆ N ) is a family of sets satisfying

1) For each S, v(S) is a closed set.
2) If y ∈ v(S) and x ∈ R|S| with x ≤ y, then x ∈ v(S).
3) The set of vectors in v(S) in which each player in S

receives no less than the maximum that he can obtain by
himself is a nonempty, bounded set.

Any x ∈ v(N ) is called a feasible payoff profile. The core
C of the game is the set of feasible payoffs, which can not be
blocked by any coalition. Formally,

C = {x ∈ v(N ) : ∀S, /∃y ∈ v(S) such that yi > xi ∀i ∈ S}
In example VI.1, for instance, the payoff profile (x 1, x2) =

(P
2 , P + Q

2 ) is not in the core, since it is blocked by coalition
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{1}, that is v({1}) = Q and is greater than x1 = P
2 . But, the

pair (Q(5P−Q)
4P , 3P+Q

4 ) is indeed in the core, since it is not
blocked by any coalition.

B. Nonemptiness of the core of spectrum pooling game

Consider a spectrum pooling game (section III) with the
assumption that customers do not move and the quality of
channels do not change with time, i.e. |Ω| = 1. Now, let
providers form a coalition S. A joint action of the providers
will be of the form {αlj , l ∈ CS , j ∈ MS}, which must satisfy
the following feasibility constraints.

1)
∑

j∈MS αlj ≤ 1, l ∈ CS .
2)

∑
l∈CS αlj ≤ 1, j ∈ MS .

3)
∑

l∈CS αljRlj ≥ mj , j ∈ MS .
4) αlj ≥ 0, l ∈ CS , j ∈ MS .

Suppose that joint (feasible) action space is nonempty. Cus-
tomer j associated with provider i receives rate yj =∑

l∈CS αljRlj and channel l is used zl =
∑

j∈MS
αlj fraction

of time. Let yi = {yj, j ∈ Mi} and zi = {zl, l ∈ Ci}. Then,
the corresponding payoff vector will be (U i(yi) − Vi(zi), i ∈
S). Now, we show that the core of this game is nonempty. We
need the following definitions

Definition VI.2. A collection (of coalitions) T ⊂ 2N\∅ is
called balanced if there exist non-negative weights (λS ,S ∈
T ) such that

∑
S∈T : i∈S λS = 1, ∀i ∈ N

Definition VI.3. A game is balanced if for every balanced
collection T , if u ∈ Rn and uS ∈ v(S) for all S ∈ T , then
u ∈ v(N ).6

Finally, we will make use of the following theorem [10].

Theorem VI.1. A balanced game always has a nonempty core.

Here is the main result

Theorem VI.2. The non transferable payoff spectrum pooling
game described above, is balanced and hence has a nonempty
core.

Proof: Consider a balanced collection of coalitions T .
Let (λS ,S ∈ T ) be the corresponding non-negative weights.
Also, let u ∈ Rn be such that uS ∈ v(S) for all S ∈ T , i.e,
there exist joint actions {αS

lj , l ∈ CS , j ∈ MS} for all S ∈ T
such that

1) These satisfy constraints 1 − 4.
2) ui ≤ Ui(yS

i ) − Vi(zSi ), ∀i ∈ S where {yS
i , i ∈ S},

denote the rate vectors corresponding to joint action
{αS

lj , k ∈ CS , j ∈ MS}, and {zSi , i ∈ S} is its
corresponding channel utilization vectors.

Now, define a joint action {αlj , l ∈ CN , j ∈ MN } as αlj =∑
S∈T : l∈CS

j∈MS
λSαS

lj .

The further proof consists of two steps
Step 1: {αlj , k ∈ CN , j ∈ MN } satisfy constraints 1 − 4,
corresponding to the grand coalition N .

6For any x ∈ Rn, xS ∈ R|S| is defined by xS
i = xi,∀i ∈ S .

∑

j∈MN

αlj =
∑

j∈MN

∑

S∈T : l∈CS
j∈MS

λSαS
lj

=
∑

S∈T : l∈CS

λS
∑

j∈MS

αS
lj

≤
∑

S∈T : l∈CS

λS

=
∑

S∈T : i∈S
λS (where l ∈ Ci)

= 1

Similarly, one can show that constraints 2 and 3 are also
satisfied. Constraint 4 is trivial.

Step 2: ui ≤ Ui(yi) − Vi(zi), ∀i ∈ N where {yi, i ∈
N} and {zi, i ∈ N}, denote the rate and channel utilization
vectors corresponding to joint action {α lj , k ∈ CN , j ∈ MN },
respectively. It is easy to check that the rate received by a
customer j, yj =

∑
S∈T : i∈S λSyS

j (where j ∈ Mi), i.e., for
all j, yj is a convex combination of {yS

j ,S ∈ T : i ∈ S},
where j ∈ Mi. Similarly, zl =

∑
S∈T : i∈S λSzSl (where l ∈

Ci). Since Ui(.) and Vi(.) are increasing concave and convex
functions respectively, for each provider i,

Ui(yi) − Vi(zi) ≥
∑

S∈T : i∈S
λS

(
Ui(yS

i ) − Vi(zSi )
)

≥
∑

S∈T : i∈S
λSui

= ui

From Steps 1 and 2, u ∈ v(N ). Hence, the game is balanced
and hence has a nonempty core.

VII. RELATED WORK

Principles and concepts from cooperative game theory are
likely to substantially enrich our understanding of resource
allocation in wireless network area, particularly as many
resource allocation mechanisms depend on cooperation among
nodes. Toward this goal, Nash bargaining solutions have been
proposed for power control and spectrum sharing among
multiple users [11]. Coalitional games have been used recently
for modeling cooperation among nodes in the physical layer
[12], [13].

We studied cooperation in higher layers. Preliminary results
in this case were presented in [14], which considered a single-
hop network with predetermined locations of base stations,
stationary customers, and fixed channel qualities. Our frame-
work generalizes the model and results in that it also considers
multi-hop networks and allows channel qualities and customer
locations to change in time according to some known random
distribution. Also, we examined the problem in which the
locations of base stations are part of the decision variables
and proved the nonemptiness of the core in important special
cases. We also investigated the resource allocation problem in
nontransferable payoff cooperative game framework.
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We now compare and contrast the proof techniques we used
with those used in related papers in cooperative games. The
duality technique applied in section III was previously used
in [14]–[18]. However, [15] and [18] discussed only linear
optimizations, while we also considered a more general convex
optimization. Also, the structures of the optimization problems
we considered are not the same as those in [16], [17], and [14].
In addition, we examined the optimizations that involve integer
values (section IV), which has not been considered in any of
these papers.
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