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Abstract—Containment of worms constitutes an important
challenge in mobile wireless networks as recent outbreaksave
revealed actual vulnerabilities. We introduce a defense sitegy
that quarantines the malware by reducing the communication
range. This counter-measure confronts us with a trade-off:
reducing the communication range suppresses the spread ofi¢
malware, however, it also deteriorates the network perfornance.
We model the propagation of the malware as a deterministic
epidemic. Using an optimal control framework, we select the
optimal communication range that captures the above trade-
off by minimizing a global cost function. Using Pontryagin's
Maximum Principle, we derive structural characteristics of the
optimal communication range as a function of time for genera
cost functions. Our numerical computations reveal that the
dynamic optimal control of the communication range signifi@antly
outperforms static choices and is also robust to errors in
estimation of the network and attack parameters.

I. INTRODUCTION

of the threat become more alarming when we consider the
huge investments that have been directed towards wireless
communication infrastructure and the economic liabilitytt
is built upon it. The viability of these investments is comgént
upon designing effective detection and containment giase

In this paper, we focus on the containment of infection in a
mobile wireless network. As we pointed out, several wirgles
properties enhance the severity of the infection. Howekese
unigue features can also be utilized to contrive new counter
measures against the spread of infection. An infected node
can transmit its infection to another node only if they are in
communication range of each other. We propose to quarantine
the infection by regulating the communication range of the
nodes. Specifically, the reception gain of the healthy nodes
can be reduced to abate the frequency of contacts between the
mobile nodes and thus suppress the spread of the infection. |
fact, there is an interesting analogy between the spread of a

Malicious computer softwares, in the form of worms, haveiorm in mobile wireless networks and a biological epidemic
inflicted enormous damages on computer networks. For im-a human community. During a biological virus outbreak,
stance, during an outbreak of Code Red on July 19, 20Gddividuals might choose to restrain their contacts wite th
hundreds of thousands of computers were infected in a laziest of the society. This abstinence decreases the chance of

speed, inflicting repair costs of billions of dollars [2]. Ykas,

getting infected at the expense of deterioration in theitual

as self-replicating codes, have the potential of explgitirof life: a decrease in the rate of communication between the
their infected hosts to infect other nodes and exponentiathembers of the society hampers their ability to fully pemfor
multiply the number of their victims: a phenomenon that weheir daily tasks [8]. Such a trade-off also exists in thescafs

call epidemic. Thus detection and containment of malwaeemobile wireless network: reducing the communication eang
have drawn substantial attention among the Internet relseanf nodes can deteriorate the QoS offered by the network, as
community ( [2]-[5] etc). However, a new battle-field hashe end-to-end communication delay increases.

emerged: personal mobile devices such as cell-phonest-smarwe present a containment strategy based on power control.
phones and pocket-PCs are acquiring more computation aid propose an optimal control framework to characterize the
communication capabilities, and hence, new vulneragditi trade-off between the containment efficacy and commurmicati
are introduced. The sprouting popularity of these mobikapabilities of the nodes (section Ill). Using Pontryagin’
devices combined with their new capabilities have creatéaximum Principle, we devise a framework for computing
an ideal prey-ground for future malware [3], [6]. In wiredesthe dynamically evolving optimal communication range. We
networks, since resources are scarce, worms can cause iemtify several structural characteristics of the optimen-
forms of havoc above and beyond those in wired networksol by examining the analytical properties of the solution
For instance, as the media in wireless networks is commdgection V). Specifically, for a general concave cost florcti
bandwidth is severely limited. The increased rate of attsmgsubsection V-A), we show that the optimal solution has the
to access the media by infected nodes can jam the media afa$sical bang-bang structure, i.e., it is only at its mimim
thereby disrupt network functionalities [7]. The dimemso or maximum values. We prove that the optimal solution in

Parts of this work were presented in Fourth Symposium onrindétion
Theory and Applications (ITA09), University of San Dieg2009 [1].

this case has at most two (abrupt) transitions between these
extreme values. Subsequently, we establish that the dptima
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function, with the exception that transitions are contsio
and smooth instead of being abrupt (subsection V-B). Rinall
we demonstrate that dynamic optimal control of the commu-
nication range significantly outperforms static choices] &
also robust to errors in estimation of the network and attack
parameters (Section VIII).



Il. LITERATURE REVIEW is prone to infection. A node isfective if it has the worm. In-
. i . fective nodes can propagate the worm through communication
Most of th_e literature on worm propagation trad_'t'onalmvith susceptible nodes. Upon detection of an infective node
assume a wired network framework and also chiefly, hgwer the user of an infected device or the network operator
underlying network is the internet. An engaging historicglyn, o es the infection of the node by installing a securitgipa
review of major recent_malware outbregk_s n _netwqus M&¥hich also grants the node permanent immunity against that
for instance be found in [9]. Deterministic epldem|olog|cathreat_ However, this does not take place immediately upon
frameworks have been used to model the propagation iﬂfection, but rather after an exponentially distributetddom

6Wdelay with mearnl /~. This delay is associated with detection

eUF the malware before obtaining the appropriate patch. Each

. X 2 node obtains the security patch directly from a trusted camur

of USers about whether to mstal_l or unlnstall a securitgfpat . _such as a server, or authorized access points, or trainedrhum

a wired networ_k. Game theoretic te_chnlques for the anaqfs'sagents. In section VI we consider an alternative setting for

network security have been used in [16], [17], among Other(?otaining these security patches. We use the texcovered
Controlling the spread of the worm by reducing the ratg the infective nodes which receive the patch.

of communication of nodes [18], [19], or the number of Transmission of a packet between a pair of nodes is success-

communications [4], are the closest analogs in wired né®/0rg| if the received SNR is above the minimum level necessary

to reducing the communication range of the nodes in wirelégsgecode the signal. The signal power at the receiver node is
networks. The work in [18] is based on heuristics and simula-

tions. Next, unlike our work, [19] does not propose a formaltransm|33|on rgﬁgﬂ;sﬁfggg gain, base signal power (1)
framework for attaining desired trade-offs, and consiaery _ distancé _ , _

a static choice of the communication rate, whereas we alld@Which the base signal power is the power of the signal at the
the communication range of the nodes to dynamically evolPatput of the transmitter antenna when the transmissiamigai

over time as the infection level fluctuates. Recently, [4§ ha/Nty; and the propagation loss factor is a constant no ress t
proposed to contain a worm in the initial phase of infectign b?: determined by the type of media and geographical features

limiting the total number of distinct contacts per node aver  Of the network [29], [30]. Thus two nodes can communicate

containment cycle, and models the growth of the worm usingPg!Y if they are within a certain distance from each other,
stochastic branching process. However, this work onlyiappl Which we refer to as their communication range. When two
to the initial phase of infection and their countermeassre 0d€s are in communication range of each other, we say they

ineffective once the epidemic starts. ari'in contact. he effect of chanaing th _
Control theoretic tools have been used in [20] to propose .a ere, we Investigate the effect of changing the communica-

feedback-based (but heuristic) strategy for containmemtad- tion range on the propagation dynamics. Nodes are moving in a

ware in a wired network. [21][24] adopt malware propagatiovaSt region (of areal) and according to mobility models such

models to investigate an optimal dynamic response based O%se{ando_m vyaypomt or r‘?‘”dom direction model [31]. Also, the
guantified cost function in communication networks. [22R] communication ra_ngeuo_|§ small_compgred tol, and speed
assume the viewpoint of an attacker and propose a maximla{nthe movement IS sufficiently high. It IS s_hov_vn eg. n [(82]
damage malware attack in an energy-constrained netwo] it under such cwgumstgnges, the pairwise inter-cotitact
This work differs from [23], [24] in that (i) we propose's nearly exponentially distributed, and the contact rdte o

. i . . ~ A _ 2wE[V*]

and investigate reduction of reception gain of nodes in given pair of nodes is est|_m.ated As where@__ A
wireless network as a countermeasure rather than dynaynicéﬁ a constapt factor pertaining _to the specific mobility mpde
changing the settings of firewall softwares [23], or rate cﬁnﬁE [Ve]is the_slvera%e relgt]ive §peed dbetwegn two noder.?.
recovery [24], and (ii) we consider cost functions which ar¥:v en a susceptible 3” ?\n :cn ective .nr? € are in co_rl;tact, the
only assumed to be either concave or convex and are therefgfgction is transmitted to the former with a certain proiigh

more general than quadratic functions. Also unlike [23] w T_atszs\furl?ettr?aﬁ (E{Ioles notbcha?ge(;/wth t|me.t . d
do not use any linearization of the system which can be e € the total number of nodes, ang(¢), n;(t) an

inadequate in the context of epidemic behavior. OptimQIR(t) respectively represent the total number of susceptible,

control has also been used as an effective tool to deveI'Sl ective and recovered nodes at timeFollowing the condi-

immunization and/or screening strategies to counter theasp tions we assumed for the modpl, the st(atg@, n1(t), nr(t)) .
of a biological or social epidemic [25]-[28]. Introductiaf of the system evolves according to a pure jump Markov chain.

our new countermeasure policy in the framework of mobil'E}et the rate between the states(t) andox(t) in that Markov

wireless network results in a new optimal control problemthChain be denoted by(o1(t), 02(¢)). Thus, we have:
requires an original analysis and previous results in [P8} pling(t),nr(t),ng(t)), (ns(t) — 1,nr(t) + 1,ng(t))]

process that involves learning, in order to incorporategi@aes

do not apply here. = Bung(t)n;(t) and,
pl(ns(t), nr(t),nr(t)), (ns(t),nr(t) — Lng(t) + 1)]
I1l. SYSTEM MODEL =ynr(t).

To begin, let us introduce some terminologies. A node It the fraction of the infective, susceptible and recov-
called susceptibleif it is not contaminated by the worm, butered nodes at timg be denoted byI(t),S(t), R(t) re-



spectively, i.e.,I(t) = n;(t)/N, S(t) = ng(t)/N and On the other hand, in most practical cases, the malware
R(t) = ngr(t)/N. Now, if Sy = limy_ng(0)/N,Iy = might not have controllable access to the parameters of the
limy_,0onr(0)/N,Ry = limyooons(0)/N and 8 = MAC, and in such cases, the transmission gain of the infectiv
limy_,o N3 exist, it may be shown using the results of [33hodes is unchanged. However, if the malware could indeed
that asN grows, S(t), I(t), R(t) converge to the solution of modify the transmission gain of the infective nodes, iregsp
the differential equatiors tive of the choice of the reception gain of the susceptibtés,
) . . apt to use the maximum transmission range and scanning rate
§=—pulS, I=pulS—nI, R=9l that is physically realizable by the devices, so as to acale
with initial states (So,Io, Ro). The convergence is in theits spread. The resulting increase in the transmissioneraifig
following sense: the infectives can be effectively captured through appader
scaling of 3, and the model for the dynamics of the system
lim Pr{sup |"5_(T) —S(r)] > e} =0 does not change. In particular, note that the malware has no
N—ooo "7y N incentive to vary the transmission range over tfme.
We now construct a meaningful cost function which cap-
limy_,.. N exists as long alimx .. N/A, the node den- tures_ th(_e advantages and disadv_antages of changi_ng_the com-
. . X munication range. Our cost functions are naturally intégna
sity on the plane, exists. We assume that at time 2€19,nfan instantaneous cost over an operation period. Infectiv
nonzero portion f,) of the nodes, but not all of them, are d b d by th I i ; y f
infective: 0 < I(0) = Iy < 1. Similarly, 0 < Sy < 1. More- noces can be Used by e matware o periorm various forms
f malicious activities, such as eavesdropping, analytireg

over, in general, some fraction of the nodes may be prewousgata traversing the network, accessing privileged infoiona

L?Qgglztiig tr}e 'r]geftlj(\)]n]’\]"iqfth}ze((g ;53 ; éliﬁetjrzlg'gal hijacking sessions, disrupting network functionalitiesls as
+HI+R=N/N=1, Y routing, etc. Hence, the instantaneous cost grows larger with

eqqatlong presented above may be reduced to the fo”OW'a'?rgincrease in the fraction of the infective nodes. We n#jura
2-dimensional system

assume a linear dependence Kn). Let us now explore the
S =—BulS S(0)=1—-1Ip— Ry (2a) relation between the instantaneous cost and the commigmicat
. . range. Note thatu,.. (which is considered to bé after
I'=pulS =1 10)=Io (2b) appropriate scaling) is the normal communication rangaef t
with the state constraints nodes and constitutes the optimum operating point in alesenc
of malware. Reducing the communication range belguy,.
0<81, S+I<l () undermines the ability of the nodes to deliver their ownficaf

As we can see from the system dynamics in (2), reducti@hd increases delays in the end-to-end deIivery qf messages
of the communication range between susceptible and intect/€lated to the normal function of the network. This is more so
nodes,u, can repress the propagation of the malware. RecBffcause nodes can not selectively reduce their commuaricati
from (1) that the communication range between an infectif@nges based on whether they are receiving from an infective
transmitter and a susceptible receiver is governed botthy £ & susceptible node. This is because an infected node does
transmission gain of the infective and the reception gaitnef NOt detect that it is infected for some time, and upon dedacti
susceptible node. This motivates a defense policy for eg=| it iS immediately recovered by the system. Thus, infornmatio
networks: upon detection of malicious behavior, susckpti@bo_Ut whether or not a node is infective or susceptible, ts no
nodes can reduce their reception gains. Effectively, #sits available to that node and to any other nodes. Therefore, the
in a reduction of their communication range, which lessees tréduction of communication range affects communication of
frequency of contacts between the infective and susceptif@ckets between all pairs, and thus deteriorates the tveral
nodes. This in turn reduces the rate of propagation of tRoS® We model the effect of changingon the QoS through
infection. Thus, the reception gain of the susceptible seael @ double differentiable cost function(u) that increases with
hence the communication rangé) can be a control variable, décrease inu, i.e., #'(u) < 0 for wmy, < u < 1 and,

which is bounded between a maximum and minimum valudVithout loss of generality, (1) = 0. To simplify the technical
arguments, we further assumg1) is strictly negative. Since

Umin < u < 1. (4) the characterization df(-) depends on the implemented MAC
E}nd routing policies, we consider two classe$0f function:
|

Ve>0,t>0,

and likewise for/ and R. Recall that3 %; hence

These bounds are imposed by the physical constraints of {je

. ) . :
device as well as the MAC protocol and the minimum accepcor?\?gxc;v?g’ Ih?’( }; S% %r() for uz““ i 1; < 1, and strictly
able QoS. Note that the actual bounds of the communication » 1B Y Umin =t = 2

range can always be re-scaled and normalized, and thelDtmpaZWhen battery lifetimes are limited, which we do not considrerthis

can be capt.ur.ed by an appmpriﬁﬁ_so .thatumax- = _1- ANy  paper, malware may have an advantage in dynamically vatfimgropagation
u(t) that satisfies the above constraint is calighissibleand range of the infective nodes. This scenario may be analygecobsidering

the range[umn . .. 1] is referred to as thadmissible range. 2 dynamic game, which is beyond the scope of this paper.

Wi ke th hnical . 3Assuming bi-directional communication, is in fact the communication
e make the technical assumption thati, > 0. range between a susceptible and an infective node or betmeesusceptible

nodes. Specifically, the control ef may not alter the communication range
IHenceforth, whenever not ambiguous, the dependencyt ém made between the infective nodes. However, as far as QoS is avedeonly the
implicit for brevity. communication range between the susceptible nodes counts.



The overall cost incurred by the network therefore can beNote that as a consequence, any continuous functioh of

represented as follows: and S is also a continuous function of time.
T .. . .
lemma 2. For any admissible(-), states(S, I) strictly satisfy
J = CI + h(u))dt+ KI(T). 5 . PUTEITV
/0 (CT+ h(u))dt + KI(T) ®) the state constraintg3) for the entire interval of 0... 7).

Coeffic.ientC. > 0 determines the relative importance (hazard) This lemma allows us to deal with an optimal control prob-
of the infection. The termi I(T'), where K > 0, represents oy without any state constraints, since the state consrai
the cost associated with the final tally of the infectives afa ever active - thus. constraints (3) are ignored hertbefo

the end of the operation period. The decision process of the Proof: Note that att — 0, by assumption we have <
susceptibles may now be represented as a dynamic con}ro:I Iy < 1 and also) < S — 290 —1-1I,— Ry < 1. Hence

problem, that of determination of the(-) that minimizes the
network cost over all admissible(-)s subject to satisfaction
of the system dynamics in (2) - suchu&)
optimal control.

Finally, note that we allow: to vary as a function of time,
i.e., itis selected dynamically, though identically fodividual

from lemma 1, the first two constraints in (3), i.6.< S, I
, are strictly satisfied on an interval starting fram= 0. The
is denoted as the last constraint, i.e.5 + I <1 is active att = 0, however, by
summing equations (2a) and (2b) we hagtte{S + 1) at time
zero is equal to—~Iy, which, following the assumptions, is

d Particular] bl initially ch v negative. Therefore, there exists an interval after tinte @
nodes. Farticuiarly, susceptivles may Inially Choosewet — hich the constrains + I < 1 is strictly met. Now suppose

value of the reception gain to suppress the spread of Cmagﬂhat the statement of the lemma is not true. Thenigathere

ar_ld_to buy time for the reCOoVery process of the nodes t% < tg < T, be the first time that (at least) one of the three
eliminate a safe number of infectives, and subsequentlyﬂostate constraints in (3) becomes active. Thus, the congrai

higher vglugs ofu S0 as to m|n|mally.d|srupt the networkare strictly metin(0...¢y). For0 < t < tg, from (2a) we have
communication. Note that all susceptibles choose the same, _3S, thusS > Spe~ P, for all 0 < ¢ < t, and therefore
u(t) at eacht since information about the state of the nodeg ’ —oN o o 0 ’

. : : . _ ue to continuity ofS(-), S(to) > 0. Similarly, for0 <t <t
in a susceptible node’s neighborhood is either nonexistent, | (2b) we hgvei >()_7§ Ot)husl(to) <0 le well. Now l;)y

athble St rfpreienthg hst_ah_s(;ucst_ ablofut th”e a\geragle Stg(tf _Ofs fiming (2a) and (2b), we obtaif} (S + I) = —vI. Hence
whole network, which IS ldentica ”o:j_a .BO eds. rr:aj?ﬁe It"onat to, S+ 1 < Sy + Ip = 1. Thus, none of the constraints
inter-contact times are exponentially distributed, a M- .ould have become active, a contradiction. m

oryless property of the exponential distribution impliématt
each node is equally likely to meet any node in the futurlg
irrespective of its prior contact history. )

We can now apply thBontryagin’s Maximum Principl§34,
232] on the un-constrained optimal control problem. Con-
sider a piecewise continuous contigl) and the correspond-
ing state function$sS, I'). TheHamiltonianH is the following

a fuls > 0 il e scaler function of theo-stateor adjoint variabled \; and\:

H =CI+h()+ s —A)BulS — oyl (6)

Fig. 1. wu(t) is the reception gain of the susceptible nodes at time
Here, except at the discontinuity epochsugf),

S | fraction of susceptible nodes . OH

T | fraction of infective nodes AM=——==—(a—A\1)ful

R | fraction of recovered nodes gg @)

u | communication range of susceptible nodes U T _

~ | recovery rate of infective nodes Ay = oI ¢ (/\2 Al)ﬂuS T )\27'

TABLE | Also, A1, \» have the following final value constraints
TABLE OF IMPORTANT NOTATIONS
M(T)=0, X(T)=K. (8)
V. OPTIMAL w Then, according to Pontryagin’s Maximum Principle, any

. . optimal controlleru, minimizes the Hamiltonian (6) over all
We develop a framework for numerical computation of thgdmissible controls at each time epoch:

optimal controlu. Note that classical control techniques do
not provide the optimal control in closed form since theestat wearg min  H(\, N, S, 1,u), 9)
dynamics (2) is non-linear, the overall cost function (5hat Umin SUS1

necessarily linear or quadratic in and the level of infectives
is not monotonic, i.e., it can be increasing or decreasirey 0
differentintervals of time. We start by proving lemmas 1 @nd

where the state and co-state variabl8sI, A1, \2) are abso-
\1utely continuous functions of time that satisfy (2), (7)da(8)
with the optimumu. Let

lemma 1. I and S are continuous functions of time. X
. . ¢ = BIS(A2 — A1), (10)
Proof: According to (2), bothS and I are integrals of

bounded functions and thus are continuous functions of.times, e terminology of Pontryagin's Maximum Principlé, I, A1, Ao are
B often referred to as variables, though they are functionsngé in reality.



which is a continuous function of states and co-states aml thA. Concaveh(u):
a continuous function of time. This allows us to rewrite th

Hamiltonian (in (6)) as follows: Theorem 1. For concaveh, the optimalu(-) has the following

structure:

H =CI + h(u) + pu — A1 (11) s ut)=1for0<t <t for0<t; <T;
Thus according to (9), the optimal solutiansatisfies o u(t) = umin forty <t <taforty <ty <T;
e u(t)y=1forte <t <T.
hw) +ou < h(w) +eu, (12) Thus, optimalu(t) has one of these five forms: it either
where v is any admissible controller, i.ey € [umin...1]. has no jump and is fixed at,,;, or 1 throughout[0...T]
Thus, to find the optimal controller, one needs to minimize th{t; = 0,t, = T or t; = T, respectively); or has only one
function h(u) 4+ pu over the admissible set € [umin...1].  jump of the formu = upp T 1 0ru = 1 | upy (0 =
For strictly concaveh, h(u) + pu is a strictly concave t; < to < T or 0 < t; < to = T, respectively); or has only
function of u, and is therefore minimized at either= un,i, two jumps which is necessarily of the form=1 | u;, 11
h(umin) > 0. Comparing the values of (0 < t1 <ty < T). We first develop some intuition behind the
occurrence of each case. If the malware is highly contagious
(large B), or highly dangerous (larg€’, K), or the recovery
Ui, o(t) > K process is slow (smatl), or the_cost inflicted by reducinzgis
u(t) =1 o(t) < K (13) low (small h(u)), then susceptibles should maintain= wmi,
’ throughout. The other extreme arises for sngahigh~, small
Umin OF 1, (t) = k. C, K or largeh(u): deviation from the normak = 1 is then
For linear h(u), i.e., for h(u) = 1 —u, k = 1, and the Sub-optimal. The structure afin cases that lie between these

optimal v can assume any value iy, 1] if ¢(t) = 1. two extremes is not apriori clear. The coﬁ h(u)dt due

oru=1 Letk 2
. — Umj . .
the function atu € {umin, ﬁ, we obtain the optimalk as

Thus, we just have: to the deterioration of QoS depends on the duration and the
extent of the reduction ofi, but not on the timing of such
) Uumin, @(t) > 1 reductions. Ifu is reduced early on and subsequently restored
u(t) = (14) = T ;
1, o(t) < 1. to its normal value of, infectives start growing only later and

thus the time-accumulative coéIfOT I dt due to the growth

of the infectives is low. But then since the infection starts
9 spreading later, not enough infectives would be detecteld an

which —(h(x) + px) = 0. This yields the following relation recovered by the end of the operation inter{falT’]. Hence,

On the other hand, for strictly convéx h(u) + pu can be
minimized atu = i, OFr atu = 1 Or atu = = € (Umin, 1) at

for an o%timalu : the final tally of the infectived (T") may be high as compared
, to when the reduction of; starts (and also ends) later. The
Ymin, —I (min) < o(t) timing of the reduction must therefore be chosen depending o
u(t) = W (=p), —H(1) <e(t) < =h(umin) (15) the relative values of’ and X and also the spread rafeand
1, o(t) < —=h'(1). the recovery rate.. The one jump case arises if the reduction

is either applied at the beginning or at the end, and the two
jump case corresponds to when the reduction is applied in an

(7), provide a system of differential equations involving intermediate interval. Note that the theorem establishas t
P y d ¥ the reductions must be applied in one contiguous intervdl an

the state and co-state functions, and not the control foncti Isow is never reduced to an intermediate value be a
Using the initial and final values on the state and co-stafe i

functions, this system can be solved numerically to obiiain tandl - facts that may not be anticipated based on intuition.

) X . Proof: We first considerh to be strictly concave, and
optimum state and co-state functions, which can then be used . T .

: : use the optimal control characterization in (13). The prigof

to computeu via (13), (14), (15), and the overall cost via (5). . i

organized as follows:

We have therefore expressed the optimuas a function of
the state(.S, I) and co-staté\;, A2) functions. Now, (2) and

V. STRUCTURAL RESULTS Step 1 First we prove that the optimal controller is bang-bang

In thi . how that f & timal (i.e., itassumes only its maximum and minimum values),
n 'S.Sef. lon, we s obv; ab ora cct)_nc fﬁf_lny OSW'T_‘G‘ by arguing thatp cannot be equal ta on an interval
communication range is Bang-bangunction of time, that is, of nonzero length.

:\t/lpossesse_? onl>t/ tt\:vo pOSSIbItle Vglut%“ antfll (thforem 1 teg 2 Next we show thatp can have at most twa-crossing
oreover, 1t swiiches abruptly between the exireme value points(the time epochs at which— x changes its sign).

atnq tlhas at rr):}?st tvx_/o hsuchtjumptst. An o;_:iu;nal ;o:utmn for a From (13) these are the time epochs at whicwitches
S rl(;:lybcotrl\;]e ¢ ag"%'tf‘ as atmos ;’;0 svc\jntc es be V\tlﬁ'%nn h all between its extreme values, and therefore, the optimal
and1, but the transitions are smooth and traverses through all .00 o oo ot two jumps.

intermed?a.te values (theorem 2). We first observe thefd»ﬁg\gtep 3 Finally, we use the terminal value condition ¢f to
monotonicity result: evince the nature of the jumps of the optimal controller.

Corollary 1. For any admissible control functions is @  proof of Step 1. From the definition of, in (10), and
strictly decreasing function of time, i.e5,~, S(7). state and co-state equations respectively in (2) and (Bnyat



t at whichu(t) is continuous we have Thus, first of all,p cannot equak over an interval of nonzero
o ) i . length, since that would requitgto be equal to zero over that
5= IS(A2 = A1) +1S(A2 — A1) +1S(A2 — A1) interval. Now let there be more Ehaf orepoint and call the
first two ast,; andt... We havep(t);), o(t.,) < —yx < 0.
= (BulS =41)S(A2 = M) + I(=fulS) (A2 = A1) This contradicts property 1. Thus(thtlare ig a2t most erpoint,
+I1S(—C — (A2 — A1)BuS + A2y + (A2 — A1)Bul)  and hence at most one-crossing point.
Thus, = —BIS(C — A\17). (16) Now, let H — x < 0. Since 3, H,~ are const_ants, (_19) is
linear in S. Also, recall from Corollary 1 that' is a strictly
Now, suppose thap = » on an interval of nonzero length.monotonic function of time. ThusS, as samples ofS, is
Sinceu(t) is a piecewise continuous function of time(t) strictly monotonic int,.. Therefore, is strictly monotonic
is continuous on a subinterval of this interval. On such ia ¢,. This, together with property (1) show that there are at
subinterval,¢ is equal to zero. Consider now two distincimost three distinck-points, sayt. to t.3. Thus, if there are
points of this subinterval, call them andt,. We have: more than twox-crossing points, then they have to bg to
, t.3. According to (19)¢ is indeed either negative for all,
@(t1) = =BI(t1)S(t1)(C — M (t1)y) =0 epochs (case aff — x > 0), or is strictly decreasing between
P(t2) = =BI(t2)S(t2)(C — Mi(t2)y) = 0. consecutive samples a; epochs (case off — x < 0), a
Following lemma 2, we must havai (#,) = A (2). However, critical_fact that we yvill uTs_e Iater.' 'I:hus, py property 1 and
the strict monotonicity of5 in ¢, p(t_,) = ¢(t},) =0, and
A= ~Zu $(th) andp(t;) have opposite signs. But this contradicts the
S following property of continuous and piecewise differablie

Proof of Step 2.  We denotex-pointst,. as epochs at _ _ _
which ¢ = k. A k-crossing point must also berapoint, but Property 2. Let f(-) be a continuous and piecewise-
the reverse is not true. Let the variables with tilde denogért differentiable function. Let,,?,,¢; be three consecutivé-
values att,. Next, note that the Hamiltonian sutonomous l€vel points that are alsd.-crossing points, that isf(¢1) =
i.e., does not explicitly depend on the independent vagiabl f(f2) = f(ts) = L, f(t) # L for all #, <t < ¢, and

91 — ()). When the final timé” is fixed and the Hamiltonian 2 < < 3, and (f(tl — L) changes its sign aJE these points.
is autonomous then ( [34, P.236]): Now, if we havef(t]") # 0 and f(t;) = f(t3) = 0 and
f(t3) # 0, then f(t) and f(¢;) must have the same sign.
H(S(t), I(t),u(t), \(t), A2(t)) = constant = H.  (17) . .
_ _ Therefore, there cannot be more than tworossing points.
From (10) and by equating(t.) = «, we obtain Proof of Step 3. Note thate(t) is a continuous function

ﬁfg(jvz _ ;\1) . (18) that following (8), ends at

Sincewu is piecewise continuous, state and co-state functionsy(7') = Su(T)I(T)(A2(T) — M (T)) = pu(T)I(T)K. (20)

and hencep, are piecewise differentiable. Thus, we can write )
First supposer(T') < k. Hence, from (13), the optimal con-

o(ty) = @(t)) = =BIS(C = A1) [from (16)]  troller u(t) = 1 in a subinterval towards the end €. .. T).
_ _ng(CJFW(L ~ X))  [from (18)] Now if ¢ has nok-crossing point theni(¢t) = 1 throughout
B1S (0...7). If ¢ has onex-crossing point, say; € (0...7),
= —BS(CI — Z\Wf) — K thenu = wmin in (0...%) andu = 1in (¢;...T). Finally,
_ & - if ¢ has twok-crossing points, since(T) < &, p(t) — k
- _ﬁ‘?(H = hu) = pu) — s from (] s change its sign from negative tcg p)ositive at( s)ome time
= —BS(H — k) — k. (19) 0 < t; < T and then back to negative at some later titne

Equation (19) follows since according to (13), approachinyer€0 <t <t» <T. Thus,u(t) =1in (0...#:), then
t) = Umin N (t1,...t2) andu(t) = 1 again aftert,.

t., @ k-point, u is eitherl or u,,;, and for both of these two u(t) ) : )
values, we havé(u) + pu = k. Now let p(T') > . As we argued in step-2; at x-crossing

Here, we state a general property of continuous and pie@@ints is either always negative, or is decreasing between
wise differentiable functions which we prove in the appendiCOnsecutives-crossing points. This shows that the casepof
crossing downx and then crossing back upis not possible

Property 1. Let f(-) be a continuous and piecewisesince that would require at its x-crossing points to be strictly
differentiable function. Letl,tg be its consecutivd.-Level increasing_ Thus e|thep a|WayS Stays above in which case
points, that is, f(t1) = f(t2) = L and f(t) # L for all =4, throughout, o, crosses: up once, which is the case
ty <t <ty Also, f(t]) #0andf(t;) # 0. Thenf(t) and in which u switches fromu = 1 t0 um;,. Similar arguments
f(ty) must have opposite signs. apply for the case op(T') = «, depending whethep(t) > &
or o(t) < k ast approached" This completes step-3 and
thus proves the theorem for strictly concave

We now consider lineaf, i.e., h(u) = 1 — u, and use
SP(td) £ limyp4, and f(ty) 2 limgqy, - the optimal control characterization in (14). Followinghdar

We investigate the case @f — x > 0 first. Then according
to (19) and lemma 2p(t;) = (tF) < —yk < 0, ask > 0.



footsteps that lead to eq. (19), and using the fact that hexi beneficial to increase so as to enhance QoS, it is better
H = I(C —y)\2) + 1, we obtain: to increase it to the maximum possible valuelof

- ~ Proof of Theorem 2 We use the optimal control charac-

p=-BS(H-1) -~ terization in (15). It follows from the continuity of that
The proof is otherwise similar to that for strictly concave the optimalu is a continuous function of time. Thus the state
with « replaced withi. m and co-state functions and thus any differentiable functib

) YK them, e.g.p, is differentiable throughouf0 ... 7).
Remarkl. ():  H > - — I Note that due to strict convexity and decreasing properties
This follows from (198’ andsince < S < Sp = 1—  and assumptions o we have) < —h'(1) < —h' (um). The

Iy (Corollary 1). The negativity of along with the following key lemma can be validated similar to the steps 1
fact thaty is a continuous function of time, accordingand 2 of the proof of theorem 1:

to property 1, show that there can be at most one ) )
switch in the sign of — , and hence the optimal lemma 3. Consider anyL > 0. (i) ¢ cannot be equal to level

u(-) has at most one jump. Recall from (20) thaf- Over an interval of nonzero length. (i) = L for at most
o(T) = 0 < x. Thus, if p(0) = BIoSo(X2(0) — three time epochs. (iiip crosses any level, at most at two

M(0) <  thenu(t) = 1 for ¢ € [0,T]. If, on time epochs i{0 ... T"). Moreover, (iv)y either is negative at
the other handp(0) > &, then it foIIo;/vs 'frorrlw the theseL-crossing points or is decreasing between consecutive

Intermediate Value Theorem (IVT) that(-) jumps L-C'0SSINg points.
from umi, to 1in (0, 7). Thus, there exists at most one interval of nonzero length
(n: H< —77+f<a. This therefore constitutes aon which ¢ > L for any level L > 0 (e.g.,L = —h/(1)).
Bl — Io) Otherwiseyp, as a differentiable function of time, either has to

necessary condition for the optimal control to hav - _
two jumps. According to (8) and (17} = H (T) = crossL more than twice, or has to be atfor an interval of

CI(T) +h(u(T)) +o(T)u(T) — o (T)I(T). Alsg positive length, or has to crodsdown and then above which

from (2b) and following the argument in the proof ofequiresy to be non-decreasing between its consecufive
lemma 2, we have (T) > Ipe—T. The necessary crossing points. However, all of these cases would cordtadi

condition therefore is: the above lemma.
IoeTC < — R lemma 4. ¢ = 0 at at most one time epoch during the (only

+ k. Theng < 0.

B(1— Iy — Ry) t possible) interval on whicky > —1/(1).
which, for instance, require$(1 — Io — Ro) > 7. Proof: Supposep is zero att, ¢ in the interval on which
p > —h/(1) > 0, andt; < ty. Since from lemma 2]S is
B. Strictly Convest(u): never zero, from the expression fgrin (16) we must have:
Theorem 2. Let Phases 1 and 2 be defined as follows. C—M{t1)y=0=C— A (t2)7.
Phase 1: Hence,\1(t1) = A1 (t2). (21)

a. u(t)=1,0n0<t <t <T for somet; > 0;

b. w(t) strictly and continually decreases dn < The relation for\; in (7) can be rewritten as follows:

t <ty < T for somety > tq; A= 2
C. u(t) = Umin ONty < t < t3 fOr SOMety < t5 < S

T. Note thatpu > 0 over (¢1 ...t2). Thus )\, is strictly decreas-
Phase 2: ing during this interval. This contradicts (21). u

a. u(t) strictly and continually increases oty < Next, from (15),
t < t4 <T for somets < t, < T}, du {h(h—if(@)) —W (1) < p(t) < —h/(tmin)

b. u(t) =1 on the intervalt, <t < T. T (22)

For strictly convexh, an optimalu(t) is a continuougunction
consisting of

e Only Phase 1, or

« Only Phase 2, or

« Phase 1 followed by Phase 2.

0, otherwise.

The above relation shows that on the interval over which
—h(1) < ¢(t) < —h'(umin), @ has the opposite sign af
and over such intervalgd = 0 only if ¢ = 0.

If ¢ < —h/(1) throughout[0...T], then (15) implies
that w = 1 throughout and we only have phase 2-b. Other-

Qualitatively, the optimal controller for strictly convéx-) wise, there exists exactly one interval, denoted:as . .v»),
shows similar pattern of up to two transitions between @ < 1y < 1o < T, such thaty > —h/(1) in (v1...19),
maximum and minimum value as that for concaye). The and ¢ < —h'(1) att < 1y andt > vy. Thus, referring
transitions are however smooth for strictly convkk) as to (15), v = 1 over the intervals[0...24] and [v2...T],
a slight increase in: from uy,;, decreases the cost due tavhich respectively correspond to phases 1-a and 2-b. Second
QoS and hence the overall cost significantly. In contrastafo Lemmas 3 and 4 imply that on the interval over whigh>
concaveh(u), the decrease in the overall cost as a result of-ah/(1) > 0, i.e., (v1...12), ¢ is either (A) always strictly
slight increase in the value of is insignificant and if it is at decreasing; (B) always strictly increasing; or (C) styictl



increasing on a sub-intervéd, . .. v3) and strictly decreasing Therefore (¢ ) andy(t;) are linear inS and theorem 1 can
during (v3...12). Here, we investigate case (A). Similatbe established using similar arguments as in subsection V-A
arguments can be made about cases (B) and (C). In case (A),

v1 = 0. Now either (i) o < —h/(umin) throughout(0. . . vs); VII. | MPLEMENTATION AND PRACTICAL ISSUES

or (i) ¢ > —h/(umin) ON (0...v4), theny < —h'(umin) ON pynamic control of the reception gain of the nodes is
(v4...v2). For case (i)u is strictly increasing ovef0...v2], possible through control of antenna gains, which may be
and assuming, < T, thenu = 1 over [v; ... T] (phase 2-a reglized through the use of smart antennas and adaptive
followed by phase 2-b). If, = T, phase 2-b has length zeroantenna arrays (see e.g. [35], [36]). A simple example for
On the other hand, for case (ii), assuming < 7', we have circuitry and algorithms for achieving controllable gaintiae

U = Unin, OVer[0...vy] (phase 1-c), them strictly increases yeceiver end of adaptive antennas is presented?jnSuch

over vy ...vo| (phase 2-a), them = 1 over[v;...T] (phase smart antennas have been implemented e.g. by Ericsson and
1-c). Again, ifv, = T', phase 2-b has length zero. L) Mannesmann Mobilfunk 9], and are expected to be more
pervasive in wireless devices in near future. Note that it
UNDERLYING WIRELESSNETWORK may not be possible to adjust antenna gains up to arbitrary

S . h h | b ised unl recision, and in practice, only a few quantized gain levels
ecurity patches may themselves be compromised un §y be available. This does not lead to any sub-optimality

they are obtained directly from trusted resources such as hen theh(.) function is concave, since as we proved, the
thorized access points, or trained human agents. Nevesmeloptimalu in this case is either at.;, or 1 during different

we still investigate the alternative (less secure) digtidn of intervals. For a strictly convek(.), quantization may however

the patches through the underlying wireless network. Is t &ad to sub-optimality as the optimal may assume any
case, decreasing the reception gain of the suscepubleﬁnoI Sermediate value between,,., and 1. Nevertheless, our

can increase the delay in dfallvery of the patches. We thEElref(Pmmerical computations presented in the next section revea
replace the recovery ratewith 7o +y1u wherey, > 0, and y o 4he apove sub-optimality is insignificant.
show that theorem 1 extends. The differential equation/for In absence of adaptive antennas, reduction of reception gai

in (2b) changes tf): may be achieved by simply rejecting some of the communica-
I = pulS — vyl — yul. tion requests. In this caseis the fraction of communication

requests accepted by each node. In more details, here the rat
. 2waFE[V*] .
of contacts of each pair of node is———— wherea is

the communication range of the nodes which is now fixed.

VI. DISTRIBUTION OF SECURITY PATCHES THROUGH THE

The Hamiltonian in (6) is updated as follows:
H = CI + h(u) + ()\2 — Al)ﬂ’UJIS — )\2’}/0] — /\2’71’&].

If we update the definition of in (10) as However, only a fraction of such contacts result in successful
© 2 BIS(Ay — A1) — Ao I communication. Hence the rate of permitted communication
’ 2waEB[V*

the optimalu may be characterized as in (13) and (14jetween susceptiple and infective .nOdeS—_*Si% an.d
Rewriting the Hamiltonian using the definition gfyields: ~ hence the governing Sy2sten]15[c‘)/f*?|fferentlal equations is the
5 wo
H = CI + h(u) 4+ ou — Aayol. same as before with = —————.
Recall that the optimal control for the case of concavis

- o completely specified by (at most two) jump points, and for a
H=Ht;)=H(t,)=CIl+r~ Xl (23) strictly convexh consists of at most two phases, characterized

Since the system is autonomous,is a constant. Hence,

At ¢, we have: by at most four time epochs. Thus, the reception gain may be
- o . optimally controlled by the nodes without any local or glbba

p(ts) = (A2 = M)BIS = Aol = k. (24)  coordination or information exchange once they know these

The co-state equation fox, changes to the following: transition epochs. Upon detection of a new malware in the

network, a central surveillance can assess the cost ceeffici

A2 =—C = (h2 = A)BS + X (70 + mu). C, K, the rate of recovery;, and estimate (or may already

The time derivative ofp turns out to be: have an estimate of) the spread rgt@f messages from the
. bility pattern and the density of the nodes etc. Switching
= —BISC + BISM\iyo + 1 IC. 25) Mo o \
4 b IS0 +m (25) epochs can then be calculated and distributed with small
Hence, communication overhead at time zero. Alternatively, notkes
G(tD) = G(th) receive the estimated parameters from the central stamed!
BISC + i iC and calculate the epochs themselves.
] ’7/1
+ (:\ K+ S\Q'Ylj)ﬂjg’y [from (24)] VIIl. SIMULATIONS AND NUMERICAL COMPUTATIONS
2 - == 0
£ . We first develop some intuition about the trends of changes
= —BISC + XoBISvo +1IC — 11 hav0l — K0 in the structure of the optimum control as a result of changes
_ —ﬂ(fC’ _ 5\270f)§ i 71(I~C _ :\2%]~) — kY0 in values of parameters, Iy, Ry, K,C. We subsequently

~ demonstrate that overall costs can be substantially laieye
= —B(H = r)S+n(H —r) = r. [from (23)]  sing dynamic optimal reception gain control as compared to



static gain control. Moreover, through simulations, we dam Concave h(u)

strate how a heuristic policy which utilizes approximatel an 1 ; : :
temporally evolving state information in a node’s neighbol _f _ N
. . —_ C=0.5 C=1 C=2.0

hood (hence a node-specific policy) compares to our dynan  Zos- b Y - 1
optimal policy which requires only one time estimates of th G=15
system parameters. Finally, we demonstrate that the dynai o ‘ ‘ ‘

. . . . . 0 5 10 15 20
optimal policy is robust to errors in the above estimates, ai

also to quantization errors in gain control.

Concave h(u)
1 : ‘

- B=0.2 ] : C=2.0 ‘
5057 ' / A2 % 5 10 15 20
=0.4 $=0.6 B=0. time
% 5 10 15 20 Fig. 5. Optimalu, varyingC. Here,Io = 0.1, K = 50, and other parameters

Convex h(u) are as in fig. 2.

f B=O.4 B:0'6 1 ‘ ‘
= =0.2
=1 B g / 0 3\\L“ |
-0 = / E—
o | | | =U. = 0.6F S(ty 1
0 5 10 15 20 U)’
time * odl u—= |
s )
Fig. 3. Optimalu, varying 8. Here,Ip = 0.1, K = 50, and other parameters 0.2r 1
are as in fig. 2. ...-.--—-—-—M'— e
0O . 15
time
Concave h(u) Fig. 6. An optimalu with two jumps. Hereh(u) = 1—u, upin = 0.1,y =
1 , : ‘ 0.22,8 = 0.4, Iy = 0.05, Ry = 0,C = 0.8 and K = 60.
= y=0.25
5050 v=0 20/4 / 0 0/’ cost associated with the infectives (and increased edduer
' y=0.15 [y=0.1 to provide the desired QoS) (fig. 5). Also, as all the above
% s 10 15 20 figures reveal, for _concavle, usually the optimak: is eithfar
Convex h(u) at 1 throughout or jumps once from,,;, to 1. But, scenarios
1 —— where it has two jumps does indeed arise (Fig. 6).
7
y=0.25 y=0.20  ¥=0.15
‘\:‘70.5;*_///__),,,/ 50
V:O-io}*// 45t ©
0 - L L 40 Cost of Best 4
0 5 10 15 20 Static Policy

time

Cost of Optimal
Dynamic Policy

Fig. 4. Optimalu, varying~. Here,Ip = 0.1, K = 50, and other parameters
are as in fig. 2.

The Overal Cost
8 n

As fig. 2 reveals, the optimal control becomes more const 15p 1
vative (selects lower values) for higher valuesiofHowever, 10 1
an interesting phenomenon is that increasifagdoes not 5
necessarily lead to more conservative defense policy. dh fa ‘ ; ‘ ‘ ‘ ‘

. . 8.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
the defense policy chooses progressively lower values, of B

whenlj is increased up to a certain value, but oigexceeds

this threshold the defense barely deviateBom the normal Fig. 7. Cost comparison: optimum dynamic versus the statlicips. The
value of1. This is because for largg the defense’s efficacy parameters aré’ = 25, umax = 1, Umin = 0.17=0.2, o = 0.2, C =5

is so low that reducing the reception gain does not heff)zso andh(u) =1 —u.

the containment but only deteriorates the QoS. The optimal

controller becomes more conservative for higher and lowerFig. 7 compares the overall costs inflicted by the optimal
values of3, v respectively (fig. 3 and fig. 4). Finally, for largedynamic policy versus the best static policy, as a functibn o
C, u is reduced earlier so as to reduce the time-accumulatigeA static policy is one in which the same value of reception
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1

0.8 =
IO 0.15
0.6/ 1 =0.10
K=50 0

0.4¢ |0=0'05\
)

0 : ‘ : 0] : ‘ :

0 5 10 15 20 0 5 10 15 20

Concave h(u) Convex h(u)
1 ; ; 1 ; ;
I0:0.15 (
0.8} ™ 0.8
N
0.6+ 1,=0-10 0.6t =
K=150 S W 1,=0.05 1,=0-10
0.4/ '0:0-05\ 0.4
0.21 0.2}
J I020.15
0 : : : 0 : : :
0 5 10 15 20 0 5 10 15 20
time time
Fig. 2. Optimalu, varying K. The h(u) functions used for concave and convex cases0abél — «) and (1 — )2, respectively. Other parameters are

Umin = 0.1,7 = 0.2, 8= 0.4, Ry =0 andC = 1.

gain is used throughout and we have optimized this fixed valoe measurements over fading channels in a network whose
to obtain the best static policy. Our dynamic policy achseveaopology is constantly changing due to mobility. Hencesthe

substantially lower costs except whgris small; in the latter
case its choice is largely statio & 1 most of the time).

Heuristic

-0—

Overall Cost
&

Our Dynamic Policy

1 1 1 1 1 1
0.02 0.025 0.03 0.035 0.04 0.045

Noise Sigma

0 1 1 1
0 0.005 0.01 0.015 0.05

Fig. 8. Comparison of the costs achieved by our dynamic @bticontrol
and a heuristic control that uses (noisy) local state in&iom.

estimates have limited accuracy and are fraught with random
errors. An important question that remains to be answered th
is whether and how nodes can utilize this noisy information
about the number of infective nodes in their neighborhood,
even at the cost of higher signal processing and compugation
In order to assess the usefulness of these noisy estimates,
we develop a heuristic node-specific policy that utilizes th
available information, and compare its efficacy against our
dynamic optimal control through simulation. In the helcist
policy, each node estimates the number of infective nodes
in its neighborhood; however, the state of each neighbor is
not flawlessly known. In the simulation, we modeled this
imprecision in detection by adding a Gaussian noise withmmea
zero and power? to the indicator that a node is infective or
not. Upon contact by one of its neighbors, the receptive node
blocks the communication, by reducing its reception gain to
Umin, If the estimated fraction of infected nodes in its vicinity
is greater than a certain threshold. (We considef;, very
close to0 and hence whem: = wuni,, the communication

is effectively blocked). This policy can be optimized over
the selected threshold and the size of the sensing area which
determines the set of neighbors. Specifically, at any givea t

As we discussed before, a node usually does not havehe neighbors of a node are those who are in contact with

information about the states of those that it contacts. Hewe

it in a time window(t — A ...t + A), andA depends on the

by monitoring the anomalous increase in the media acce§ge of the sensing area and node velocity. We chabgas

activity as a result of attempts of infective nodes to sprtbad
malware, a node may be able to estimate the number of
fectives in its neighborhood. This estimate, however, ddpe

also the decision threshold) so as to minimize the overail co
IAcurred by the heuristic policy. Our dynamic optimal cantr
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blocks communications at all times at which the optimal 40 ,
equalsu,;, (as againu,;, ~ 0) and accepts communications
otherwise (since the optimalequalsl otherwise). We ran the
simulations forN = 50 nodes over a period ¢f = 20, with

B =05 ~v=02 I =02 (i.e., n;(0) = 0.2 x 50 = 10),

C =10,K =0,h(u) =1 —u, and considering exponentially
distributed inter-contact times, with paramet;ér = B/N
(refer to Section lll, 3rd para), as is the case for random value of B
waypoint and random direction mobility models ( [31], [32]) ™~ !
The overall cost is calculated for both the heuristic policy 0035 04 045 05 055 06 065
and our dynamic policy through simulation as follows: the Fstimated »

cost of infectives foT C1I dt in (5)) is obtained by integrating (@) Robustness with respect o

(C times) the fraction of infectives over time and the cost

due to reduction of: is considered as the fraction of blocked 40
communications. The latter correspondshia) = 1 — u, as
whenu = upim ~ 0 (u = 1, respectively) every contact
results in a blocked (successful, respectively) commuioica
and incurs unit @, respectively) cost as per tttg.) function.

As fig. 8 reveals, the heuristic policy attains slightly laowe
costs than our optimal control policy, which does not use
any local or global state information, for small estimation
errors. This better performance is due to avoiding unnacgss
blocking of communication and hence not losing too much of The actual
QoS. However, as the estimation noise increases this aatyant 5¢ value oty
quickly diminishes and in fact our dynamic policy signifitign 0
outperforms the heuristic. Hence, considering the contjouta
overhead that state estimations introduces and sinceamcur

in such estimates is hard to achieve, our dynamic policy whic
requires no state information is preferable.

In order to calculate our dynamic policy, one requires a 1
one time(as opposed to a continuous estimation of the state)
estimate of the parameters of the system, &gl etc. Here,
we demonstrate that the cost achieved by our dynamic policy 0.6
is robust to errors in estimation of these parameters. S3@po §
that 5 equals).5 but the optimal control is calculated based on
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an estimate that is somewhere betwee3 and0.65. Fig. 9(a) 0.2

reveals that the increase in the overall cost as a result o

inaccurate estimation ¢f up to30% is less thar6%. Similar % 5 10 15 20
observation holds abou: as fig. 9(b) depicts, up t65% error time

in the estimation of ) results in less tha@.5% increase in the
cost incurred by our dynamic policy. Finally, as we pointed
out in the previous section, the reduction of communication
rates may only be possible at quantized levels, which leads t
sub-optimality only when thé(.) function is strictly convex.
The quantization of, however only minimally increases the
overall cost: as Fig. 9(c) and 9(d) show that even when the
number of levels is onl2 (and thus the controller is bang-
bang), the increase in cost is less tt&3a.

(c) The un-quantized optimal control

N
(2]

N
ol
T

Quantized Control 1

K\
i

N
w
T

No Quanization 1

The Overall Cost

N
N
T
L

IX. CONCLUSION

N
[
T
L

We proposed reduction of reception gains of susceptible
nodes for containing malware outbreaks in mobile wireless
networks. Using optimal control tools, we identified the op-
timum policy for dynamically controlling the reception gai (d) Robustness of the quantized control
so as to minimize the overall network costs. We analytlcal‘yg 9. The first two figures respectively demonstrate theusbiess with
proved that the optimal policies have simple structuresrwhesspect tos and I respectively fora(u) = 1 — u. The last two figures

the cost functions are concave and convex, and can thereﬁﬁt@onstrate robustness with respect to quantization iedhgol forh(u) =
)15, In the last figure, the x-axis represents the number of levels
ava||ab|e foru and the control is rounded to the level closest to the optima
value, e.g..x = 2 means the output is rounded tq,;, and 1. The other
parameters for all the figures afg= 0.5, Ip = 0.2, Rg = 0, v = 0.2,
Umin ~ 0, Umax = 1, C =10, T = 20.
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be easily implemented in resource constrained deviceouitith [2]
requiring constant coordination and information exchange
Investigation of dynamic control of infective nodes’ trans

mission gains by the malware (instead of selecting the maxis]
mum value throughout) constitutes an interesting directis
future research. Such control may be motivated in scenarigg
where energy limitations lead to premature battery degpisti
of infective nodes owing to high transmission range sebecti 5]
which in turn throttles the spread of the infection. Suchtoan
may also be necessary in a highly dense network in which a
malware might want to avoid jamming during its spreading[G]
period, in order not to self-throttle its propagation, ahdrt
initiate a more effective jamming attack. These cases, tiewe [7]
will lead to a dynamic game setting as both the network and
an attacker will optimize against each other. (8]

9]
APPENDIX

_Proof of Property 1.  Without loss of generality, let [10]
f(t) > 0. Let f(t;) > 0. The continuity and piecewise
differentiability of f(-) implies that there exis > 0 such that [11]
f() is continuous in the closed intervadts, ¢, + 4], [t2 — 9§, t2]
and differentiable in the open intervals, t1 +4), (t2 — 4, t2).
Thus, sincef(t1) = f(t2) = L and f(t7) > 0, f(t;) > 0, it

[12]

follows from the Mean value theorem that 3]
34, € (0...%(t2 —t1)) such thatf (¢, + 61) > L, and
[14]
d62€(0... %(tg —t1)) such thatf(to — d2) < L.

But, by the Intermediate value theorem (IVT), there exis{$5]
atimet; + 61 < 7 < t2 — 02 such thatf(r) = L. This
contradicts the assumption thAft) £ L for all ¢; < t < to.
Thus, f(t; ) < 0, and Property 1 holds. O

Proof of Property 2.  Without loss of generality, let
f'(tf) > 0. Arguing as in the proof of Property 1,

[16]

[17]

6, € (0 . l(tz — tl)) such thatf(t1 + 61) > L.

2 (18]
Also, (f(t)— L) must change its sign fropositiveto negative
at to. This is because otherwisé, 6, € (0...1(t2 — t1)),
such thatf(t; — d2) < L. But then, following IVT,3 7, €
(t1 4+ 91 ...t2 — d2) such thatf(m) = L. This contradicts the [20]
assumption thaf (¢) # L, for all t; < ¢ < t5. Thus,

[19]

21
ddq € (0 . %(t3 — tg)) such thatf(tg + 62) < L. (2]

Now let Property 2 not hold. Therf,(t; ) < 0, and as before, [22]

dd3 € (0 . %(t3 — tg)) such thatf(tg — 63) > L. [23]
But, by IVT, there exists a timeé;, + 02 < 7 < t3 — d3, such
that f(7) = L. This contradicts the assumption th&i) # L
for all t2 < ¢t < t3. Thus, Property 2 holds. O

[24]
[25]

[26]
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