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Abstract

We study fairness when receivers in a multicast network can not
subscribe to fractional layers. This case arises when the source hi-
erarchically encodes its signal and the hierarchical structure is pre-
determined. Unlike the case of the fractional layer allocation, which
has been studied extensively in [29], bandwidth can be allocated in
discrete chunks only. Fairness issues become vastly different. Compu-
tation of lexicographically optimal rate allocation becomes NP-hard in
this case, while lexicographically optimal rate allocation is polynomial
complexity computable when fractional layers can be allocated. Fur-
thermore, maxmin fair rate vector may not exist in this case. We in-
troduce a new notion of fairness, maximal fairness. We propose a poly-
nomial complexity algorithm for computation of maximally fair rates
allocated to various source-destination pairs. Even though, maximal
fairness is a weaker notion of fairness, it coincides with lexicographic
optimality and maxmin fairness, when maxmin fair rate allocation ex-
ists. So the algorithm for computing maximally fair rate allocation
computes maxmin fair rate allocation, when the latter exists.

1 Introduction

Multicasting provides an efficient way of transmitting data from a sender
to a group of receivers. A single source node or a group of source nodes
sends identical messages simultaneously to multiple destination nodes. Sin-
gle destination or unicast and broadcast to the entire network are special
cases of multicast. Multicast applications include collaborative applications
like audio or video teleconferencing, video-on-demand services, distributed
databases, distribution of software, financial information, electronic newspa-
pers, billing records, medical images, weather maps and experimental data,
distributed interactive simulation (DIS) activities such as tank battle simu-
lations. Many distributed systems such as the V System[12] and the Andrew
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distributed computing environment[27], popular protocol suites like Sun’s
broadcast RPC service[22] and IBMs NetBIOS[18] are using multicasting.
Multicasting has been used primarily in the Internet, but future ATM net-
works are likely to deploy multicasting in a large scale, particularly in appli-
cations like broadcast video, video-conferencing, multiparty telephony and
workgroup applications[11]. In general many multicast sessions simultane-
ously share the network resources. Ideally all sessions should have a fair
share of bandwidth. This issue of inter-session fairness have been studied
extensively in unicast networks. Multicasting poses some specific challenges
in this regard. This is because of network heterogenity. A single session may
have many destinations, and end systems can have widely varying bandwidth
connectivities. On one hand there are fast ethernets (100 Mbps) and on the
other hand there are slow modems (28.8 kbps). The paths to different des-
tinations may have different bandwidth capacities, e.g., one may consist of
multi-megabit links, such as, T3 (45 Mbps) and another may have a 128
kbps ISDN line (Refer to the network shown in figure 1 for an example).
Every receiver would like to receive service at a rate commensurate with its
capabilities and the capacity of the path leading to it from the source inde-
pendent of the capabilities of the other receivers of the same session. This is
the issue of intra-session fairness. Besides, like in unicast, there is the issue
of inter-session fairness, that is fairness of members across multiple sessions.
So multicasting poses the issue of intra-session fairness in addition to that
of inter-session fairness.
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As the Internet evolves to higher speed and larger size, the problems
caused by heterogenity will only get worse. A single rate of transmission per
session is likely to either overwhelm the slow receivers or starve the fast ones,
in absence of additional provisions. There are three alternative approaches,
simulcast, transcoding and layered transmission. Simulcast advocates that
every source maintains multiple streams carrying the same information but
transmitted at different rates and quality, targetted at receivers with differ-
ent capabilities[9]. Depending upon the individual capabilities, the receivers
are partitioned across groups and each group subscribes to one stream. The
rate of the streams can be controlled to attain a fair share. However this
is bandwidth inefficient as the same basic information is replicated across
all streams. This contradicts the basic principle of multicast that messages
need only be replicated at forking nodes. Besides, unless there are as many
groups as the number of receivers, the problem of heterogenity remains to a
limited extent. In transcoding, the source transmits at a rate matching the
fastest of its receivers. The transmission rates are transcoded at the inter-
mediate nodes to match the capabilities of slower receivers downstream[30].
At every link, the transmission rate of a session is equal to that of the fastest
session receiver downstream of the link. Video gateways are generally used
for transcoding[2]. However, in many situations, transcoding introduces un-
acceptable delay. As we discuss later, it introduces security hazards and
is a cost-prohitive option. The last approach is to have a hierarchical or a
layered transmission scheme. In this approach, a signal is encoded into a
number of layers that can be incrementally combined to provide progressive
refinement. The different layers of a multicast group are considered different
multicast groups and receivers adapt to congestion by adding and dropping
layers, where adding a layer is joining a multicast group and dropping a layer
is leaving a group[14]. Again the number of layers of a session in a link is the
maximum of the number of layers of the session receivers downstream. This
layered transmission scheme have been used for both video[30] and audio[7]
transmissions over the internet and has potentials for use in ATM networks
as well[15]. Layered transmission schemes can be used to attain inter-session
and intra-session fairness, in a bandwidth efficient manner, by having the
receivers subscribe to a “fair” number of layers. We assume that the network
transmits hierarchically encoded signals. As we discuss later, the layer band-
widths are often predetermined and can not be tuned according to the needs
of the network. A receiver either receives a layer fully or does not receive the
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layer, at all. It can not partially subscribe to a layer, unlike [29]. Effectively,
the network can only allocate a discrete set of rates to the receivers, whereas
a continuous set of rates can be allocated when receivers can subscribe to
fractional layers[29]. We study fair allocation of rates under this additional
constraint. As it turns out, fairness in a discrete set is vastly different from
that in a continuous set.

Maxmin fairness[6] is a well accepted notion of fairness. We would define
this notion more precisely later, but informally speaking, a rate allocation
is maxmin fair, if no receiver can be allocated a higher rate without hurting
another receiver having equal or lower rate. A maxmin fair rate allocation
may not exist in a discrete set. However, a maxmin fair rate allocation
always exists in a continuous set. Lexicographic optimality is another no-
tion of fairness. Formal definition follows later, but informally speaking, a
lexicographically optimal rate vector is one which maximizes its minimum
component in a feasible set, subject to this maximization, it maximizes the
second minimum, etc. Lexicographically optimal rate allocation exists in a
discrete set, but as we prove later, its computation is an NP-hard problem.
However lexicographically optimal rate allocation is identical to the maxmin
fair rate allocation and is thus polynomial complexity computable in a con-
tinuous set[26][29]. We can compute a maximally fair rate allocation in a
discrete set, instead. We introduce the concept of maximal fairness more
formally later, but a rate allocation is maximally fair if no other rate allo-
cation is “fairer” in some sense. That is, if a rate allocation is maximally
fair, then to increase the rate of a receiver s, we must lower that of another
receiver j to a value less than the new rate of s. If a rate allocation is max-
imally fair, then any other rate allocation will be “unfair” or “less fair” to
some receiver. Maximally fair rate allocation is a weaker notion of fairness
as compared to maxmin fairness and lexicographic optimality. But, maximal
fairness has various desirable properties fairness properties,e.g., it coincides
with maxmin fairness and lexicographic optimality when maxmin fair rate
allocation exists. We discuss other desirable fairness properties of maximally
fair allocations later. In a nutshell, maximal fairness is probably the best we
can achieve in the discrete case in view of the nonexistence of maxmin fair
rate allocation and computational complexity of lexicographically optimal
rate allocation. We will present a polynomial complexity algorithm for com-
puting maximally fair rate allocation in this paper. This algorithm yields
a maxmin fair rate vector, if it exists. Our algorithm for computation of
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maximally fair allocation do not assume any properties specific to internet
or ATM. So it is applicable in a very general scenario. Keeping in mind ATM
networks, we have incorporated minimum rate requirements and maximum
rate constraints in our model.

We review related work briefly The problem of fair allocation of band-
widths to multicast sessions under the constraint that all receivers of the
same session must receive service at the same rate has been studied in [31].
Intra-session fairness can not be achieved by a single rate of transmission per
session on account of network heterogenity. [9] advocates simulcast, but that
is bandwidth inefficient. There are two well known network protocols for lay-
ered transmission, RLM (Receiver-driven Layered Multicast)[24] and LVMR
(Layered Video Multicast with Retransmissions)[19]. The goal of these ap-
proaches is to achieve improved intra-session fairness. However, as [20] points
out, neither handles inter-session fairness very well, when there are multiple
sessions competing for bandwidth. A scheme for fair allocation of layers for
multi-session layered video multicast which strives to rectify this defect in
RLM and LVMR has been proposed in [20]. The authors present empirical
evidence that the scheme improves inter-session fairness for networks with
multiple video sessions sharing only one link. They mention that if M video
streams share a link and no stream has bandwidth constraint on other links
or end systems, then the layer difference between any two streams is either 0
or 1 in the steady state. But typically, streams would have bandwidth con-
straint on other links as well. There is no experimental or analytical evidence
that the scheme works well for more complex networks, with sessions sharing
several links with each other. In absence of further mechanisms, like elabo-
rate scheduling policies, it may not be possible to establish conclusively that
the scheme attains fair allocation of rates as per some well defined notion of
fairness, like maxmin fairness for example. Besides [20] does not make any
effort towards the computation of the actual rates or the number of layers
allocated to the receivers in an arbitrary network, under some well defined
notion of fairness. Rubenstein et. al. also points out that maxmin fair rate
allocations may not exist for discrete bandwidth layers[26]. But, [26] suggests
a policy of coordinated random add and drop of the highest layer for various
receivers, as a remedy. This attains long term rates close to the maxmin
fair allocation. However, this oscillation is likely to produce perceptually an-
noying distortion. The resulting perceptual quality may even be worse than
not subscribing to the highest layer at all. Besides, [26] observes that this
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Figure 2:

random add and drop of highest layer generally leads to underutilization of
link capacity. We recommend use of maximally fair rate allocations instead.

This report is organized as follows. Section 2 discusses the network sce-
narios under which the assumption of a discrete feasible set of rate allocations
becomes a necessity. Section 3 describes the problem of maxmin fairness for
multicast transmission and presents the mathematical framework used to
model the problem. Section 4 develops the notion of fairness in the discrete
case. Section 5 presents an algorithm for computation of the maximally fair
rates. Section 6 identifies some directions for future research. This section
concludes the paper.

2 Constraints on Signal Structure

We discuss the network scenarios under which the feasible set of rate alloca-
tions becomes discrete.

In multirate transmission, source transmits at a rate equal to the maxi-
mum of the rates allocated to its receivers. At forking points, video gateways
may be used to transcode signal into a lower bit rate such that the rate in
every link is equal to the maximum of the fair rates allocated to the ses-
sion receivers downstream[30]. Output rates for video gateways can be fine
tuned to match the required receiver rates, if rate adaptive videogateways are
used[2]. However, transcoding places additional computational and adminis-
trative burden on the network. It may not be possible to know apriori which
intermediate nodes need transcoding provisions, because this depends on fair
rate allocations and fair rate allocations will change dynamically depending
on the traffic conditions. So we may need to deploy transcoding gateways at
all intermediate nodes which have a fanout greater than 1 (number of outgo-
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ing links). This makes transcoding financially prohibitive. For transcoding,
internal nodes must perform intensive computational tasks and may need
to process arbitrary coding algorithms. This increases end to end delay.
More importantly, transcoding can not be applied to a secure communica-
tion without entrusting the network with the encryption key. Depending on
the security risks, this may be totally unacceptable. In these cases, network
heterogenity can be countered through hierarchical encoding only.

We assume that hierarchical coding is used, i.e., the source encodes its
signal into a number of layers that can be incrementally combined to provide
progressive refinement in quality. Hierarchical coding was first suggested
for packet voice transmission[7]. Subsequently, several hierarchical coding
schemes have been proposed for video, e.g., [1], [16], [33], to name a few.
Layer structure may be fixed and predetermined because of several reasons.
Certain coding schemes are not amenable to dynamic layer bandwidths be-
cause of their inherent structure, e.g., perceptually weighted wavelets using
hierarchical vector quantization with wavelet decomposition(WWHVQ)[35].
In certain video codes, substreams can be extracted to produce a specific
range of resolutions only, e.g., 3D Subband Video Coding[33]. Certain cod-
ing schemes are particularly successful only when some apriori structure or
hierarchy can be found in the problem[34], because certain computation-
ally expensive optimizations, e.g., in quantizer thresholds, can be carried
out offline. Some codecs, e.g., PVH codec of [23] are amenable to dynamic
layer bandwidth adaptation, but the implementations still have a fixed lay-
out strategy. In many cases, generating a layer requires a dedicated filter,
and the number of filters employed by the source is fixed. Thus the number
of layers is limited. Similarly, requirements for minimum packet size and
limitations on packetization delay, may impose a lower bound on bandwidth
assigned to a single layer and thus adversely affect layer granularity. Thus a
perfect match between the layer bandwidths and desired receiver rates is not
always feasible due to various reasons. The following approach is advocated
in [29] in cases of fixed or partially adaptive signal hierarchy. Allocate to the
receivers as many layers as permitted by the computed fair rate. If the total
bandwidth consumed by the layers allocated to a receiver is strictly less than
the fair computed rate, allocate one more layer to the receiver and let the
network drop a certain portion of packets of the last layer at a forking point.
For example, let u1, u2 be two receivers of a session with v1 as the source in
Figure 2. Let the fair rates for u1 and u2 be 2 and 1.5 units respectively. Let
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each layer consume 1 unit of bandwidth. So both receivers will be allocated
2 layers. Intermediate node I should not replicate 50% of packets of layer
2. All packets of layer 2 are transmitted across e2 and only 50% of layer
2 packets are transmitted across e3. So 50% of layer 2 packets should not
be replicated at node I. However, the idea of allocating an extra layer to
a receiver, and letting the network drop a certain percentage of packets of
the highest layer may not work always. This is because the network may
not be well equipped to selectively replicate a certain percentage of packets
of the highest layer or selectively drop a certain percentage of packets of
the highest layer after replicating all the packets. Most of the current day
routers follow random drop or drop tail policy, i.e., in event of congestion the
routers drop any packet in the queue or the packet at the end of the queue,
depending on the respective policy. So if the receivers oversubscribe if they
have residual bandwidth (like u2 in Figure 2 subscribing to 2 layers, when
its fair share is 1.5 units), the network will be congested and the routers will
indiscriminately drop packets of all the layers. An important characteris-
tic of hierarchical encoding is that the layers are generally ordered in some
manner. An enhancement layer yields useful information only when the base
layer and lower enhancements layers have been successfully decoded. So loss
of packets of all the layers will adversely affect signal quality. Its a good idea
not to subscribe to the highest layer at all in this case and keep the network
free of congestion. Besides, if the highest layer employs a differential coding
scheme, then even a small percentage loss of packets may garble the entire
information in the final layer. Another point to keep in mind is that gener-
ally the layers are coded so that the loss of entire layer may cause graceful
degradation in quality. However loss of a certain proportion of the highest
layer packets may produce perceptually annoying distortions in certain cod-
ing schemes. In all these cases, “partial” subscription to a layer is useless
and receivers can only subscribe to layers fully. Besides, sometimes a source
simply transmits each layer of its signal on a separate multicast group[24].
A receiver either subscribes to a group or it does not. It can not “partially”
subscribe.

So we assume that the source encodes its signal into a number of lay-
ers that can be incrementally combined to provide progressive refinement
in quality. The bandwidths consumed by the layers are predetermined. A
receiver can not be allotted a layer “partially”. As a consequence the pos-
sible rates of a receiver form a discrete set. Unlike in [29], any rate vector



ISR Technical Report TR 99− 43 9

which satisfies the capacity constraints and the minimum and maximum rate
constraints can not be allocated. Only a discrete subset of these rate vec-
tors satisfying the capacity constraints and the minimum and maximum rate
constraints can be allocated. We need to make a fair allocation of rates in
this discrete set. Equivalently, we can consider the problem of fair allocation
of layers, where every layer has a predetermined bandwidth.

3 Network Model

We consider an arbitrary topology network with N multicast sessions. A
multicast session is identified by the triplet (n, v, U), n is a unique number
assigned to the session, v is the source node of the session and U is the group
of intended destination nodes (n has been incorporated to distinguish be-
tween different sessions with the same source destination pair). We assume
that the traffic from node v is transported across a predefined multicast tree
to nodes in U . The tree can be established during connection establish-
ment phase if the network is connection oriented or can be established by
some well known multicast routing protocol like DVMRP[13], MOSPF[21],
CBT[5], PIM[14] and MIP[25] in an internet type network. The receivers
may have minimum number of layers constraints. Also, some sources may
not be able to transmit more than a certain number of layers because of
the predetermined hierarchical structure. Some receivers may have a low
processing ability. In that case, it is useless to allocate higher number of
layers to that session. So layer allocations can have maximum number of
layer constraints as well. These parameters are useful for ATM like scenar-
ios, where session establishment is preceded by a negotiation stage and the
network can be informed of these requirements during the negotiation stage.
In a connectionless network, sessions can not have any such requirement as
the network would never know of these, and would have to make layer allo-
cation irrespective of any such requirement. Such a scenario can very well
be accomodated in our model, by assuming minimum layer requirement as 0
and maximum number to be ∞ for for each receiver.

We call every source destination pair of a session a virtual session. For
example, if a session n has source v and destination set U , where U =
{u1, . . . , ut}, then this session would correspond to t virtual sessions, (n, v, u1),
. . . , (n, v, ut). The network shown in figure 1 has a single session, (1, v, U),
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with U = {u1, . . . , u4}. This session corresponds to 4 virtual sessions, (1, v, u1),
(1, v, u2), (1, v, u3), (1, v, u4). Our objective would be to achieve a fair layer
allocation for the virtual sessions. To ensure fairness in a multirate network,
we need to consider fair layer allocation for the virtual sessions separately,
instead of those for the overall sessions. We assume that every virtual session
(source-destination pair) has a minimum and a maximum layer requirement.
Absence of these requirements can be incoporated by choosing minimum
layer requirement as 0 and maximum layer requirement as ∞.

Informally speaking a layer allocation for the virtual session is feasible,
if the number of layers for every virtual session is between the minimum
and the maximum possible number of layers for the virtual session. Besides
if session n corresponds to virtual sessions mn1, . . . ,mnt in link l, then the
maximum of the bandwidths allocated to the virtual sessions mn1, . . . ,mnt is
the bandwidth consumed by session n in link l. Total bandwidth consumed
by all sessions traversing through link l can not exceed the capacity of link
l. Formal definition follows.

Let γj denote the number of layers allocated to virtual session j. Let there
be M virtual sessions. A layer allocation vector ~γ is an M−dimensional vec-
tor, with components γj. Let n(l) denote the set of sessions passing through
link l, m(k, l) denote the set of virtual sessions of session k passing through
link l and Cl denote the capacity of link l. Let Γil denote the number of
layers allocated to session i in link l under layer allocation vector ~γ. It is
actually the maximum of the layers allocated to the virtual sessions of the
session traversing through link l, i.e., Γil = maxj∈m(i,l) γj. Also ιj and pj
denote the minimum and the maximum number of layers of virtual session
j. For simplicity, we assume that every layer consumes the same amount of
bandwidth, b units, independent of the session. A layer allocation vector ~γ
is feasible if

1. γj is an integer for all virtual sessions j,

2. ιj ≤ γj ≤ pj, ∀ j, pj ≥ ιj ≥ 0, pj , ιj are integers.

3. Total bandwidth consumed by sessions traversing through link l does
not exceed the capacity of link l, i.e., b

∑
i∈n(l) Γil ≤ Cl (Capacity con-

dition).

Equivalently, a layer allocation vector ~γ is feasible if the corresponding
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rate vector ~rγ, defined as rγj = bγj is a feasible rate allocation. A rate-vector
(r1, . . . , rM) is a feasible rate allocation if

1. ri is a multiple of b, the layer bandwidth, for all virtual sessions i,

2. µi ≤ ri ≤ σi ∀ i, where µi and σi are respectively the minimum and
maximum rates of virtual session i, σi ≥ µi ≥ 0, µi = bιi and σi = bpi,

3. Total bandwidths consumed by various sessions in a link should not
exceed the link capacity.∑

i∈n(l)

λil ≤ Cl (capacity condition),

where λil denotes the rate allocated to session i on link l under rate
allocation ~r. It is the maximum of the rates allocated to the virtual
sessions of session i traversing link l, i.e., λil = maxj∈m(i,l) rj .

Example 3.1: Refer to the network shown in Figure 3. There are 2 sessions,
session 1, (v, {u1, u2}) and session 2, (v, u3). There are 3 virtual sessions,
(v, u1), (v, u2) and (v, u3), named virtual sessions 1, 2, and 3 respectively.
Session 1 corresponds to two virtual sessions, (v, u1) and (v, u2). Session 2
corresponds to one virtual session, (v, u3). Every layer consumes 0.5 units
of bandwidth. Virtual session (v, u1) requires at least 8 layers, i.e., at least
4 units of bandwidth. It can not receive more than 10 layers. Its maximum
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rate is 5 units. Virtual session (v, u2) needs at least 2 layers and has no
restriction on the maximum number of layers. It has a minimum rate of 1
unit and maximum rate of ∞ (no constraint on maximum rate). Virtual
session (v, u3) does not have a minimum number of layers requirement, i.e.,
can have a minimum rate of 0. It can receive at most 10 layers, i.e., has a
maximum rate of 5 units. Ci denotes the capacity of edge ei. (C1, . . . , C6) =
(7, 4, 5, 4, 4, 6) units. n(e1) = n(e3) = {1, 2}, n(e2) = n(e4) = n(e5) = {1},
n(e6) = {2}. m(1, e1) = {1, 2}, m(2, e1) = {3}, m(1, e2) = {1}, m(1, e3) =
{2}, m(2, e3) = {3}, m(1, e4) = {1}, m(1, e5) = {2}, m(2, e6) = {3}. A layer
allocation vector (γ1, γ2, γ3) is feasible if γ1, γ2, γ3 are integers,

8 ≤ γ1 ≤ 10
2 ≤ γ2 ≤ ∞
0 ≤ γ3 ≤ 10

Minimum and Maximum layer constraints (1)

0.5 (Γ1e1 + Γ2e1) ≤ 7 Γ1e1 = max(γ1, γ2) Γ2e1 = γ3 (Link e1)
0.5Γ1e2 ≤ 4 Γ1e2 = γ1 (Link e2)
0.5 (Γ1e3 + Γ2e3) ≤ 5 Γ1e3 = γ2 Γ2e3 = γ3 (Link e3)
0.5Γ1e4 ≤ 4 Γ1e4 = γ1 (Link e4)
0.5Γ1e5 ≤ 4 Γ1e5 = γ2 (Link e5)
0.5Γ2e6 ≤ 6 Γ2e6 = γ3 (Link e6)


Capacity constraints

(2)
If ~γ is a layer allocation vector, the corresponding rate allocation vector ~rγ

is defined as rγi = 0.5γi.
A rate vector (r1, r2, r3) is feasible if r1, r2 and r3 are multiples of 0.5,

4 ≤ r1 ≤ 5
1 ≤ r2 ≤ ∞
0 ≤ r3 ≤ 5

Minimum and Maximum rate constraints

λ1e1 + λ2e1 ≤ 7 λ1e1 = max(r1, r2) λ2e1 = r3 (Link e1)
λ1e2 ≤ 4 λ1e2 = r1 (Link e2)
λ1e3 + λ2e3 ≤ 5 λ1e3 = r2 λ2e3 = r3 (Link e3)
λ1e4 ≤ 4 λ1e4 = r1 (Link e4)
λ1e5 ≤ 4 λ1e5 = r2 (Link e5)
λ2e6 ≤ 6 λ2e6 = r3 (Link e6)


Capacity constraints
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Henceforth we shall ignore the maximum layer constraints. This does
not cause any loss in generality because maximum layer constraints can be
incorporated by adding artificial links between receivers with maximum layer
constraints and the rest of the network. Capacity of such an artificial link
is equal to the bandwidth consumed by the maximum number of layers of
the respective receiver. The size of the augmented network is comparable to
that of the given network. So complexity of any algorithm for computation
of fair layer allocation in a network should remain the same, if we use the
augmented network instead.

We would like to comment on our assumption that all multicast packets
of the same session move along the same tree. Different multicast layers are
perceived as different multicast groups and trees for different groups may be
completely different in general. However, trees for different multicast layers
of the same session will remain the same if source rooted trees are used, as
all these layers (multicast groups) have the same source. Besides, trees for
different multicast layers of the same session should not differ very much,
as that would complicate reconstruction of information at the receiver. For
example, if we consider video transmission, and different layer packets of
the same session traverse along different multicast trees, then different layer
packets for the same frame may arrive at a receiver at different times, and
frame reconstruction will involve a lot of packet reordering. This may incur
an unacceptable delay jitter. Thus it may be a good idea to use source rooted
trees in this case. Many video coders make the same assumption, e.g., [8].

4 Fairness in Discrete Feasible set

To the best of our knowledge, fairness in a discrete feasible set have not been
studied before. As it turns out, things become significantly different, when
the feasible set is discrete. First we describe various useful notions of fair-
ness in a discrete feasible set. Informally, a feasible layer allocation vector
is maxmin fair if it is not possible to maintain feasibility and increase the
number of layers of a virtual session without decreasing that of any other
virtual session which has equal or lower number of layers. More formally, a
feasible layer allocation vector ~γ1 is maxmin fair if it satisfies the following
property with respect to any other feasible layer allocation vector ~γ2: if there
exists i such that the ith component of ~γ2, γ2

i is strictly greater than that of
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~γ1, γ1
i (γ1

i < γ2
i ), then there exists j such that the jth component of ~γ1, γ1

j

is less than or equal to the ith component of ~γ1, γ1
i (γ1

j ≤ γ1
i ) and the jth

component of ~γ2 (γ2
j ) is strictly less than the jth component of ~γ1 (γ2

j < γ1
j ).

The components of ~γ2 are more unequal than those of ~γ1 in some sense.

Example 4.1: The maxmin fair layer allocation vector in the network of Ex-
ample 4.1 is (8, 5, 5). It is easy to check that this layer allocation vector is
feasible. It is not possible to increase γ1 above 8 because of the capacity
constraint of link e2. Any increase in γ2 (γ3) will cause a decrease in γ3 (γ2)
because of the capacity constraint of link e3 and γ2 = γ3 in the allocation
(8, 5, 5). Thus (8, 5, 5) is the maxmin fair layer allocation vector.

Given a M− dimensional vector ~V , define its lexicographically ordered
version V̂ as follows: v̂j = vk for some k and v̂1 ≤ v̂2 ≤ . . . v̂M . In other

words, components of ~V are an ordered version of those of V̂ . A layer allo-
cation vector ~γ1 is lexicographically greater than a layer allocation vector ~γ2

if there exists i such that γ̂1
i > γ̂2

i and γ̂1
j = γ̂2

j if j ≤ i. Layer allocations
~γ1 and ~γ2 are lexicographically equal if γ̂1 = γ̂2. Layer allocation ~γ1 is lexi-
cographically less than ~γ2, if ~γ2 is lexicographically greater than ~γ1. A layer
allocation vector ~γ is lexicographically optimal if it is feasible and if every
feasible layer allocation vector is lexicographically less than or equal to ~γ.
Informally, a layer allocation is lexicographically optimal, if its smallest com-
ponent is the largest amongst the smallest components of all feasible layer
allocations, subject to this it has the largest second smallest component and
so on.

Example 4.2: A lexicographically optimal layer allocation vector in the net-
work of Example 4.1 is (8, 5, 5). The minimum component of every layer
allocation vector must be less than or equal to 5, because of the capacity
constraint of link e3. If the minimum component is equal to 5, then the
second minimum must also be equal to 5, because of the capacity constraint
of link e3. Capacity constraint of link e2 forces the largest component to be 8.

Maxmin fairness and lexicographic optimality are not entirely equivalent,
though they have been used interchangeably in many places. Certain ref-
erences have defined maxmin fair vector as the lexicographic optimal one,
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e.g.[10]. Our definition of maxmin fairness have been suggested in [6]. Going
by this definition, maxmin fairness is stronger than lexicographic optimality.
In general, if we consider finite dimensional vectors, with the feasibility set
closed and bounded, a lexicographically optimal vector always exists, but a
maxmin fair vector may not exist. However as Lemma 4 proves, if a maxmin
fair vector exists, it is lexicographically optimal. For example, a maxmin
fair layer(rate) allocation vector may not exist as we would discuss later.
However if the feasibility set were continuous, as in [29], maxmin fair rate al-
location vector always exists and is lexicographically optimal. In this case the
definitions of maxmin fairness and lexicographic optimality may be used in-
terchangeably. However, in our case, we need to distinguish between the two.

In general a maxmin fair layer allocation may not exist. Since layer allo-
cation is a finite dimensional vector with components having integer values
and the feasible set is bounded, a lexicographically optimal layer allocation
exists though. Consider the following simple example for more insight:

Example 4.3: A network has a single link and two sessions traversing through
the link. Every layer consumes 1 unit of bandwith. The capacity of the link
is 1 unit. So possible allocation vectors are (0, 1), (1, 0), (0, 0). None of these
vectors are maxmin fair. For each of these vectors, it is possible to maintain
feasiblity and increase the number of layers of one session, possibly hurting
another session, but the other session has higher number of layers. For ex-
ample, consider the allocation (0, 1). It is possible to increase the number
of layers of session 1, by hurting session 2. However session 2 has higher
number of layers than session 1 in this allocation. Both (1, 0) and (0, 1) are
lexicographically optimal.

In view of the nonexistence of maxmin fair layer allocation, lexicographi-
cally optimal layer allocation is the best one can hope for in this case. How-
ever as NP-hardness lemma shows, computation of lexicographically optimal
layer allocation is an NP-hard problem in this case.

Lemma 1 (NP-hardness) Computation of lexicographically optimal layer
allocation vector is NP-hard.

We prove this lemma in the appendix. The idea behind the proof is
that, given any arbitrary graph G, we can construct a network such that the
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computation of a lexicographically optimal layer allocation in the network
has the same complexity as the computation of the largest independent set in
the graph G. It is well known that the latter is an instance of an NP−hard
problem.

In view of this unfortunate result, we can consider a different notion of
fairness, maximal fairness. We use the concept of relative fairness introduced
in [28]. A layer allocation vector ~γ1 is fairer than another layer allocation
vector ~γ2, if for every virtual session i which has higher number of layers
under ~γ2 than under ~γ1, there is some other virtual session j whose number
of layers was already no more than that of i under ~γ1, and has been decreased
further by ~γ2. A more formal definition of relative fairness follows.
A layer allocation vector ~γ1 is fairer than another layer allocation vector ~γ2

if

• ~γ1 6= ~γ2 and

• if there exists an i such that γ1
i < γ2

i , then there exists a j such that
γ1
j ≤ γ1

i and γ2
j < γ1

j (γlk is the kth component of ~γl, l = 1, 2.)

A layer allocation ~γ is maximally fair if it is feasible and if no other feasible
layer allocation is fairer than ~γ. There can be more than one maximally fair
layer allocation vectors. One or more of these maximally fair layer allocation
vectors are lexicographically optimal (proved in Lemma 5 in appendix). In
the network of Example 4.3, both the layer allocation vectors (1, 0) and (0, 1)
are maximally fair and lexicographically optimal.

The definitions for maxmin fairness, lexicographic optimality, maxmi-
mal fairness, of rate allocation vectors are the same as those for layer allo-
cation vectors. A layer allocation vector is maxmin fair (lexicographically
optimal/maximally fair) if and only if the corresponding rate allocation vec-
tor is maxmin fair (lexicographically optimal/maximally fair).

As we show later, maximally fair layer allocation exists and can be com-
puted in polynomial complexity. One objective could be to allocate layers as
per some maximally fair layer allocation. But, first we investigate, whether
maximal fairness is a good notion of fairness. To this effect, we introduce
the concept of pseudo-bottleneck links. This is analogous to the concept of
bottleneck links for a continuous feasible set[29]. Consider a layer allocation
vector ~γ. A link l is said to be pseudo-bottlenecked with respect to a virtual
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session k traversing l for layer allocation vector ~γ, if the following conditions
are met:

1. Capacity of the link is almost fully utilized, i.e., the difference between
the capacity of the link and the sum of the rates allocated to the sessions
traversing the link must be less than b, i.e., b

∑
i∈n(l) Γil > Cl − b.

2. The virtual session has the maximum number of layers amongst all
virtual sessions of the same session traversing the link, i.e., γk = Γχ(k)l,

where χ(k) is the session of virtual session k.

3. If the number of layers assigned to any other virtual session j traversing
link l is higher than that of virtual session k by two or more layers, then
the number of layers assigned to virtual session j is less than or equal
to the minimum number of layers required for some virtual session in
m(χ(j), l) (set of virtual sessions traversing link l and belonging to
the same session as virtual session j). Formalizing this, if γj > ιχ(j)l,
where ιil = maxj∈m(i,l) ιj , then γj ≤ γk + 1. Informally speaking had
there been no minimum number of layers requirement, the number of
layers assigned to any other virtual session j traversing link l would
not exceed that of virtual session k by more than one.

Let ~rγ be the rate vector for layer allocation ~γ. rγj = bγj. λγil =
maxj∈m(i,l) r

γ
j = bΓil. Let µs be the bandwidth consumed by the mini-

mum number of layers necessary for virtual session s, i.e., µs = bιs. Also
µil = maxs∈m(i,l) µs = bιil. The pseudo-bottleneck conditions can be trans-
lated in terms of rate conditions as follows. A link l is said to be pseudo-
bottlenecked with respect to a virtual session k traversing link l for layer
allocation vector ~γ, if the following conditions are met:∑

i∈n(l)

λγil > Cl − b

rγk = λγχ(k)l

If rγj > µχ(j)l, then rγj ≤ rγk + b

Example 4.4: Consider the network of Example 3.1. Let every layer consume
1 unit of bandwidth each (b = 1). Ignore the maximum rate constraints. The
rest of the constraints remain the same. Virtual sessions (v, u1), (v, u2) and
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(v, u3) are named virtual sessions 1, 2, 3 respectively. Virtual sessions 1, 2
belong to session 1 and virtual session 3 belongs to session 2. Consider the
layer allocation (4, 2, 3). Link e1 is pseudo-bottlenecked w.r.t. virtual ses-
sions 1, 3 and link e3 is pseudo-bottlenecked w.r.t. virtual session 2. Now
consider the layer allocation vector (4, 4, 1). Virtual session 3 does not have
a pseudo-bottleneck link. This is because it traverses through links e1, e3 and
e6. Virtual session 2 traversing through link e3 has 3 more layers than vir-
tual session 3 and does not have a minimum number of layers requirement.
This violates pseudo-bottleneck condition (3). Total bandwidth consumed
by the sessions traversing through link e1 is 5 units in all but the capacity
of the link is 7 units, 2 units more than the capacity utilized and b = 1.
Similarly, utilized capacity of link e6 is 1 unit, while actual capacity of e6 is
6 units. This violates pseudo-bottleneck condition (1). However, link e2(e3)
is pseudo-bottlenecked w.r.t. virtual session 1(2.)

Lemma 2 (Pseudo-bottleneck lemma) A feasible layer allocation vector
is maximally fair iff every virtual session has a pseudo-bottleneck link.

We prove this lemma in the appendix. This lemma shows that maximal
fairness is a good notion of fairness. Note that by this lemma if a layer al-
location vector is maximally fair, then the number of layers allocated to a
virtual session s can be increased only at the expense of one or more virtual
sessions which have at most one layer more than s. From the definition of
a pseudo-bottleneck link, if there is no minimum number of layers require-
ment for any virtual session, every virtual session will be assigned at least
d
(

Cl
|n(l)|b − (1− |n(l)|−1)

)
e layers for some link l on its path. This indicates

that every virtual session is guaranted a bandwidth close to the fair share of
capacity for at least one link in its path. For large Cl, a virtual session gets
at least d Cl

|n(l)|be (approximately) layers for some link l in its path. In general,
networks have large capacities. Thus maximally fair allocation is fair to ev-
ery virtual session in some sense. In presence of minimum rate requirements,

every virtual session s is guaranted d
(
Cl−
∑

i∈τ(l)
µil

|n(l)\τ(l)|b − (1− |n(l) \ τ(l)|−1)
)
e

layers, for some link l on its path, where τ(l) is the set of sessions travers-
ing link l with session rate on link l exceeding the rate of virtual session s
(τ(l) ⊂ n(l)). Intuitively, this means that virtual session s receives an almost
fair share of the residual link l bandwidth, after distributing the minimum
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rates to other sessions. This lemma also serves as a test for maximal fairness
of a feasible layer allocation vector. We will use this lemma in proving the
correctness of an algorithm for computation of a maximally fair layer alloca-
tion vector. There exists a similar result for maxmin fairness in a continuous
feasible set which says that a rate allocation is maxmin fair if and only if
every virtual session has a bottleneck link. The definitions of bottleneck links
are similar in both cases.

Maximal fairness has other nice properties. As Lemma 5 shows, a lexico-
graphically optimal layer allocation is maximally fair. We prove this lemma
in the appendix. Also by definition, a maxmin fair layer allocation, (if one
exists), is fairer than all other feasible layer allocations. Thus if a maxmin fair
layer allocation exists, it is the only maximally fair layer allocation (This is
true for any vector and any reference feasible set, not just layer allocations).
So any algorithm for computation of a maximally fair layer allocation will
yield a maxmin fair layer allocation, if one exists. This is interesting, in view
of the observation that even if a maxmin fair rate allocation exists in our
discrete feasible set, it may be different from the maxmin fair rate allocation
in the continuous feasible set (i.e., feasible set with only the restrictions that
rate allocations must satisfy capacity and the minimum rate constraints).
Consider the following example.

Example 4.5: Consider a network with 3 links and 3 unicast sessions (unicast
is a special case of multicast) shown in Figure 4. The links are {e1, e2, e3}.
The capacity of link ei is 1.9 units, i ∈ {1, 2} and 6 units if i = 3. The sessions
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are {1, 2, 3}. Sessions and virtual sessions are the same since all sessions are
unicast. Session 1 traverses through e1, e3, session 2 traverses through e2, e3,

and session 3 traverses through e3. Each session requires at least 0 layer,
i.e., there is no minimum layer requirement. Every layer consumes 1 unit of
bandwidth, i.e., b = 1. If we had allowed allocation of any rates, subject to
the capacity and the minimum rate constraints, like in [29], the maxmin fair
rate allocation would be (1.9, 1.9, 2.2). Now let it be possible only to allocate
layers (as we have assumed in this paper). Let every layer consume 1 unit
of bandwidth. Maxmin fair layer and rate allocations exist in this example
and are both equal to (1, 1, 4).

This difference is because of the difference in the feasible set of rate vectors
in the two cases. The feasible set of rate vectors for discrete bandwidth layers
is a proper subset of the continuous feasible set of [29]. Hence the maxmin fair
rate vectors are different in some cases, even when the maxmin fair rate vector
exists for discrete bandwidth layers. This means that the algorithm presented
in [29] for computation of maxmin fair rates in the continuous feasible set
may not compute the maxmin fair rate vector for the discrete bandwidth
case, even when it exists. Thus we have strong incentive to compute the
maximally fair layer allocation. In the next section, we present a polynomial
complexity algorithm for computation of a maximally fair layer allocation.

5 Algorithm for Computation of Maximally

fair Layer Allocation

An algorithm that would obtain a maximally fair layer allocation is not en-
tirely obvious. For example, let every layer consume b units of bandwidth
and rcs be the maxmin fair bandwidth allocated to virtual session s if we can
allocate any rate subject to the capacity and the minimum rate constraints.
Maxmin fair rates can be computed using an algorithm presented in [29] in
this case. It is tempting to think that a maximally fair rate allocation will
allocate γs layers to the sth virtual session where γs ∈ {b

rcs
b
c, d r

c
s

b
e}. The fol-

lowing counterexample shows that it is not always so.

Example 5.1: Consider the network of Example 4.5, shown in Figure 4.
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If we had allowed allocation of any rates, subject to capacity and mini-
mum rate constraints, like in [29], the maxmin fair rate allocation would
be (1.9, 1.9, 2.2). Now let it be possible only to allocate layers (as we have
assumed in this paper). Let every layer consume 1 unit of bandwidth. Con-
sider the layer allocation scheme which allocates γi layers to session i, where
γi = drci e or γi = brci c subject to feasibility. Since rci ≤ 1.9, for i < 3, γi = 1
i < 3 and either γ3 = brc3c = 2 or γ3 = drc3e = 3. However (1, 1, 4) is a fea-
sible layer allocation and is fairer than both (1, 1, 2) and (1, 1, 3). Maxmin
fair layer allocation exists in this example and is equal to (1, 1, 4).

So the intuitive algorithm does not yield a maximally fair layer allocation.
An intuitively appealing way to fix this flaw is as follows: obtain the maxmin
fair rates assuming the feasible set to be continuous (as [29] assumes). Ini-

tially allocate b
rci
b
c layers where rci is the fair rate of virtual session i to virtual

session i, ∀i. Now try to add a layer to virtual session 1, . . . ,M , if there are
M virtual sessions in some predetermined order (could be increasing order
of the layers allocated) without decreasing the number of layers allocated to
any virtual session any time. Repeat this process as long as the number of
layers allocated to a virtual session i can not be increased without decreasing
that allocated to some other virtual session j, for all i. It appears that this
algorithm will always yield a maximally fair layer allocation. However that
is not quite true. Consider the following counter example.

Example 5.2: Consider a modified version of the network of Example 4.5,
shown in Figure 5. There is one additional edge, e4, with capacity 8 units.
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There is also one additional session, session 4. Session 4 traverses through e4

only. Session 3 traverses through e3 and e4. The rest remains the same. The
maxmin fair rate allocation, assuming that the feasible set is continuous is
(1.9, 1.9, 2.2, 5.8). Let every layer consume 1 unit of bandwidth. The layer
allocation algorithm suggested above would either yield a layer allocation
vector (1, 1, 3, 5) or (1, 1, 2, 6) depending on the order in which sessions are
chosen for allocation of additional layers. However (1, 1, 4, 4) is a feasible
layer allocation vector which is fairer than both (1, 1, 3, 5) and (1, 1, 2, 6). In
fact maxmin fair layer allocation exists and is equal to (1, 1, 4, 4) in this case.
Thus neither (1, 1, 3, 5) nor (1, 1, 2, 6) is a maximally fair layer allocation vec-
tor.

The counter examples indicate that it is possible that all maximally fair
vectors have γi < b

rci
b
c or γi > d

rci
b
e for some virtual session i. We would

like to mention that if the maxmin fair rate allocations are computed with
capacity Cl of link l replaced by bbCl

b
c, then the algorithm mentioned above

may yield a maximally fair layer allocation if one tries to add a layer to the
virtual sessions in some particular order. But there is no obvious way to de-
termine this order, particularly for multicast networks. For example, trying
to increment the number of layers of virtual sessions in increasing order of
layers allocated, may not always lead to a maximally fair layer allocation.
Consider the following counter example.

Example 5.3: Consider the network shown in Figure 6. There are 7 edges,
e1, . . . , e7 and 6 sessions, sessions 1, . . . , 6. Session 1 and 2 are multicast and
the rest are unicast. Session 1 (source: v1, destinations: u1, u2) traverses
edges e1, e2, e3, and consists of two virtual sessions, virtual sessions 1 and
2. Virtual session 1 (source: v1, destination: u1) traverses edges e1, e2. Vir-
tual session 2 (source: v1, destination: u2) traverses edges e1, e3. Session
2 (source: v1, destinations: u3, u4) traverses edges e1, e4, e5 and consists of
two virtual sessions, virtual sessions 3 and 4. Virtual session 3 (source: v1,
destination: u3) traverses edges e1, e4. Virtual session 4 (source: v1, destina-
tion: u4) traverses e1, e5. Sessions 3, 4, 5, 6, traverse 1 edge each, e3, e4, e6, e7

respectively and consist of 1 virtual session each, virtual sessions 5, 6, 7, 8
respectively, traversing the same edges as the respective sessions. Sessions 7
(source: v2, destination: u5), and 8 (source: v2, destination: u6), traverse 2
edges each, e3, e6 and e4, e7 respectively and consist of 1 virtual session each,
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Figure 6: Sessions 1, 2, 7, 8 have been shown in the figure. Sessions 3, 4, 5, 6
span one link each, e3, e4, e6, e7 respectively.

virtual sessions 9, 10 respectively, traversing the same edges as the respective
sessions.

Cl =


5 l = e1

3 l ∈ {e2, e5}
8 l ∈ {e3, e4}
1 l ∈ {e6, e7}.

Every layer consumes 1 unit of bandwidth (b = 1). Note that Cl = bbCl
b
c for

every link l. The maxmin fair rate allocation assuming the feasible set to be
continuous (i.e., without the restriction that virtual session rates are integers
in this case) is given by ~r, where

ri =


2.5 i ∈ {1, . . . , 4}
5 i ∈ {5, 6}
0.5 otherwise.

Going by this algorithm, we initially allocate γi layers to virtual session i,
where

γi =


2 i ∈ {1, . . . , 4}
5 i ∈ {5, 6}
0 otherwise.

Virtual sessions 7, . . . , 10 are allocated the minimum number of layers. We
can increment the layers of either virtual sessions 7, 8 or 7, 10, or 8, 9 or
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9, 10, but not those of any bigger combination amongst 7, . . . , 10, because
of feasibility. Let us select virtual sessions 9, 10 arbitrarily amongst those
assigned the minimum number of layers. Now (3, 2, 2, 2, 5, 5, 0, 0, 1, 1) or
(2, 2, 2, 3, 5, 5, 0, 0, 1, 1) are the possible output layer allocations depending on
whether we choose virtual session 1 or 4 for further incrementation at the next
stage. Neither is maximally fair. A layer allocation (3, 3, 2, 2, 4, 5, 0, 0, 1, 1) is
feasible and fairer than (3, 2, 2, 2, 5, 5, 0, 0, 1, 1). A layer allocation (2, 2, 3, 3, 5,
4, 0, 0, 1, 1) is feasible and fairer than (2, 2, 2, 3, 5, 5, 0, 0, 1, 1). Thus incremen-
tation in increasing order of layer allocation may lead to layer allocations
which are not maximally fair.

If we had incremented the number of layers of virtual sessions 7, 8 instead
of 9, 10, in Example 5.3, then we would have either (3, 3, 2, 2, 5, 5, 1, 1, 0, 0)
or (2, 2, 3, 3, 5, 5, 1, 1, 0, 0), both maximally fair layer allocations, but it is not
easy to know ahead the right order. Trying all possible orders will yield an
exponential complexity algorithm in the worst case. However there exists a
polynomial complexity algorithm for computation of a maximally fair layer
allocation.

Now we present an algorithm for computation of a maximally fair layer
allocation vector. n(l), m(i, l), χ(s) and µil are as defined in pages 10, 10,
17 and 17 respectively. We introduce some additional terminologies below.

Ls is the set of links traversed by virtual session s.

A virtual session is saturated under a rate vector if it traverses a link in
which the session rate is equal to its bandwidth and if the difference
between the bandwidth consumed in the link and the capacity of the
link is less than b units.

A session is saturated on a link l if all the virtual sessions of the session
traversing the link l are saturated.

ηl(k) denotes the link control parameter of link l at the end of the kth
iteration. Link control parameter is the iterate which would be used
in computation of the maxmin fair rates. It is an estimate of the
fair share of the bandwidth of the link which can be allocated to the
unsaturated virtual sessions traversing the link. This bandwidth would
have been allocated to the unsaturated virtual sessions traversing the
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link, if there were no bandwith constraints on other links, and feasible
rate allocations need only satisfy the capacity constraints.

ηil(k) denotes the session link control parameter of session i traversing link
l. It is the bandwidth assigned to session i, if there were no bandwidth
constraints for any of its virtual sessions on other links and feasible rate
allocations need only satisfy capacity and minimum rate constraints
(i.e., feasible rates need not be multiple of b).

ωs(k) is the bandwidth that is assigned to virtual session s at the end of the
kth iteration if it is restricted to receive no more than any of its session
link control parameters, ηχ(s)l(k), on its path. Here, it is the largest
multiple of b not exceeding its minimum session link control parameter
on its path.

Ωil(k) is the bandwidth allocated to session i on link l under the rate vector
~ω(k) Ωil(k) = maxj∈m(i,l) ωj(k).

rs(k) is the bandwidth allocated to virtual session s at the end of the kth
iteration. ~r(k) denotes the rate vector at the end of the kth iteration,
with components, rs(k).

λil(k) is the rate allocated to session i on link l at the end of the kth iteration.
It is actually the maximum of the rates allocated to the virtual sessions
in m(i, l) at the end of the kth iteration.

Λ(k) is the set of virtual sessions which are saturated w.r.t. rate allocation
~ω(k)

Λ(k) = {s : ∃ l ∈ Ls, ωs(k) = Ωχ(s)l(k),
∑
i∈n(l)

Ωil(k) > Cl − b}

S(k) denotes the set of unsaturated virtual sessions at the end of the kth
iteration.

Ξl(k) denotes the set of unsaturated sessions passing through link l at the
end of the kth iteration.

Fl(k) denotes the total bandwidth consumed by the saturated sessions pass-
ing through link l at the end of the kth iteration.
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~γ is the output layer allocation vector.

The algorithm follows.

1. k = 0 ηl(0) = 0, Fl(0) = 0, S(0) = {1, . . . ,M}, Ξl(0) = n(l) ∀ link l,
rj(0) = µj, ∀j ∈ S(0), λil(0) = maxj∈m(i,l) rj(0).

2. k → k + 1

3. For every link l in the network compute the link control parameter. If
Ξl(k−1) 6= φ, then ηl(k) is the maximum possible θ, which satisfies the
equation, Fl(k−1)+

∑
i∈Ξl(k−1) max(θ, λil(k−1)) = Cl else ηl(k) = ηl(k−

1). For all sessions i passing through link l, ηil(k) = max(ηl(k), λil(k−
1)).

4. Compute ωs(k) for all virtual sessions s ∈ S, where ωs(k) = bb
minl∈Ls ηχ(s)l(k)

b
c,

if s ∈ S(k − 1), else ωs(k) = rs(k − 1).

5. For every link l in the network compute Ωil(k) for every session i in
n(l), Ωil(k) = maxs∈m(i,l) ωs(k).

6. Compute the set of virtual sessions saturated during the kth iteration
under rate vector ~ω(k). Λ(k) = {s : s ∈ S(k − 1), ∃ l ∈ Ls, ωs(k) =
Ωχ(s)l(k),

∑
i∈n(l) Ωil(k) > Cl − b}.

7. If Λ(k) 6= φ, compute the rates allocated to the virtual sessions after
the kth iteration, via, rs(k) = ωs(k), ∀s and go to step (9).

8. If possible, find a virtual session s ∈ S(k − 1), s.t.

ωs(k) < min
l∈Ls

ηl(k) and

Ωil(k) ≥ bb
ηl(k)

b
c ∀i ∈ Ξl(k − 1) if l ∈ Ls and min

l1∈Ls
b
ηl1(k)

b
c = b

ηl(k)

b
c.

If no such s is found in S(k − 1), again rj(k) = ωj(k) for all virtual
sessions, j, otherwise compute rj(k) for all virtual sessions j where

rj(k) =

{
ωj(k) j 6= s

ωj(k) + b otherwise.
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9. For every link l in the network compute the session rate in link l, for
every session i in n(l) as λil(k) = maxs∈m(i,l) rs(k).

10. Compute the set of virtual sessions unsaturated after the kth iteration,
S(k) = S(k−1)\{s : ∃ l ∈ Ls, s.t.

∑
i∈n(l) λil(k) > Cl−b and rs(k) =

λχ(s),l(k)}.

11. If S(k) = φ, i.e., all virtual sessions are saturated, compute the layer

allocation vector ~γ via γj = rj(k)

b
and the algorithm terminates, else go

to the next step.

12. For every link l, compute the set of unsaturated sessions passing through
link l at the end of the kth iteration: Ξl(k) = {n : n ∈ {1, . . . , N},
m(n, l) ∩ S(k) 6= φ} (N is the number of sessions).

13. For every link l, for which Ξl(k) 6= φ, compute the bandwidth consumed
by the saturated sessions passing through link l, Fl(k) =

∑
i∈n(l)\Ξl(k) λil(k).

14. Go to step (2).

At every iteration k, the algorithm computes a “fair share” of the link
bandwidth for every session i, the session link control parameter, ηil(k). Since

a virtual session can have rates only in multiples of b, bandwidth bbηil(k)
b
c is

offered to all virtual sessions of session i traversing the link. Every session
releases the remaining bandwidth i.e., ηil(k) − bb

ηil(k)
b
c. If no virtual session

saturates in the current iteration, then this residual bandwidth is used to
increment the rate of some virtual session traversing this link. If a virtual
session is constrained to have a rate less than its fair share because it is as-
signed a lower bandwidth on another link, then it can not use some of this
bandwidth. If all virtual sessions of the same session release some bandwidth
because of constraints on other links, then there is more residual bandwidth.
The residual bandwidth is split fairly among other sessions in the next iter-
ation and the process continues. We describe this process in greater details
below.

Initially all the link control parameters are assigned zero values. The
rates of the virtual sessions are initialized to the respective minimum rates.
All sessions and virtual sessions are unsaturated. Next the algorithm com-
putes the link control parameters as per step (3). If there are no minimum
rate requirements, the link control parameter for link l at the first iteration
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is the capacity of the link per session traversing the link. The next step is to
compute the session link control parameters for every session at every link.
Session link control parameter for a session traversing a link is the maximum
of the link control parameter and the previous iteration session link rate. If a
virtual session traversing link l, had no bandwidth constraint on other links,
then it is assigned a rate equal to the greatest multiple of b not exceeding its
session link control parameter. On account of the bandwidth constraint in
other links, the virtual session gets a rate equal to the greatest multiple of b
not exceeding the minimum of its session link control parameters on its path.
This ensures that virtual session rates are multiples of b. If no virtual session
is saturated, (Λ(k) = φ), then try to find a virtual session s which satisfies
the properties mentioned in step (8). At least one such virtual session exists
in this case(Lemma 14). Increment the rate of such a virtual session by b.
This is done because otherwise, the algorithm can continue forever. This is
because in the next iteration, the same link control parameter will be com-
puted and the process repeats again and again. A session is saturated if all
its virtual sessions are saturated. The bandwidth consumed by the saturated
sessions, if any, are computed. This bandwidth is subtracted from the link
capacity, and the link control parameters are recomputed at the beginning
of every iteration as per step (3) and the process continues. A new iteration
starts if there are still unsaturated virtual sessions. It turns out that either
the rate of at least one virtual session increases by b units or the number of
unsaturated virtual session decreases by at least one, at the end of every it-
eration (proof of Theorem 2). Neither of these two can continue indefinitely.
So the algorithm terminates in finite number of iterations. (|L|M iterations,
L is the set of all links, M is the number of virtual sessions). Upon ter-
mination we have a maximally fair rate vector and the corresponding layer
allocation is maximally fair as well. An example illustrating the operation of
the algorithm follows .

Example 5.4: Consider the network of Example 4.4. L1 = {e1, e2, e4},
L2 = {e1, e3, e5}, L3 = {e1, e3, e6}. Link control parameters are as follows.
ηe1(1) = 3, ηe2(1) = 4, ηe3(1) = 2.5, ηe4(1) = 4, ηe5(1) = 4, ηe6(1) = 6. Now,
the session link control parameters are as follows. η1e1(1) = 4, η2e1(1) = 3,
η1e2(1) = 4, η1e3(1) = 2.5, η2e3(1) = 2.5, η1e4(1) = 4, η1e5(1) = 4, η2e6(1) = 6.
Computing the ωs(1)s as per step 4, we have ω1(1) = 4, ω2(1) = 2, ω3(1) = 2.
Observe that virtual session 1 is saturated w.r.t. ~ω(1). So ~r(1) = ~ω(1). Vir-
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tual session 2 and 3 are not saturated w.r.t. ~r(1). S(1) = {2, 3}. Ξe1(1) =
Ξe3(1) = {1, 2}, Ξe5(1) = {1}, Ξe6(1) = {2}, Ξl(1) = φ, if l ∈ {e2, e4}. If
l ∈ {e2, e4}, Fel(1) = 4, and Fel(1) = 0 otherwise. Computations for the
next iteration are as follows. ηe1(2) = 3, ηe3(2) = 2.5, ηe5(2) = 4, ηe6(2) = 6.
ηl(2) = ηl(1) for the rest of the links. The session link control parame-
ters are as follows. η1e1(2) = 4, η2e1(2) = 3, η1e2(2) = 4, η1e3(2) = 2.5,
η2e3(2) = 2.5, η1e4(2) = 4, η1e5(2) = 4, η2e6(2) = 6. ω2(2) = ω3(2) = 2.
ω1(1) = r1(1) = 4. No new virtual session is saturated w.r.t. ~ω(2). Both
virtual sessions 2 and 3 satisfy the conditions for incrementation in step (8).
We choose virtual session 2 for incrementation arbitrarily. It follows that
r1(2) = 4, r2(2) = 3, r3(2) = 2. This saturates both virtual sessions 2 and 3.
All virtual sessions are saturated and the algorithm terminates.

The following theorems prove that the algorithm terminates in a finite
number of iterations and yields a maximally fair layer allocation vector upon
termination. If there exists a maxmin fair layer allocation vector, then the
output layer allocation vector is maxmin fair.

Theorem 1 (Maximal-Fairness Theorem) If the algorithm terminates,
then the output layer allocation vector ~γ is

1. maximally fair

2. maxmin fair, if a maxmin fair layer allocation exists.

We prove this theorem formally in the appendix. We give the gist of the
proof here. We first show that the rate allocation at the end of every itera-
tion is feasible. We show that if a virtual session saturates in an iteration,
then it has a pseudo-bottleneck link in all subsequent iterations. Maximal
fairness of the final rate allocation vector and hence the output layer alloca-
tion vector follows from the pseudo-bottleneck lemma (Lemma 2) since the
algorithm terminates only when all virtual sessions saturate. The last part
of the theorem follows from the observation made in Section 4 that any al-
gorithm which outputs a maximally fair layer allocation, outputs a maxmin
fair layer allocation, if one such exists. The following theorem proves that
the algorithm terminates in a finite number of iterations.
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Theorem 2 (Finite-Termination Theorem) The algorithm terminates in
at most M + |L|M number of iterations, where L is the set of links and M
is the number of virtual sessions.

The formal proof is presented in the appendix. The idea behind the proof is
as follows. We show that in every iteration either the number of unsaturated
virtual sessions decrease by at least one or the rate of an unsaturated virtual
session increase by at least b units as compared to that in the previous iter-
ation. The first can take place for at most M iterrations. We show that the
second can take place for at most |L|M iterations. The result follows.

Every step of this algorithm has a complexity of O(|L|M). The algorithm
must terminate in M + |L|M iterations. Thus the overall complexity of this
algorithm is O(|L|2M2)

The source can transmit each layer on a separate multicast group. Once
the fair layer allocation is computed, the receivers should subscribe to the
appropriate multicast groups. If no receiver subscribes to a particular layer,
then the source should not transmit it.

6 Conclusion and Discussion

We would like to point out that the choice of an unsaturated virtual session
s for possible incrementaion of rate is crucial for attaining maximal fair-
ness in the end. Step (8) of the algorithm requires this virtual session to
be any unsaturated virtual session s for which ωs(k) < minl∈Ls ηl(k) and

Ωil(k) ≥ bbηl(k)
b
c, ∀ i ∈ Ξl(k − 1), if l ∈ Ls and bηl(k)

b
c = minl∈lsb

ηl(k)
b
c. How-

ever, if the virtual session s is chosen completely adhoc, i.e., even if it does
not satisfy the criteria mentioned above, then the output layer allocation
may not be maximally fair. For example, choosing any unsaturated virtual
session s, for which ωs(k) < minl∈Ls ηl(k), may not attain a maximally fair
layer allocation in the end. Consider the following example.

Example 6.1: Consider the network shown in Figure 7. It has 3 links, e1, e2, e3

and 4 sessions, sessions 1, 2, 3, 4. All sessions are unicast and do not have any
minimum number of layers requirement. Sessions and virtual sessions are
the same in this case. Session 1 traverses though link e1, session 2 traverses
through links e1 and e2, session 3 traverses through links e2 and e3 and session
4 traverses through link e3. Every layer consumes unit bandwidth.
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Figure 7:

Cei =


1 i = 1
4 i = 2
6.2 i = 3

ηei(1) =


0.5 i = 1
2 i = 2
3.1 i = 3

ωi(1) =


0 i ∈ {1, 2}
2 i = 3
3 i = 4

Observe that the difference between bandwidth consumed and capacity
is at least 1 unit for every link. Thus Λ(1) = φ. ωj(1) < minl∈Lj ηl(1) for
sessions 1, 2, 4. Only sessions 1 and 2 satisfy the other criterion for incremen-
tation though. However, if we choose to increment the rate of session 4 by
1 instead of either session 1 or 2, we obtain a rate vector ~r(1) = (0, 0, 2, 4).
Sessions 3 and 4 are both saturated now. So S(1) = {1, 2}. Consider it-
eration 2. ηe1(2) = 0.5, ηe2(2) = 2. ωs(2) = 1, s ∈ {1, 2}. The difference
between the bandwidth consumed and capacity is again at least 1 unit for
both links e1 and e2. Thus Λ(2) = φ. Both sessions 1 and 2 satisfy the crite-
ria for incrementation. Incrementing the rate of session 1 (chosen arbitrarily
amongst sessions 1, 2) by 1 unit saturates sessions 1 and 2 and the algo-
rithm terminates with rate allocation (1, 0, 2, 4). The layer allocation vector



ISR Technical Report TR 99− 43 32

is (1, 0, 2, 4) as well. Now, (1, 0, 3, 3) is a feasible layer allocation vector fairer
than (1, 0, 2, 4). Thus the output of the algorithm (1, 0, 2, 4) is not a maxi-
mally fair layer allocation vector. This is because of the choice of session 4
as a candidate for rate incrementation in iteration 1, despite the fact that
bηe3(1)c = minl∈L4bηe3(1)c and Ω3e3(1) = ω3(1) < bηe3(1)c = 3.

We would like to mention that a layer obtained from an available band-
width can be looked upon as a function or “utility” of a bandwidth. This
utility function is a stair case function because a layer essentially corresponds
to a range of bandwidth, the range extending from the minimum bandwidth
required to attain the layer to that required to attain the next higher layer.
Thus this function is not strictly increasing. An algorithm for computation
of rates for attaining maxmin fair utilities in unicast networks is proposed
in [10]. We consider multicast networks here. More importantly, the algo-
rithm attains maxmin fair utiliies for strictly increasing utility functions only.
We show that the operation of this algorithm is ambiguous for non strictly
increasing utility functions in general and staircase utility functions in par-
ticular, even for unicast networks. The algorithm computes the available
capacity for every link, where available capacity is the difference between the
actual capacity and the bandwidths consumed by the saturated sessions. The
available bandwidth is distributed amongst the sessions so as to equalize the
utilities (number of layers in this case) obtained by them. Every session gets
a bandwidth equal to the minimum on its path. The sessions with minimum
bandwidth amongst all unsaturated sessions are considered saturated. Now
consider Example 4.3. Let the utility of a bandwidth or the number of layers
equivalent to a given bandwidth be the floor of the bandwidth divided by the
bandwidth consumed by every layer, which is 1 unit in this case. Thus if x
units of bandwidth is assigned to a session, it gets bxc layers. The capacity of
the link will be utilized and both the sessions will get equal number of layers
only if they are assigned α and 1 − α units respectively, where 0 < α < 1.
If α ≤ 0.5, session 1 is saturated. If α ≥ 0.5, session 2 is saturated. The
algorithm does not specify the value of α in this case. For α = 0.5, both
sessions saturate and the algorithm terminates with a layer allocation (0, 0).
Wlog α < 0.5. Session 1 is saturated with 0 layers. The available capacity is
1− α units. It has to be assigned to session 2, which still gets b1− αc = 0
layers. Session 2 now saturates. So for all possible executions of this algo-
rithm, the layer allocation is (0, 0). This clearly is not a maximally fair layer
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allocation. So this approach does not obtain maximally fair layer allocation
always. It remains to be seen whether the algorithm in [10] can be modified
to attain maximally fair rates for non strictly increasing utility functions.
No modification will attain maxmin fair layer allocation in all cases, since
maxmin fair layer allocation does not exist always (Examples 4.3). So [10]
does not apply to our case.

A lexicographically optimal layer allocation is the best one can hope for,
when the feasible set is discrete. However, computation of a lexicographically
optimal layer allocation for discrete bandwidth layers is a NP-hard problem.
Heuristics for this computation is a topic of future research. It is interesting
to note that every maximally fair layer allocation is an output of the algo-
rithm for computation of a maximally fair layer allocation we proposed. A
particular output in a specific instance depends upon the choice of the virtual
session for possible incrementation of rate in step (8), amongst those virtual
sessions s which satisfy the conditions of step (8) at the kth iteration, for
various ks. In general, in any iteration, there can be more than one virtual
sessions which satisfy these properties. Consider the following example.

Example 6.2: Refer to the network shown in Figure 8. The network has two
links, e1 and e2 and 3 unicast sessions. Session 1 traverses link e1, session
2 traverses both links and session 3 traverses link e2. Both links have unit
capacity and every layer consumes 1 unit of bandwidth. No session has any
minimum number of layer requirement. ηe1(1) = ηe2(1) = 0.5. ηie1(1) = 0.5
for sessions i ∈ {1, 2} and ηie2(1) = 0.5 for sessions i ∈ {2, 3}. It follows that
ωs(1) = 0, s ∈ {1, 2, 3}. None of the sessions (sessions and virtual sessions
are the same in this case) are saturated. All the sessions satisfy the proper-
ties for incrementation in step (8). If session 2 is chosen for incrementation,
~r(1) = (0, 1, 0) and all the sessions saturate. Thus the final rate allocation
vector and the layer allocation vector are both (0, 1, 0). If session 1 is chosen,
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~r(2) = (1, 0, 0). Sessions 1 and 2 saturate. ηe2(2) = 1. η3e2(2) = 1. ω3(2) = 1.
Session 3 saturates. The final rate allocation vector and layer allocation
vector are both (1, 0, 1). The only possible maximally fair layer allocation
vectors are (1, 0, 1) and (0, 1, 0). Both of these are possible outputs of the
algorithm. Note that (1, 0, 1) is lexicographically greater than (0, 1, 0) and
turns out to be lexicographically optimal. Thus a lexicographically optimal
layer allocation vector is a possible output of this algorithm.

In general by Lemma 5, a lexicographically optimal layer allocation vector
is maximally fair and hence a possible output of the algorithm. It suggests
that heuristics for making a “good” choice of the virtual sessions as can-
didates for rate incrementation may serve as good heuristics for yielding a
lexicographic optimal layer allocation. If such heuristics fail to yield a lexi-
cographic optimal layer allocation, they would at least yield maximally fair
layer allocations. A study of such heuristics is a topic of future research. It
may also be a good idea to run the algorithm for computation of a maximally
fair vector a few times (it has polynomial complexity), each time with a dif-
ferent choice for candidates for layer incrementation and to choose finally
that layer allocation which is lexicographically largest amongst the available
ones.

An interesting question is whether every maximally fair layer allocation
is provably close to a lexicographically optimal layer allocation, w.r.t. some
distance definition. To investigate this, we define the concept of lexicographic
difference. Given any two layer allocation vectors ~γ1 and ~γ2, the lexicographic
difference between ~γ1 and ~γ2 is γ̂1

i − γ̂
2
i , where γ̂k is the lexicographic ordered

version of ~γk and i = arg minγ̂1
j 6=γ̂

2
j
j, i.e., the lexicographic difference between

two layer allocations is the difference between the smallest components which
differ in their lexicographically ordered versions. Lexicographic difference be-
tween two layer allocations ~γ1 and ~γ2 is positive, zero, or negative depending
on whether ~γ1 is lexicographically greater than, equal to, less than ~γ2 re-
spectively. Unfortunately, given any integer k, one can construct a network
where the lexicographic difference between a lexicographically optimal layer
allocation and one particular maximally fair layer allocation is k units. Con-
sider the following example.

Example 6.3: Consider the network shown in Figure 9. It consists of k + 1
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links, e1, . . . , ek+1 and 2k + 1 unicast sessions, session 1, . . . , 2k + 1. Session
m traverses through edges edm

2
e and ek+1 for odd m, m ≤ 2k − 1. Session

m traverses through edge em
2

for even m. Session 2k + 1 traverses through
edge ek+1. Edges 1, . . . , k have unit capacity and edge k + 1 has 2k units
of capacity. Every layer consumes 1 unit of bandwidth. The lexicographic
optimal layer allocation vector ~γO is as follows:

γOi =


0 i odd, i ≤ 2k − 1
1 i even,
2k i = 2k + 1.

The layer allocation vector ~γ1 described below is a maximally fair layer allo-
cation.

γ1
i =


1 i odd, i ≤ 2k − 1
0 i even
k i = 2k + 1.

Observe that the lexicographically ordered version of ~γO, γ̂0 is as follows:

γ̂Oi =


0 i ≤ k
1 k + 1 ≤ i ≤ 2k
2k i = 2k + 1

and the lexicographically ordered version of ~γ1, γ̂1 is as follows:

γ̂1
i =


0 i ≤ k
1 k + 1 ≤ i ≤ 2k
k i = 2k + 1.
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γ̂Oi = γ̂1
i , if i 6= 2k+1. It follows that the lexicographic difference between ~γO

and ~γ1 is γ̂O2k+1− γ̂
1
2k+1 = k units. The algorithm for generation of maximally

fair layer allocation may result in ~γ1, if it chooses sessions 1, 3, . . . , 2k− 1 for
incrementation in step (8). These are apparently “bad” choices. The choice
of sessions 2, 4, . . . , 2k for incrementation in step (8) are “good” choices.
However there is no way of knowing which are “good” and which are “bad”
choices in general. Heuristics like preferring sessions which span fewer num-
ber of links, for incrementation may be used. Also, randomized choice of
candidates for rate incrementation amongst those which satisfy the condition
of step (8) may be useful. In this example, all bad choices, 1, 3, . . . , 2k − 1
will be made with very low probability. So expected lexicographic difference
of the output maximally fair layer allocation from the lexicographic optimal,
will be around k/2 units. The research problem of developing a polyno-
mial complexity algorithm for generation of a maximally fair layer allocation
which is within lexicographic difference of k units from a lexicographic opti-
mal layer allocation, for some constant k, is essentially open. It is not even
known whether there can exist one such algorithm.

We have so far assumed that every layer of every source consumes the
same bandwidth, i.e., b units. This assumption have been made elsewhere,
as well, e.g., while simulating the RLM internet protocol, [24] assumes that
every layer consumes 32 kb/s bandwidth. However, this assumption does
not hold in all coding schemes. There may be more complicated situations
where the hierarchical signal structure of some sessions are flexible while the
signal structure is predetermined for some others, i.e., possible service rates
of receivers of some sessions form a continuous set while those of receivers
of some other sessions form a discrete set. Also, it is possible that layer
bandwidths can be fine tuned in certain ranges, while the granulartity is
coarse in other ranges. Fairness in these scenarios becomes more technical,
and is beyond the scope of the current paper. This is a topic of future
research. The simple case we have studied here gives the essential intuition,
though.

Computation of the maxmin fair rates and a maximally fair allocation
of layers in a distributed manner is a topic of future research. The criteria
for determination of rates uses information along Ls mainly. The only place
where the algorithm uses global information is that rs(k) = ωs(k) + b, for at
most one virtual session, s. However, rs(k) = ωs(k) + b can hold for multiple
virtual sessions, as long as they satisfy the criteria of step (8), subject to
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feasibility and the algorithm will still output a maximally fair layer allocation.
This feature of the algorithm (rs(k) = ωs(k)+b for at most one virtual session
s) is not crucial to the proof of maximal fairness of the output and is a
matter of convenience. This may facilitate the developement of a distributed
algorithm for computation of a maximally fair layer allocation. However, the
details for the distributed implementation need to be worked out.

We have also not addressed the issue of developing the detailed protocol
for informing the source, how many layers it should transmit and inform-
ing the receivers which groups they should subscribe to. Developing such
protocols would be interesting from an implementation point of view.

Summarizing, this is the first study in fairness under the assumption that
bandwidths can be allocated in discrete chunks only. This makes the feasible
set discrete. Fairness in a discrete feasible set is vastly different from that
in a continuous feasible set and have not been explored before, in multicast,
or even unicast scenario. We have shown that maxmin fair layer allocation
may not exist in this case. Computation of lexicographically optimal layer
allocation is NP-hard. We have introduced the notion of maximally fair
layer allocation and shown that a maximally fair layer allocation has many
nice properties with respect to fairness. We have presented a polynomial
complexity algorithm for computation of maximally fair layer allocation. Our
results apply to both internet and ATM like networks.

A Properties of Maxmin Fair Vector

In this section we prove some general properties of a maximally fair vector.
This leads to some interesting properties of a maxmin fair vector, if it exists.
We consider arbitraryK-dimensional vectors for some integerK and consider
an arbitrary feasible set. The definitions of maximal fairness, lexicographic
optimality and maxmin fairness remain the same as those used before, only
the reference feasible set of vectors is arbitrary.

Proposition 1 Consider two M−dimensional vectors ~A and ~B. If ~A is
fairer than ~B then there exists a component s such that as = minj∈τ aj and

as > bs, where τ = {j : aj 6= bj}, aj and bj are the jth components of ~A and
~B respectively.
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Remark: This proposition has been proved in [28]. We prove it for
completeness. We will use this result later.
Proof of Proposition 1: Let ~A be fairer than ~B. Thus ~A 6= ~B. τ 6= φ.
Let there exist no s such that as = minj∈τ aj and as > bs, i.e., aj < bj , ∀j
such that aj = minp∈τ ap (aj 6= bj , ∀j ∈ τ). Consider one such j. Since
~A is fairer than ~B, and aj < bj , there exists a u such that au > bu and
au ≤ aj Since au 6= bu, u ∈ τ . Thus au ≥ aj. It follows that au = aj . Thus
au = minp∈τ ap and au > bu. This contradicts the fact that aj < bj , ∀j such

that aj = minp∈τ ap. Thus if ~A is fairer than ~B, there exists a component s
such that as = minj∈τ aj and as > bs. 2

Lemma 3 If ~A is fairer than ~B, then ~A is lexicographically greater than ~B.

Proof of Lemma 3: For lexicographical comparison, we can ignore the
components of ~A and ~B which are componentwise equal. Wlog aj 6= bj for

all components j. Let ~A be fairer than ~B. It follows from Proposition 1
that there exists a component s such that as = minj aj and as > bs. Clearly
bs ≥ minj bj . Thus minj aj > minj bj . Thus the lemma follows. 2

Lemma 4 If ~A is maxmin fair, then it is lexicographically optimal amongst
all feasible vectors.

Proof of Lemma 4: If ~A is maxmin fair, then by definition of maxmin
fairness and maximal fairness, ~A is fairer than any other feasible vector.
Lexicographical optimality follows from Lemma 3. 2

Lemma 5 If ~A is lexicographically optimal in a feasible set, then it is max-
imally fair in the same feasible set.

Proof of Lemma 5: Let ~A not be maximally fair in a feasible set. Thus
there exists another feasible vector ~B, fairer than ~A. It follows that ~B is
lexicographically greater than ~A (by Lemma 3). This contradicts the lexico-

graphic optimality of ~A. 2

Proof of Lemma 1 (NP-hardness Lemma): Let there exist a fictitious
blackbox which can compute the lexicographic optimal layer allocation for
any network, as long as there exists a feasible layer allocation, the complexity
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being a polynomial function of the input size. We will show that this implies
that P = NP.

Consider an undireceted graph G with N vertices and |E| edges. The
vertices are numbered 1, . . . , N. We call an edge eij if it connects vertices
i and j in G, i < j. Wlog there is no edge connecting vertex i to itself.
Construct a directed network with N unicast sessions, numbered 1, . . . , N.
For every edge eij in G, there exists two nodes vij1, vij2 and an edge directed
from vij1 to vij2. In addition there is an edge directed from vij2 to

1. vik1, if k > j and there does not exist a vertex l inG such that j < l < k,
and l is adjacent to i in G,

2. vkj1, if k > i and there does not exist a vertex l in G such that i < l < k
and l is adjacent to j in G,

3. vjk1, if there does not exist an l in the adjacency set of j such that
i < l < k.

Every edge has unit capacity. No session has any minimum number of layers
requirement. Let {i1, . . . , ip, k1, . . . , kt} constitute the adjacency set of j and
i1 < i2 < . . . < ip < j < k1 < k2 < . . . < kt. The path of session j consists
of nodes vi1j1, vi1j2, vi2j1, vi2j2, . . . , vipj1, vipj2, vjk11, vjk12, . . . , vjkt1, vjkt2 in the
same sequence. Every layer consumes unit bandwidth. Note that

n(l) =


{p, q} if l = (vpq1, vpq2)
{p} if l = (vps2, vpu1) or

l = (vsp2, vup1) or l = (vps2, vup1).

Every edge in G corresponds to two nodes in the network. Thus the network
has 2|E| nodes, at most 4|E|2 links, and N sessions. Clearly the network can
be constructed in polynomial time (construction complexity is a polunomial
function of the input graph G size).

A layer allocation ~γS is defined as follows:

γSj =
1 j ∈ S
0 otherwise.

We will prove that layer allocation ~γS is feasible iff S is an independent set
in G. By construction, two sessions i, j share a link iff vertices i and j are
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adjacent in G. (Wlog i < j.) This follows because if i, j share a link then
there exists a l such that n(l) = {i, j} and this means that l = (vij1, vij2).
This implies that there exists an edge between vertices i, j in G. If i and j
are adjacent in G, then by construction, both sessions i, j traverse through
link l, where l = (vij1, vij2).

Let S not be an independent set. Thus there exists i, j such that i, j ∈ S
and i, j are adjacent in G. Thus sessions i and j share a link, say l. γSi +γSj =
2 > 1 = Cl. This violates the capacity constraint for link l. Thus ~γS is
infeasible.

Now let S be independent in G. We will show that ~γS is feasible. γi is
an integer for all i. The minimum number of layer requirements is trivially
satisfied. Consider any link l in the network. If |n(l)| = 1, then the capacity
condition holds for link l for any 0− 1 layer allocation vector. If |n(l)| 6= 1,
|n(l)| = 2. Let n(l) = {i, j}. Capacity condition is clearly satisfied if at most
one of i, j is in S. Since sessions i and j share link l, i and j are adjacent in
G. It follows that both i and j can not be in S, from independence of set S
in G. Thus capacity condition holds for every link l in the network. Thus ~γS

is feasible.
Note that any feasible layer allocation vector has 0− 1 components only,

because every layer consumes 1 unit of bandwidth and edges have unit ca-
pacity. Thus every feasible layer allocation is of the form ~γS, where S is some
subset of {1, . . . , N}. Now let ~γ be a lexicographic optimal layer allocation
vector. It assigns 1 layer to maximum possible number of sessions. From
previous arguement, ~γ = ~γS, where S = {i : γi = 1}. We will show that
S is a maximum independent set. Since ~γS is feasible, S = {i : γi = 1} is
an independent set. Let S not be a maximum independent set in G. Thus
there exists an independent set S1 such that |S1| > |S|. ~γS1 is a feasible layer
allocation vector. It assigns 1 layer to |S1| sessions and 0 layer to the rest.
Thus ~γS1 is lexicographically greater than ~γS, which assigns 1 layer to |S|
sessions and 0 layer to the rest. This contradicts the lexicographic optimality
of ~γS. So S is a maximum independent set.

So given an undirected graph construct the network described above in
polynomial time. The size of the network is a polynomial function of that of
G. Since minimum number of layers requirement does not exist, the feasible
set of layer allocations is nonempty. Use the blackbox to obtain a lexico-
graphically optimal layer allocation ~γ. Define S = {i : γi = 1}. From the
arguement above, S is the maximum independent set in G. Thus the maxi-
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mum independent set has been generated in polynomial time. Generation of
maximum independent set of a graph G is a known NP-hard problem. Thus
P = NP . 2

B Proof of Pseudo-Bottleneck Lemma

Proof of Lemma 2 (Pseudo-Bottleneck Lemma): Let a virtual session
s not have a pseudo-bottleneck link under a feasible layer allocation vector
~γ1. We will show that it can not be a maximally fair layer allocation vector.
Let

Y = {l : l ∈ Ls, b
∑
i∈n(l)

Γ1
il ≤ Cl − b}

Z = {l : l ∈ Ls, γ
1
s < Γ1

χ(s)l}

W = {j : ∃ l ∈ Lj ∩ (Ls \ (Y ∪ Z)) s.t. γ1
j = Γ1

χ(j)l > ιχ(j)l, γ
1
j > γ1

s + 1},

Consider a layer allocation vector ~γ2 defined as follows:

γ2
j =


γ1
j + 1 j = s

γ1
j − 1 j ∈W
γ1
j otherwise.

We will prove that ~γ2 is a feasible layer allocation vector and is fairer
than ~γ1. First we show the feasiblity. Since ~γ1 is feasible, γ1

j is an integer for
all j and hence γ2

j is an integer for all j.
γ2
j ≥ γ1

j , if j 6∈W . Since γ1
j ≥ ιj from feasibility of ~γ1, γ2

j ≥ ιj , if j 6∈W .
Now let j ∈ W . γ1

j > ιχ(j)l for some l ∈ Lj . Thus γ1
j > ιχ(j)l ≥ ιj . Since γ1

j

and ιj are integers, γ1
j ≥ ιj + 1. It follows that γ2

j ≥ ιj . Thus ~γ2 satisfies the
minimum layer requirements.

Consider a link l ∈ Ls. Since γ2
j ≤ γ1

j , if j 6= s and γ2
s = γ1

s + 1,

Γ2
il ≤ Γ1

il, if i 6= χ(s) and (3)

Γ2
χ(s)l ≤ max(γ1

s + 1,Γ1
χ(s)l)

≤ Γ1
χ(s)l + 1 (4)
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1. Let l ∈ Y . Thus
∑
i∈n(l) Γ2

il ≤
∑
i∈n(l) Γ1

il + 1. It follows that

b
∑
i∈n(l)

Γ2
il ≤ b

∑
i∈n(l)

Γ1
il + b

≤ Cl (since l ∈ Y ) (5)

2. Let l ∈ Z. Since γ1
j is an integer for all j, so is Γ1

il for all sessions i
and link l. Thus γ1

s < Γ1
χ(s)l, means that γ1

s + 1 ≤ Γ1
χ(s)l. Thus Γ2

χ(s)l ≤
max(γ1

s + 1,Γ1
χ(s)l) = Γ1

χ(s)l. Thus from (3)
∑
i∈n(l) Γ2

il ≤
∑
i∈n(l) Γ1

il.

Again it follows that

b
∑
i∈n(l)

Γ2
il ≤ b

∑
i∈n(l)

Γ1
il

≤ Cl (from the feasibility of ~γ1) (6)

3. Let l ∈ Ls \ (Y ∪ Z). Thus l satisfies pseudo-bottleneck conditions
(1) and (2). Since l is not a pseudo-bottleneck link w.r.t. virtual
session s, l can not satisfy pseudo-bottleneck condition (3). Thus there
exists a virtual session p such that χ(p) ∈ n(l), γ1

p > γ1
s + 1 and

γ1
p > ιχ(p)l. Consider all virtual sessions j ∈ χ(p) such that γ1

j = Γ1
χ(p)l.

It follows that γ1
j ≥ γ1

p . Thus γ1
j > ιχ(j)l, γ

1
j > γ1

s + 1. Hence j ∈ W if
γ1
j = Γ1

χ(p)l, j ∈ χ(p). Now γ2
j = γ1

j − 1 for all j ∈ W . It follows that

Γ2
χ(p)l = Γ1

χ(p)l − 1.∑
i∈n(l)

Γ2
il =

∑
i∈n(l)\{χ(p),χ(s)}

Γ2
il + Γ2

χ(s)l + Γ2
χ(p)l

≤
∑

i∈n(l)\{χ(p),χ(s)}

Γ1
il + Γ1

χ(s)l + 1 + Γ1
χ(p)l − 1 (from (3) and (4))

=
∑
i∈n(l)

Γ1
il

Thus b
∑
i∈n(l)

Γ2
il ≤ b

∑
i∈n(l)

Γ1
il

≤ Cl (from the feasibility of ~γ1) (7)

4. Let l 6∈ Ls.

b
∑
i∈n(l)

Γ2
il ≤ b

∑
i∈n(l)

Γ1
il (from (3) and since χ(s) 6∈ n(l))

≤ Cl (from feasibility of ~γ1) (8)
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Thus from (5), (6), (7) and (8) ~γ2 satisfies the capacity condition for feasi-
bility. Thus ~γ2 is a feasible layer allocation vector.

Clearly ~γ1 6= ~γ2. Let γ1
j > γ2

j . Thus j ∈W , γ2
j = γ1

j − 1 and γ1
j > γ1

s + 1.
Thus γ1

j − 1 > γ1
s = γ2

s − 1. It follows that γ2
j > γ2

s − 1. Since γ2
j and γ2

s are
both integers, γ2

j ≥ γ2
s . Thus if there exists j such that γ2

j < γ1
j , then there

exists s such that γ2
s ≤ γ2

j and γ1
s < γ2

s . Thus ~γ2 is fairer than ~γ1. Hence ~γ1

is not maximally fair.
Now let every virtual session have a pseudo-bottleneck link for feasible

layer allocation vector ~γ1. Let there be a feasible layer allocation vector,
~γ2, fairer than ~γ1. Define the set τ of virtual sessions as follows. τ = {j :
γ1
j 6= γ2

j }. Since ~γ2 is fairer than ~γ1, there exists a virtual session s such
that γ2

s = minj∈τ γ
2
j and γ2

s > γ1
s . This follows from Proposition 1 in the

appendix. Since γ1
s and γ2

s are both integers, γ2
s > γ1

s means that

γ2
s ≥ γ1

s + 1 (9)

Let l be the pseudo-bottleneck link w.r.t. virtual session s for layer allocation
vector ~γ1. l ∈ Ls

Γ2
χ(s)l ≥ γ2

s

≥ γ1
s + 1 (by (9))

= Γ1
χ(s)l + 1 (by pseudo-bottleneck property (2)) (10)

If Γ2
il ≥ Γ1

il, ∀i ∈ n(l), then∑
i∈n(l)

Γ2
il ≥

∑
i∈n(l)

Γ1
il + 1 (from (10))

Thus b
∑
i∈n(l)

Γ2
il > Cl (from pseudo-bottleneck property (1)) (11)

(11) contradicts the feasibility of layer allocation vector ~γ2. Thus Γ2
il < Γ1

il

for some i. i 6= χ(s) since Γ2
χ(s)l > Γ1

χ(s)l from (10). From feasibility of ~γ2,

ιil ≤ Γ2
il. It follows that Γ1

il > ιil. Consider virtual session j ∈ m(i, l) such
that γ1

j = Γ1
il. j 6= s as i 6= χ(s). γ1

j > ιχ(j)l. From pseudo-bottleneck
property (3), γ1

j ≤ γ1
s + 1.

γ2
j ≤ Γ2

il (since j ∈ m(i, l))

< Γ1
il (from choice of i)
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= γ1
j (from choice of j) (12)

≤ γ1
s + 1

≤ γ2
s (from (9)) (13)

From (12) γ2
j 6= γ1

j . Thus j ∈ τ . From (13) γ2
j < γ2

s . This contradicts
the minimality of γ2

s for s ∈ τ . Thus there does not exist a feasible layer
allocation vector fairer than ~γ1. Hence ~γ1 is a maximally fair layer allocation
vector. 2

C Proof of Maximal-Fairness Theorem

We assume that the set of feasible rate vectors is nonempty.

Lemma 6 rs(k) and λil(k) are multiples of b for all virtual sessions s, ses-
sions i, link l and iterations k.

Proof of Lemma 6: rs(0) = µs. µs is a multiple of b by definition. Let rs(k)

be a multiple of b. ωs(k+1) = rs(k), if s 6∈ S(k). ωs(k+1) = bbminl∈Ls ηls(k+1)

b
c,

if s ∈ S(k). Thus ωs(k+1) is a multiple of b in both cases. rs(k+1) = ωs(k+1)
or rs(k+ 1) = ωs(k+ 1) + b. Thus rs(k+ 1) is a multiple of b. The first part
follows by induction.

Since λil(k) = maxj∈m(i,l) rj(k) and rj(k) is a multiple of b ∀j, so is λil(k).
2

Lemma 7 If Λ(k) = φ, for all virtual sessions j ∈ S(k − 1),(
max(Ωχ(j)l(k), ωj(k) + b)

)
+

∑
i∈n(l),i6=χ(j)

Ωil(k) ≤ Cl, ∀ l ∈ Lj

Proof of Lemma 7: Consider any virtual session j ∈ S(k−1) and a link l ∈
Lj . Since j 6∈ Λ(k), either ωj(k) < Ωχ(j)l(k), or

∑
i∈n(l) Ωil(k) ≤ Cl− b. In the

first case, ωj(k) + b ≤ Ωχ(j)l(k), since ωj(k) and Ωχ(j)l(k) are both multiples
of b from the proof of Lemma 6. Thus max(Ωχ(j)l(k), ωj(k) + b)) = Ωχ(j)l(k).

Thus
(
max(Ωχ(j)l(k), ωj(k) + b)

)
+
∑
i∈n(l),i6=χ(j) Ωil(k) ≤

∑
i∈n(l) Ωil(k). If j 6∈

S(k − 1), ωj(k) = rj(k − 1) ≤ max(ηl(k), λχ(j)l(k − 1)). If j ∈ S(k − 1),
ωj(k) ≤ max(ηl(k), λχ(j)l(k−1)) from the algorithm. It follows that Ωil(k) ≤
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max(ηl(k), λil(k−1)). If i 6∈ Ξl(k−1), Ωil(k) = λil(k−1) since ωj(k) = rj(k−
1), ∀j ∈ m(χ(j), l). It follows that

∑
i∈n(l) Ωil(k) ≤

∑
i∈n(l)\Ξl(k−1) λil(k− 1) +∑

i∈\Ξl(k−1) max(ηl(k), λil(k − 1)) = Cl. Hence
(
max(Ωχ(j)l(k), ωj(k) + b)

)
+∑

i∈n(l),i6=χ(j) Ωil(k) ≤ Cl in the first case. In the second case,(
max(Ωχ(j)l(k), ωj(k) + b)

)
+

∑
i∈n(l),i6=χ(j)

Ωil(k) ≤ b+
∑
i∈n(l)

Ωil(k) (since ωj(k) ≤ Ωil(k))

≤ Cl from assumption.

The result holds in both cases.

Lemma 8 rs(k + 1) ≥ rs(k) if k ≥ 0 for all virtual sessions s. λil(k + 1) ≥
λil(k) if k ≥ 0 for all sessions i and links l

Proof of Lemma 8: If s 6∈ S(k), ωs(k+ 1) = rs(k). Let s ∈ S(k). Consider
any link l ∈ Ls.

ηlχ(s)(k + 1) = max(ηl(k + 1), λχ(s),l(k))

≥ rs(k) (since s ∈ m(χ(s), l) ∀ l ∈ Ls and λil(k) = max
s∈m(i,l)

rs(k))(14)

ωs(k + 1) = bb
minl∈Ls ηlχ(s)(k + 1)

b
c

≥ bb
rs(k)

b
c (from (14))

= rs(k) (by Lemma 6)

Thus ωs(k + 1) ≥ rs(k) ∀ s (15)

Thus rs(k + 1) ≥ ωs(k + 1) ≥ rs(k).
Since λil(k+1) = maxj∈m(i,l) rj(k+1) and rj(k+1) ≥ rj(k) ∀j, λil(k+1) ≥

λil(k). 2

Lemma 9 If k ≥ 1 and the algorithm has not terminated in k−1 iterations,
bηl(k)

b
c ≥ bηl(k−1)

b
c.

Proof of Lemma 9: Let k = 1. The algorithm can not terminate in 0
iterations. S(0) 6= φ, Fl(0) = 0. If Ξl(0) = φ, then ηl(1) = ηl(0) = 0, and
the lemma holds for link l and iteration 1. Let Ξl(0) 6= φ. Since the feasible
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set of rate vectors is nonempty,
∑
i∈Ξl(0) µil ≤ Cl where µil = maxj∈m(i,l) µj .

µil ≥ 0, for every session i and link l. rj(0) = µj. Thus λil(0) = µil. Thus
θ = 0 satisfies the inequality

∑
i∈Ξl(0) max(θ, λil(0)) ≤ Cl. Clearly ηl(1) is the

maximum possible θ which satisfies the above inequality. Hence ηl(1) ≥ 0 =
ηl(0). The equality follows from the initialization of ηl(0). Thus the lemma
holds for k = 1.

Let the lemma hold for iterations 1, . . . , k and S(k) 6= φ, i.e., bηl(1)
b
c ≤

. . . ≤ bηl(k)
b
c. Thus there exists ηl(p), p = 1, . . . , k. We will show that the

lemma holds for the k + 1th iteration. If j 6∈ S(k − 1), rj(k) = ωj(k) =

rj(k − 1). If l ∈ Lj , rj(k − 1) ≤ λχ(j),l(k − 1) ≤ max(bbηl(k)
b
c, λχ(j),l(k − 1)).

rj(k) ≤ max(bb
ηl(k)

b
c, λχ(j),l(k − 1)) if j 6∈ S(k − 1), l ∈ Lj (16)

≤ max(ηl(k), λχ(j),l(k − 1)) if j 6∈ S(k − 1), l ∈ Lj (17)

rj(k) ≥ ωj(k) for all virtual sessions j. Consider a link l, s.t. Ξl(k − 1) 6= φ.

1. Let rj(k) = ωj(k) for all virtual sessions j traversing through link l. If
j ∈ S(k−1), and virtual session j traverses through link l, then rj(k) =
ωj(k) ≤ ηχ(j)l(k). ηχ(j)l(k) = max(ηl(k), λil(k − 1)), ∀j ∈ m(i, l). Thus
if rj(k) = ωj(k), for all virtual sessions j traversing through l

rj(k) ≤ max(ηl(k), λχ(j),l(k − 1)) if j ∈ S(k − 1), l ∈ Lj (18)

λil(k) ≤ max(ηl(k), λil(k − 1)), ∀ i ∈ n(l) (from (17) and (18))
(19)∑

i∈Ξl(k)

max(ηl(k), λil(k)) ≤
∑

i∈Ξl(k)

max(ηl(k), λil(k − 1)) (from (19)) (20)

Fl(k) = Fl(k − 1) +
∑

i∈Ξl(k−1)\Ξl(k)

λil(k)

≤ Fl(k − 1) +∑
i∈Ξl(k−1)\Ξl(k)

max(ηl(k), λil(k − 1)) (from (19))(21)

Fl(k) +
∑

i∈Ξl(k)

max(ηl(k), λil(k)) ≤ Fl(k − 1) +
∑

i∈Ξl(k−1)\Ξl(k)

max(ηl(k), λil(k − 1)) +

∑
i∈Ξl(k)

max(ηl(k), λil(k − 1)) (from (20) and (21))
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= Fl(k − 1) +
∑

i∈Ξl(k−1)

max(ηl(k), λil(k − 1)) (22)

(since Ξl(k) ⊆ Ξl(k − 1) as S(k) ⊆ S(k − 1))

= Cl (23)

2. Now let there exist a virtual session s traversing through link l such

that rs(k) > ωs(k), and b
minl1∈Ls ηl1 (k)

b
c < bηl(k)

b
c. Since rs(k) > ωs(k),

rs(k) = ωs(k) + b. ωs(k) is divisible by b (proof of Lemma 6) and
ωs(k) < minl1∈Ls ηl1(k). Thus

ωs(k) ≤ bb
minl1∈Ls ηl1(k)

b
c (proof of Lemma 6)

< bb
ηl(k)

b
c by hypothesis.

Thus ωs(k) + b ≤ bb
ηl(k)

b
c (by Lemma 6)

rs(k) = ωs(k) + b

≤ bb
ηl(k)

b
c

≤ max(bb
ηl(k)

b
c, λχ(s)l(k − 1)) (24)

Since there exists at most one virtual session j such that rj(k) > ωj(k),
rj(k) = ωj(k), j 6= s. Consider a virtual session j traversing through
link l. Let j ∈ S(k − 1) and j 6= s.

ωj(k) ≤ bb
ηχ(j)l(k)

b
c ∀ j

= max(bb
ηl(k)

b
c, λχ(j)l(k − 1)) (by Lemma 6)

Thus rj(k) ≤ max(bb
ηl(k)

b
c, λχ(j)l(k − 1)) ∀ j ∈ S(k − 1), j 6= s(25)

λil(k) ≤ max(bb
ηl(k)

b
c, λil(k − 1)) ∀ i ∈ n(l) (26)

(from (16), (24) and (25))

Using (26) it can be proved that

Fl(k) +
∑

i∈Ξl(k)

max(bb
ηl(k)

b
c, λil(k)) ≤ Fl(k − 1) +
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∑
i∈Ξl(k−1)

max(bb
ηl(k)

b
c, λil(k − 1)) (27)

≤ Fl(k − 1) +
∑

i∈Ξl(k−1)

max(ηl(k), λil(k − 1))

(since ηl(k) ≥ bb
ηl(k)

b
c)

≤ Cl (by induction hypothesis) (28)

The proof for (27) is exactly similar to the one for (22) using (19).

3. Now let there exist a virtual session s traversing link l such that rs(k) >

ωs(k) and b
minl1∈Ls ηl1 (k)

b
c = bηl(k)

b
c. As before, rs(k) = ωs(k) + b. First

let rs(k) ≤ max(bbηl(k)
b
c, λχ(s)l(k − 1))

rj(k) = ωj(k), j 6= s

≤ max(bb
ηl(k)

b
c, λil(k − 1)) if j ∈ S(k − 1) (29)

λil(k) ≤ max(bb
ηl(k)

b
c, λil(k − 1)) ∀i ∈ n(l) (30)

(from (16), assumption and (29))

Now using (30) it can be proved that

Fl(k) +
∑

i∈Ξl(k)

max(bb
ηl(k)

b
c, λil(k)) ≤ Cl (31)

The proof is exactly similar to the one for (28) using (26).

Now let

rs(k) > max(bb
ηl(k)

b
c, λil(k − 1)) (32)

Observe that ∀i ∈ Ξl(k − 1),

λil(k) ≥ Ωil(k)

≥ bb
ηl(k)

b
c (from the algorithm)
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The last step follows from the algorithm since rs(k) = ωs(k) + b, l ∈ ls
and b

minl1∈Ls ηl1 (k)

b
c = bηl(k)

b
c.

Thus max(bb
ηl(k)

b
c, λil(k)) = λil(k)

= Ωil(k) (33)

(if i 6= χ(s), since then rj(k) = ωj(k) ∀j ∈ m(i, l))

Now rs(k) = ωs(k) + b. Thus s ∈ S(k − 1).

ωs(k) ≤ max(bb
ηl(k)

b
c, λχ(s)l(k − 1)) (since l ∈ Ls)

rs(k) ≤ max(bb
ηl(k)

b
c, λχ(s)l(k − 1)) + b (34)

From (32), (34) and since rs(k) is a multiple of b, by Lemma 6, rs(k) =

max(bbηl(k)
b
c, λχ(s)l(k − 1)) + b.

If χ(j) ∈ n(l), ωj(k) ≤ max(bb
ηl(k)

b
c, λχ(j)l(k − 1)), j ∈ S(k − 1)(35)

ωj(k) = rj(k − 1), j 6∈ S(k − 1)

≤ max(bb
ηl(k)

b
c, λχ(j)l(k − 1)), j 6∈ S(k − 1)(36)

Ωχ(s)l(k) ≤ max(bb
ηl(k)

b
c, λχ(s)l(k − 1))

(from (35) and (36))

Thus max(Ωχ(s)l(k), rs(k)) = max(bb
ηl(k)

b
c, λχ(s)l(k − 1)) + b (37)

rj(k) = ωj(k), j 6= s

rs(k) = ωs(k) + b

Thus λχ(s)l(k) = max(Ωχ(s)l(k), rs(k))

= max(bb
ηl(k)

b
c, λχ(s)l(k − 1)) + b (from (37))(38)

max(bb
ηl(k)

b
c, λχ(s)l(k)) = max(bb

ηl(k)

b
c, λχ(s)l(k − 1)) + b (from (38))

= max(Ωχ(s)l(k), rs(k)) (from (37)) (39)
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Thus if rs(k) > max(bbηl(k)
b
c, λil(k − 1)),

Fl(k) +
∑

i∈Ξl(k)

max(bb
ηl(k)

b
c, λil(k)) = Fl(k − 1) +

∑
i∈Ξl(k−1)\Ξl(k)

λil(k) +

∑
i∈Ξl(k)

max(bb
ηl(k)

b
c, λil(k))

(since Ξl(k) ⊆ Ξl(k − 1))

≤ Fl(k − 1) +
∑

i∈Ξl(k−1)\Ξl(k)

max(bb
ηl(k)

b
c, λil(k)) +

∑
i∈Ξl(k)

max(bb
ηl(k)

b
c, λil(k))

= Fl(k − 1) +
∑

i∈Ξl(k−1)

max(bb
ηl(k)

b
c, λil(k))

(since Ξl(k − 1) ⊇ Ξl(k))

= Fl(k − 1) +
∑

i∈Ξl(k−1),i6=χ(s)

Ωil(k)

+ max(Ωχ(s)l(k), rs(k))

(since χ(s) ∈ Ξl(k − 1)) (from (33) and (39))

=
∑

i∈n(l)\Ξl(k−1)

Ωil(k) +
∑

i∈Ξl(k−1),i6=χ(s)

Ωil(k)

+ max(Ωχ(s)l(k), rs(k))

(since ωj(k) = rj(k − 1)∀j ∈ n(l) \ S(k − 1))

=
∑

i∈n(l),i6=χ(s)

Ωil(k) + max(Ωχ(s)l(k), ws(k) + b)

≤ Cl) (40)

(40) follows since from Lemma 7, since rs(k) = ws(k) + b, s ∈ S(k− 1)
and Λ(k) = φ.

Since virtual session s traverses link l, b
minl1∈Ls ηl1 (k)

b
c ≤ bηl(k)

b
c. Thus (2) and

(3) are the only possibilities, when rs(k) > ωs(k) for some virtual session
s traversing through link l. (1) covers the other case, i.e., when rj(k) =
ωj(k) for all virtual sessions traversing the link l. From (23), (28), (31)

and (40), θ = bbηl(k)
b
c satisfies the inequality Fl(k)+

∑
i∈Ξl(k) max(θ, λil(k))
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≤ Cl. Clearly ηl(k+1) is the maximum possible value of θ which satisfies the

inequality and hence there exists a ηl(k + 1) and ηl(k + 1) ≥ bbηl(k)
b
c. Thus

bηl(k+1)
b
c ≥ bηl(k)

b
c. Hence the result follows from induction. 2

Lemma 10 If l ∈ Ls and rs(k) > µχ(s)l, then rs(k) ≤ bdηl(k)
b
e for all virtual

sessions s and all iterations k ≥ 0.

Proof of Lemma 10: rs(0) = µs ≤ µχ(s)l ∀l ∈ Ls and all virtual sessions s.
Thus the lemma is trivially true for k = 0. Let the lemma hold for iterations
0, 1, . . . , k, k ≥ 0. We will prove that the lemma holds for the k+1th iteration.
Let l ∈ Ls. Let rs(k + 1) > µχ(s)l. If s 6∈ S(k), rs(k + 1) = ωs(k + 1) =

rs(k). Thus rs(k) > µχ(s)l. By induction hypothesis, rs(k) ≤ bdηl(k)
b
e. Thus

rs(k+ 1) = rs(k) ≤ bdηl(k)
b
e. By Lemma 9, bηl(k)

b
c ≤ bηl(k+1)

b
c. It follows that

dηl(k)
b
e ≤ dηl(k+1)

b
e. Thus rs(k + 1) ≤ bdηl(k+1)

b
e.

Now let s ∈ S(k). Let rs(k + 1) = ωs(k + 1). We need to show that

ωs(k + 1) ≤ bdηl(k+1)
b
e. Since s ∈ S(k), ωs(k + 1) ≤ max(ηl(k + 1), λχ(s)l(k)).

1. Let ωs(k + 1) ≤ λχ(s)l(k). If λχ(s)l(k) > µχ(s)l, there exists j ∈
m(χ(s), l), such that rj(k) = λχ(s)l(k) > µχ(s)l. By induction hypoth-

esis, rj(k) ≤ bdηl(k)
b
e. As argued before, using Lemma 9, dηl(k)

b
e ≤

dηl(k+1)
b
e. Thus ωs(k + 1) ≤ λχ(s)l(k) = rj(k) ≤ bdηl(k+1)

b
e.

2. Let ωs(k + 1) ≤ ηl(k + 1). ηl(k + 1) ≤ bdηl(k+1)
b
e. Hence ωs(k + 1) ≤

bdηl(k+1)
b
e.

Now let rs(k + 1) = ωs(k + 1) + b. (For s ∈ S(k), the only possibilities
are rs(k + 1) = ωs(k + 1) and rs(k + 1) = ωs(k + 1) + b.) Thus ωs(k + 1) <
minl1∈Ls ηl1(k + 1). Since l ∈ Ls minl1∈Ls ηl1(k + 1) ≤ ηl(k + 1). Thus
ωs(k + 1) < ηl(k + 1). Since ωs(k + 1) is a multiple of b (proof of Lemma 6),

ωs(k + 1) ≤ bbηl(k+1)
b
c, if ηl(k + 1) is not a multiple of b and ωs(k + 1) ≤

ηl(k+ 1)− b, if ηl(k+ 1) is a multiple of b. If ηl(k+ 1) is not a multiple of b,

then bηl(k+1)
b
c = dηl(k+1)

b
e− 1 and thus ωs(k+ 1) + b ≤ bdηl(k+1)

b
e. If ηl(k+ 1)

is a multiple of b, then clearly ωs(k + 1) + b ≤ ηl(k + 1) = bdηl(k+1)
b
e. Since

rs(k + 1) = ωs(k + 1) + b, the result follows for the k + 1th iteration. The
lemma follows by induction. 2
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Lemma 11 The rate allocation ~r(k) at the end of the kth iteration is feasible,
k ≥ 0.

Proof of Lemma 11: We prove by induction. rs(0) = µs, for all virtual
sessions s. µs is a multiple of b by assumption. Thus ~r(0) satisfies the
minimum rate requirements. λil(0) = µil, for all sessions i ∈ n(l) and all links
l. Since the set of feasible rate allocation vectors is nonempty,

∑
i∈n(l) µil ≤ Cl,

for all link l. Thus ~r(0) is a feasible rate vector.
Let ~r(k) be feasible. Let the algorithm not terminate in k iterations, i.e.,

S(k) 6= φ. We will prove that ~r(k + 1) is feasible. rj(k + 1) is a multiple of
b for all virtual sessions j. rs(k + 1) ≥ rs(k) ≥ µs for all virtual sessions s.
The first inequality follows from Lemma 8 and the last from the feasibility
of ~r(k). Thus ~r(k + 1) satisfies the minimum rate requirements. If j ∈ S(k),
and virtual session j traverses through link l, then ωj(k + 1) ≤ max(ηl(k +
1), λχ(j),l(k)). If j 6∈ S(k), and virtual session j traverses through link l, then
ωj(k + 1) = rj(k) ≤ max(ηl(k + 1), λχ(j),l(k)). It follows that

Ωil(k + 1) ≤ max(ηl(k + 1), λil(k)), ∀ i ∈ n(l) (41)

If i ∈ n(l) \ Ξl(k), ωj(k + 1) = rj(k), ∀ j ∈ m(i, l). Thus Ωil(k + 1) = λil(k)
if i ∈ n(l) \ Ξl(k).∑

i∈n(l)

Ωil(k + 1) =
∑

i∈n(l)\Ξl(k)

Ωil(k + 1) +
∑

i∈Ξl(k)

Ωil(k + 1)

≤
∑

i∈n(l)\Ξl(k)

λil(k) +
∑

i∈Ξl(k)

max(ηl(k + 1), λil(k))

= Fl(k) +
∑

i∈Ξl(k)

max(ηl(k + 1), λil(k))

≤ Cl (42)

If rj(k + 1) = ωj(k + 1), for all virtual sessions j, traversing through link l
(χ(j) ∈ n(l)), then λil(k+ 1) = Ωil(k+ 1), ∀ i ∈ n(l). Thus ~r(k+ 1) satisfies
the capacity condition from (42). If rj(k + 1) 6= ωj(k + 1), for one or more
virtual sessions j traversing through link l, then rs(k + 1) = ωs(k + 1) + b,
for some virtual session s traversing through link l and rj(k+1) = ωj(k+1),
j 6= s. Thus λil(k+ 1) = Ωil(k+ 1), i 6= χ(s) and λχ(s)l(k+ 1) = max(ωs(k+
1) + b,Ωχ(s)l(k + 1)).∑
i∈n(l)

λil(k + 1) =
∑

i∈n(l),i6=χ(s)

Ωil(k + 1) + max(ωs(k + 1) + b,Ωχ(s)l(k + 1))
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≤ Cl (from Lemma 7, since rs(k + 1) = ωs(k + 1) + b, s ∈ S(k), and Λ(k + 1) =

Thus ~r(k + 1) satisfies the capacity condition in this case as well. 2

Lemma 12 If s 6∈ S(k), k ≥ 0, there exists a link l ∈ Ls such that∑
i∈n(l) λil(k) > Cl−b, rs(k) = λχ(s)l(k) and for any virtual session j travers-

ing the link (χ(j) ∈ n(l)), if rj(k) > µχ(j)l then rj(k) ≤ rs(k) + b.

Proof of Lemma 12: Since S(0) = {1, . . . ,M}, s ∈ S(0) for all virtual
sessions s. Thus the lemma holds by vacuity for k = 0. Consider k > 0.
Let s 6∈ S(k). There exists t such that s ∈ S(t) \ S(t + 1), t + 1 ≤ k.
s ∈ S(t) \ S(t+ 1) implies that for some link l ∈ Ls,∑

i∈n(l)

λil(t+ 1) > Cl − b (43)

rs(t+ 1) = λχ(s)l(t+ 1) (44)

∑
i∈n(l)

λil(k) ≥
∑
i∈n(l)

λil(t+ 1) (from Lemma 8 and since t+ 1 ≤ k)

> Cl − b (from (43)) (45)

(45) proves the first part of the lemma.
From Lemma 8, λil(t+1) ≤ λil(k), since t+1 ≤ k. Let there exist u ∈ n(l)

such that λul(t+ 1) < λul(k). Then λul(k) ≥ λul(t+ 1) + b (Lemma 6).

Cl < b+ λul(t+ 1) +
∑

i∈n(l),i6=u

λil(t+ 1) (from (43))

≤ λul(k) +
∑

i∈n(l),i6=u

λil(k)

=
∑
i∈n(l)

λil(k)

Thus ~r(k) is infeasible. This contradicts Lemma 11.

Thus λil(k) = λil(t+ 1), ∀ i ∈ n(l). (46)

Since t + 1 ≤ k, rs(t + 1) ≤ rs(k) (Lemma 8). From (44) and (46), rs(k) ≥
λχ(s)l(k). Clearly from definition rs(k) ≤ λχ(s)l(k). Thus rs(k) = λχ(s)l(k).
This proves the second part of the lemma.
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1. Let λil(t + 1) ≤ max(ηl(t + 1), λil(t)), ∀i ∈ n(l). If i ∈ n(l) \ Ξl(t),
λil(t+1) = λil(t) and Fl(t) =

∑
i∈n(l)\Ξl(t) λil(t) =

∑
i∈n(l)\Ξl(t) λil(t+1).

Cl <
∑

i∈n(l)\{χ(s)}

λil(t+ 1) + (λχ(s)l(t+ 1) + b) (from (43))

=
∑

i∈n(l)\Ξl(t)

λil(t+ 1) +
∑

i∈Ξl(t),i6=χ(s)

λil(t+ 1) +

(b+ λχ(s)l(t+ 1)) (since s ∈ S(t), χ(s) ∈ Ξl(t))

≤ Fl(t) +
∑

i∈Ξl(t),i6=χ(s)

max(ηl(t+ 1), λil(t)) +

(b+ λχ(s)l(t))

Cl ≥ Fl(t) +
∑

i∈Ξl(t),i6=χ(s)

max(ηl(t+ 1), λil(t)) +

max(ηl(t+ 1), λχ(s)l(t))

Thus λχ(s)l(t) + b > max(ηl(t+ 1), λχ(s)l(t))

≥ ηl(t+ 1)

Thus rs(t+ 1) + b > ηl(t+ 1) (from (44))

rs(t+ 1) + b ≥ bd
ηl(t+ 1)

b
e (by Lemma 6)

≥ rj(t+ 1) if χ(j) ∈ n(l), rj(t+ 1) > µχ(j)l (by Lemma 10)

Thus rs(t+ 1) + b ≥ λil(t+ 1) if i ∈ n(l), λil(t+ 1) > µil (47)

2. Let there exist i ∈ n(l) such that λil(t + 1) > max(ηl(t + 1), λil(t)).
Thus rj(t + 1) > max(ηl(t + 1), λil(t)) for at least one j ∈ m(i, l).
Observe that ωu(t + 1) ≤ max(ηl(t + 1), λil(t)), if u ∈ S(t) ∩ m(i, l).
ωu(t+1) = ru(t) ≤ max(ηl(t+1), λil(t)), if u ∈ m(i, l)\S(t). It follows
that ωu(t + 1) ≤ max(ηl(t + 1), λil(t)), ∀u ∈ m(i, l). Thus rj(t + 1) >
ωj(t+1). It follows that rj(t+1) = ωj(t+1)+b. This means that ωj(t+

1) < minl1∈Lj ηl(t + 1). From Lemma 6 ωj(t + 1) ≤ bb
minl1∈Lj ηl1 (t+1)

b
c.

Thus rj(t + 1) ≤ bb
minl1∈Lj ηl1 (t+1)

b
c + b. Since rj(t + 1) > ηl(t + 1),

ηl(t + 1) < bb
minl1∈Lj ηl1 (t+1)

b
c + b. Since l ∈ Lj , b

minl1∈Lj ηl1 (t+1)

b
c ≤

bηl(t+1)
b
c ≤ ηl(t+1)

b
< b

minl1∈Lj ηl1 (t+1)

b
c+ 1. Thus

b
ηl(t+ 1)

b
c = b

minl1∈Lj ηl1(t+ 1)

b
c (48)
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Since s traverses l and s ∈ S(t), χ(s) ∈ Ξl(t). l ∈ Lj. Thus from (48),

and the fact that rj(t) = ωj(t) + b, Ωχ(s)l(t + 1) ≥ bbηl(t+1)
b
c. Since

λχ(s)l(t+ 1) ≥ Ωχ(s)l(t+ 1),

λχ(s)l(t+ 1) ≥ bb
ηl(t+ 1)

b
c

rs(t+ 1) ≥ bb
ηl(t+ 1)

b
c (from (44))

Thus rs(t+ 1) + b ≥ bd
ηl(t+ 1)

b
e

≥ rk(t+ 1) if χ(k) ∈ n(l), rk(t+ 1) > µχ(k)l (by Lemma 10)

Thus rs(t+ 1) + b ≥ λil(t+ 1) if i ∈ n(l), λil(t+ 1) > µil (49)

rs(t+ 1) ≤ rs(k) (Lemma 8). Thus from (46), (47) and (49), in both cases,
λil(k) ≤ rs(k) + b, if i ∈ n(l) and λil(k) > µil. If rj(k) > rs(k) + b and
χ(j) ∈ n(l), then λχ(j)l(k) > rs(k) + b and thus λχ(j)l(k) ≤ µχ(j)l. It follows
that rj(k) ≤ µχ(j)l. The result follows. 2

Proof of Theorem 1 (Maximal Fairness Theorem): Let the algo-
rithm terminate in k iterations. Since the rate allocation ~r(k) is feasible
by Lemma 11, the corresponding layer allocation vector, ~γ is feasible as well.
Since S(k) = φ, there does not exist a virtual session s in S(k). Thus from
Lemma 12 for every virtual session s there exists a link which satisfies the
properties of a pseudo-bottleneck link w.r.t. virtual session s for rate vector
~r(k) and corresponding layer allocation vector ~γ. Thus ~γ is a maximally fair
layer allocation vector by Lemma 2. Thus (1) follows.

If a maxmin fair layer allocation exists, then it is fairer than any other
layer allocation vector, by definition of relative and maxmin fairness. Thus
it is the only maximally fair layer allocation vector in the feasible set, by
definition of maximal fairness. Since the output layer allocation vector, ~γ is
a maximally fair under all circumstances, (2) follows. 2

D Proof of Finite-Termination Theorem

The last theorem ensures that the algorithm terminates in a finite number
of iterations. We prove it using the following lemmas.
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Lemma 13 If Λ(k) = φ, ωs(k) < minl∈∪p∈S(k−1)Lp ηl(k), for some s ∈ S(k −
1).

Proof of Lemma 13: Let, if possible, Λ(k) = φ but ωs(k) ≥ minl∈∪p∈S(k−1)Lp ηl(k),
for all s ∈ S(k − 1). Let lmin = arg minl∈∪j∈S(k−1)Lj ηl(k). lmin is well defined
as S(k − 1) 6= φ. If more than one link attain the minimum, choose any one
of them as lmin.

ωj(k) ≥ ηlmin
(k) ∀j ∈ S(k − 1) (50)

Since lmin ∈ ∪s∈S(k−1)Ls, at least one virtual session in S(k−1) (unsaturated
virtual session) traverses through link lmin. Thus Ξlmin

(k − 1) 6= φ. Thus
ηlmin

(k) is the maximum θ which satisfies Flmin
(k−1)+

∑
i∈Ξlmin

(k−1) max(θ, λilmin
(k−

1)) ≤ Clmin
and observe that

Flmin
(k − 1) +

∑
i∈Ξlmin

(k−1)

max

(
( min
j∈Ξlmin

(k−1)
λjlmin

(k − 1)), λilmin
(k − 1)

)
≤ Flmin

(k − 1) +

∑
i∈Ξlmin

(k−1)

max (θ, λilmin
(k − 1)) ∀ θ

since mini∈Ξlmin
(k−1) λilmin

(k − 1) ≤ λjlmin
(k − 1) ∀ j ∈ Ξlmin

(k − 1). Thus

ηlmin
(k) ≥ min

i∈Ξlmin
(k−1)

λilmin
(k − 1) (51)

Let imin = arg mini∈Ξlmin
(k−1) λilmin

(k−1). imin is well defined as Ξlmin
(k−1) 6=

φ. If more than one session attain the minimum, choose any one of them as
imin. Consider a s ∈ m(imin, lmin) ∩ S(k − 1) (m(imin, lmin) ∩ S(k − 1) 6= φ as
imin ∈ Ξlmin

.

ηiminlmin
(k) = max(ηlmin

(k), λiminlmin
(k − 1))

= ηlmin
(k) (from (51) and the definition of imin). (52)

≤ ηl(k) ∀ l ∈ Ls, (since s ∈ m(imin, lmin) ∩ S(k − 1),

and from the definition of lmin)

≤ ηiminl(k) ∀ l ∈ Ls (53)

Thus min
l∈Ls

ηiminl(k) = ηiminlmin
(k) (from lmin ∈ Ls and (53))

Thus ωs(k) = bb
ηiminlmin

(k)

b
c (since s ∈ m(imin, lmin) ∩ S(k − 1),
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ωs(k) = bb
minl∈Ls ηiminl(k)

b
c)

= bb
ηlmin

(k)

b
c (from (52))

≤ ηlmin
(k) (54)

Thus ωs(k) = ηlmin
(k) (from (50), (54) and since s ∈ S(k − 1))

= max(ηlmin
(k), λχ(s)lmin

(k − 1)) (55)

(from (52) and since χ(s) = imin)

≥ Ωχ(s)lmin
(k) (from (41))

Also ωs(k) ≤ Ωχ(s)lmin
(k)

Thus ωs(k) = Ωχ(s)lmin
(k) (56)

Consider any session i ∈ Ξlmin
(k − 1). Let max(ηlmin

(k), λilmin
(k − 1)) =

λilmin
(k − 1).

Ωilmin
(k) ≥ λilmin

(k − 1) (from (15))

= max(ηlmin
(k), λilmin

(k − 1))

Thus Ωilmin
(k) = max(ηlmin

(k), λilmin
(k − 1)) (from (41)) (57)

Now let max(ηlmin
(k), λilmin

(k−1)) = ηlmin
(k). ωj(k) = max(ηlmin

(k), λilmin
(k−

1)), ∀j ∈ m(i, lmin) ∩ S(k − 1) (m(i, lmin) ∩ S(k − 1) 6= φ as i ∈ Ξlmin
(k −

1)). The reasoning is exactly the same as that behind (55). Ωilmin
(k) =

maxj∈m(i,lmin) ωj(k) ≥ max(ηlmin
(k), λilmin

(k−1)), since m(i, lmin)∩S(k−1) 6=
φ. From (41),

Ωilmin
(k) = max(ηlmin

(k), λilmin
(k − 1)) (58)

From (57) and (58)

Ωilmin
(k) = max(ηlmin

(k), λilmin
(k − 1)) ∀ i ∈ Ξlmin

(k − 1) (59)

If i ∈ n(lmin) \ Ξlmin
(k − 1), j 6∈ S(k − 1), ∀j ∈ m(i, lmin) and thus ωj(k) =

rj(k − 1) ∀j ∈ m(i, lmin). It follows that Ωilmin
(k) = λilmin

(k − 1). Thus∑
i∈n(lmin)\Ξlmin

(k−1)

Ωilmin
(k) =

∑
i∈n(lmin)\Ξlmin

(k−1)

λilmin
(k − 1)

= Flmin
(k − 1) (60)∑

i∈n(lmin)

Ωilmin
(k) =

∑
i∈n(lmin)\Ξlmin

(k−1)

Ωilmin
(k) +

∑
i∈Ξlmin

(k−1)

Ωil(k)
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(since Ξlmin
(k − 1) ⊆ n(lmin))

= Flmin
(k − 1) +

∑
i∈Ξlmin

(k−1)

max(ηlmin
(k), λilmin

(k − 1))

(from (59) and (60))

= Cl (since Ξlmin
(k − 1) 6= φ) (61)

Thus from (56) and (61) s ∈ Λ(k), but this contradicts the assumption
that Λ(k) = φ. Thus ωs(k) ≥ minl∈∪p∈S(k−1)Lp ηl(k), can not hold for all
s ∈ S(k − 1), if Λ(k) = φ. 2

Lemma 14 If Λ(k) = φ, there exists a virtual session s ∈ S(k−1) such that

ωs(k) < min
l∈Ls

ηl(k) and

Ωil(k) ≥ bb
ηl(k)

b
c ∀i ∈ Ξl(k − 1) if l ∈ Ls and min

l1∈Ls
b
ηl1(k)

b
c = b

ηl(k)

b
c.

Proof of Lemma 14: Let Λ(k) = φ. From Lemma 13, ωs(k) < minl∈∪p∈S(k−1)Lp ηl(k),
for some s ∈ S(k − 1). It follows that ωs(k) < minl∈Ls ηl(k).

min
l∈∪p∈S(k−1)Lp

ηl(k) > ωs(k)

= bb
minl∈Ls ηχ(s)l(k)

b
c (since s ∈ S(k − 1))

≥ bb
minl∈Ls ηl(k)

b
c

Thus b
minl∈∪p∈S(k−1)Lp ηl(k)

b
c ≥ b

minl∈Ls ηl(k)

b
c

b
minl∈∪p∈S(k−1)Lp ηl(k)

b
c ≤ b

minl∈Ls ηl(k)

b
c since s ∈ S(k − 1), Ls ⊆ ∪p∈S(k−1)Lp

Thus b
minl∈∪p∈S(k−1)Lp ηl(k)

b
c = b

minl∈Ls ηl(k)

b
c (62)

Consider any l ∈ Ls, s.t. bηl(k)
b
c = minl1∈Lsb

ηl1 (k)

b
c. Also minl1∈Lsb

ηl1 (k)

b
c =

b
minl1∈Ls ηl1 (k)

b
c. Thus from (62)

b
ηl(k)

b
c = b

minl1∈∪p∈S(k−1)Lp ηl1(k)

b
c (63)
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Consider any unsaturated virtual session j traversing link l (j ∈ S(k − 1),
χ(j) ∈ n(l)).

ωj(k) = bb
minl1∈Lj ηχ(j)l1(k)

b
c (since j ∈ S(k − 1))

≥ bb
minl1∈Lj ηl1(k)

b
c

≥ bb
minl1∈∪p∈S(k−1)Lp ηl1(k)

b
c since j ∈ S(k − 1), Lj ⊆ ∪p∈S(k−1)Lp

= bb
ηl(k)

b
c (from (63)). (64)

If session i ∈ Ξl(k−1), there exists virtual session j s.t. j ∈ m(i, l)∩S(k−1).
Thus from (64) and the fact that Ωil(k) = maxj∈m(i,l) ωj(k), it follows that

Ωil(k) ≥ bbηl(k)
b
c ∀ i ∈ Ξl(k− 1). This holds for all links l for which bηl(k)

b
c =

minl1∈Lsb
ηl1 (k)

b
c. The result follows. 2

Lemma 15 Let T = {k : rs(k) = ωs(k)+ b, for some s}. The cardinality of
T is at most |L|M where L is the set of links and M is the number of virtual
sessions.

Proof of Lemma 15: For every iteration k ∈ T there exists one s such that
rs(k) = ωs(k)+ b. We denote such an s as s(k). s(k) ∈ S(k−1). There exists

a link l ∈ Ls(k) such that ωs(k) = bb
ηχs(k)l(k)

b
c. We call such a link, l(k). If

more than one link satisfies the above property, l(k) is chosen amongst them
arbitrarily. Elements in T define a sequence of links l(k). We show that this
sequence has at most |L|M elements.

Let Θl(k) denote the residual capacity of link l, at the end of the kth itera-
tion, i.e., Θl(k) = Cl−

∑
i∈n(l) λil(k).We will show that Θl(k)(k)−Θl(k)(k−1) ≥

b. From feasibility of ~r(k), Θl(k) ≥ 0, for all links l and iterations k. Thus a

link l can occur in the sequence described above, at most bΘl(k)
b
c+ 1 times,

where k is the iteraion in which it appears the first time in the sequence. We
would next show that Θl(k)(k) < Mb for all k. Thus it follows that a link
can occur at most M times in the sequence. There are |L| links in all. So
the sequence can have at most |L|M elements.

Now we prove that Θl(k)(k) − Θl(k)(k − 1) ≥ b, for all iterations k ∈
T. We first show that ωs(k)(k) = Ωχ(s(k))l(k)(k). We know that ωs(k)(k) =
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bb
ηχs(k)l(k)(k)

b
c. For any virtual session j ∈ m(χ(s), l(k)) ∩ S(k − 1), ωj(k) ≤

bb
ηχs(k)l(k)(k)

b
c. If j ∈ m(χ(s), l(k))\S(k−1), ωj(k) = rj(k−1) ≤ λχ(s(k))l(k)(k−

1) ≤ max(bb
ηl(k)(k)

b
c, λχ(s(k))l(k)(k)(k − 1)) = bb

ηχ(s(k))l(k)(k)

b
c. The last equality

follows from the divisibility of λχ(s(k))l(k)(k)(k − 1) by b (Lemma 6). Thus

Ωχ(s(k))l(k)(k) ≤ bb
ηχ(s(k))l(k)(k)

b
c. It follows that ωs(k)(k) = Ωχ(s(k))l(k)(k).

λχ(s)l(k)(k) ≥ rs(k)(k)

= ωs(k)(k) + b

= Ωχ(s(k))l(k)(k) + b

≥ λχ(s(k))l(k)(k − 1) + b (from (15)) (65)

λil(k)(k) ≥ λil(k)(k − 1) ∀ i ∈ n(l(k))(from Lemma 8) (66)∑
i∈n(l(k))

λil(k)(k) ≥ b+
∑

i∈n(l(k))

λil(k)(k − 1) (from (65) and (66)) (67)

Θl(k)(k) = Cl(k) −
∑

i∈n(l(k))

λil(k)(k)

≤ Cl(k) −
∑

i∈n(l(k))

λil(k)(k − 1)− b (from (67))

= Θl(k)(k − 1)− b (68)

Now we show that Θl(k)(k) < Mb.We will show that b
ηl(k)(k)

b
c = minl∈Ls(k)

b
ηl(k)(k)

b
c.

Since rs(k) = ωs(k) + b, it would follow that Ωil(k)(k) ≥ bb
ηl(k)(k)

b
c ∀i ∈

Ξl(k)(k − 1). From (15) Ωil(k)(k) ≥ λil(k)(k − 1). Thus

Ωil(k)(k) ≥ max(bb
ηl(k)(k)

b
c, λil(k)(k − 1)), ∀i ∈ Ξl(k)(k − 1) (69)

Θl(k)(k) = Cl(k) −
∑

i∈n(l(k))

λil(k)(k)

= Cl(k) −

Fl(k − 1) +
∑

i∈Ξl(k)(k−1)

λil(k)(k)


≤ Cl(k) −

Fl(k − 1) +
∑

i∈Ξl(k)(k−1)

Ωil(k)(k)

 (since λil(k)(k) ≥ Ωil(k)(k))

≤ Cl(k) −

Fl(k − 1) +
∑

i∈Ξl(k)(k−1)

max(bb
ηl(k)(k)

b
c, λil(k)(k − 1))

 (from (69))
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< Cl(k) −

Fl(k − 1) +
∑

i∈Ξl(k)(k−1)

max(ηl(k)(k)− b, λil(k)(k − 1))


≤ |Ξl(k)(k − 1)|b+ Cl(k) −

Fl(k − 1) +
∑

i∈Ξl(k)(k−1)

max(ηl(k)(k), λil(k)(k − 1))


= |Ξl(k)(k − 1)|b

≤ Mb (70)

Now we show that b
ηl(k)(k)

b
c = minl∈Ls(k)

bηl(k)
b
c.

b
ηl(k)(k)

b
c ≤ b

ηχ(s)l(k)(k)

b
c

=
ωs(k)

b

<
minl∈Ls(k)

ηl(k)

b
since rs(k) = ωs(k) + b(71)

We know that b
ηl(k)(k)

b
c ≥ b

minl∈Ls(k)
ηl(k)

b
c (since l(k) ∈ Ls(k))

If b
ηl(k)(k)

b
c > b

minl∈Ls(k)
ηl(k)

b
c

then b
ηl(k)(k)

b
c ≥

minl∈Ls(k)
ηl(k)

b
(72)

But (72) contradicts (71). Thus

b
ηl(k)(k)

b
c = b

minl∈Ls(k)
ηl(k)

b
c

= min
l∈Ls(k)

b
ηl(k)

b
c

The result follows. 2

Proof of Theorem 2 (Finite Termination Theorem): We will show
that for every iteration k ≥ 1 at least one of the following holds:

1. rs(k) = ωs(k) + b for some virtual session s

2. S(k) ⊂ S(k − 1) (proper subset)
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Clearly S(k) ⊆ S(k − 1) for all k ≥ 1. So (2) can hold for atmost M
iterations, where S(0) = {1, . . . ,M}. Lemma 15 shows that (1) can hold for
at most |L|M iterations. Thus the algorithm must terminate in M + |L|M
iterations.

We show that at least one of (1) and (2) holds in every iteration k, s.t.
S(k− 1) 6= φ. If Λ(k) 6= φ, S(k) is a proper subset of S(k− 1) and (2) holds.
If Λ(k) = φ, rs(k) = ωs(k)+ b for some virtual session s from Lemma 14 and
the algorithm. Thus (1) holds in this case. 2
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