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Abstract

We address the problem of fair medium access control in multi-hop Aloha networks, with the objective of achiev-
ing proportionally fair rates. We consider a general multi-hop wireless network, and show how the attempt probabili-
ties/attempt rates in Aloha protocols should be set so that the achieved rates are globally proportionally fair. For both
slotted and unslotted Aloha, we argue that it is possible to achieve globally fair rates with local topology information.

I. I NTRODUCTION AND SYSTEM MODEL

We address the issue of fair medium access control (MAC) in multi-hop aloha networks. Our
notion of fairness is that ofproportional fairness[2], defined as a fairness measure that maximizes
the aggregate log-utility of the system. We consider both the cases of slotted and unslotted Aloha,
we argue that it is possible to achieve globally fair rates with local topology information. More
specifically, we show that a node can set its attempt probability/attempt rate optimally only by
knowing some minimal information about its two-hop neighborhood.

Next we describe the system model that we use. A general wireless ad-hoc network can be
modeled as an undirected graphG = (N,L), whereN andL respectively denote the set of nodes
and the set of (undirected) links in the network, and a link exists between two nodes if and only if
they can hear each other (we assume a symmetric hearing matrix). Note that there are2|L| possible
communication pairs in graphG, out of which only a few pairs may be actively communicating.
The set of active communication pairs is represented by the set of (directed) edgesE. We assume
that every edgee ∈ E is always backlogged. We assume, without loss of generality, that all the
nodes share a single wireless channel of unit capacity.

For any nodei, Ki = {j : (i, j) ∈ L} represents the set of nodes that can hear nodei (excluding
nodei itself), and is referred as the set ofneighborsof nodei. For any nodei, the setOi = {j :
(i, j) ∈ E} ⊆ Ki represents the set of neighbors to whichi is sending traffic, and is referred as
the set ofout-neighborsof nodei. Also, for any nodei, the setIi = {j : (j, i) ∈ E} ⊆ Ki

represents the set of neighbors from whichi is receiving traffic, and is referred as the set ofin-
neighborsof nodei. We assume omnidirectional transmission, i.e., a transmission by nodei to
any of its neighbors reaches all of its neighbors. We assume that each node is associated with
a single transceiver i.e., a node can not be transmitting and receiving at the same time. We also
assumeno capture, i.e., nodej is unable to listen to any of the transmissions if more than one of
its neighbors are transmitting simultaneously.

II. FAIR MEDIUM ACCESSCONTROL IN SLOTTED ALOHA

In slotted Aloha, each nodei makes an attempt to transmit a packet in a slot with a certain
probability, to a randomly chosen destination nodej ∈ Oi. Let the attempt probability of any node
i ∈ N be denoted byPi. Once nodei decides to make an attempt in a slot, a destinationj ∈ Oi

is chosen randomly with probability
p(i,j)

Pi
, where

∑
j∈Oi

p(i,j) = Pi. Therefore, the unconditional
probability that a transmission attempt is made on edge(i, j) in a slot isp(i,j). Letp = (pe, e ∈ E)
denote the vector of attempt probabilities on all edges. Then,xe = x(i,j), the effective data rate
(or throughput) on edgee = (i, j), is obtained as [1] (Section 4.6.2):
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x(i,j)(p) = p(i,j) (1− Pj)
∏

k∈Kj\{i}
(1− Pk) . (1)

Our objective is to set the attempt probabilities optimally so that proportional fairness is at-
tained. Assuming that the edge ratesxe(p) are as given in (1), the optimal attempt probability
vector,p∗ = (p∗e, e ∈ E), is defined as [2]:

p∗ = arg max
0≤p≤1

∑
e∈E

log(xe(p)) . (2)

The following result shows that the optimal attempt probabilities can be calculated based only
on local topology information.

Theorem 1:p∗(i,j), the optimal attempt probability (as defined by (2)) on any edge(i, j) ∈ E, is
given by

p∗(i,j) =
1

|Ii|+
∑

k∈Ki
|Ik| . (3)

III. FAIR MEDIUM ACCESSCONTROL IN UNSLOTTED ALOHA

In unslotted Aloha, each node makes an attempt to transmit at a certain rate, which is as-
sumed to be generated according to a poisson process. If the node is already transmitting when
a transmission attempt is generated, then this newly generated transmission attempt is aborted
(i.e., ignored). Otherwise, the node starts transmitting, even if it was receiving a packet at that
instant. This “transmission takes precedence over reception” assumption is necessary to keep the
analysis tractable, and has been used by previous researchers as well [3]. Packets are assumed to
have a fixed lengthT . Let the poisson attempt rate of any nodei ∈ N be denoted byλi. Once
nodei decides to transmit a packet, a destinationj ∈ Oi is chosen randomly with probability
λ(i,j)

λi
, where

∑
j∈Oi

λ(i,j) = λi. Thusλ(i,j) can be viewed as the attempt rate on edge(i, j). Let
λ = (λe, e ∈ E) denote the vector of attempt rates on all edges.

Lemma 2:x(i,j), the throughput on edge(i, j), can be expressed as

x(i,j)(λ) = Tλ(i,j) e
−T

P
k∈Kj∪{j}\{i} λk

∏

k∈Kj∪{j}

1

1 + Tλk

.

The attempt rates being defined as in Lemma 2, the optimal attempt rate vector,λ∗ = (λ∗e, e ∈
E), is given as

λ∗ = arg sup
λ≥0

∑
e∈E

log(xe(λ)) . (4)

Theorem 3:λ∗(i,j), the optimal attempt rate (as defined by (4)) on any edge(i, j) ∈ E, is ob-
tained asλ∗(i,j) = λ∗i /|Oi|, whereλ∗i is given by

λ∗i =





approaches ∞ if
∑

k∈Ki∪{i} |Ik| = |Oi|r
1+

|Oi|P
k∈Ki∪{i} |Ik|−|Oi|−1

T
otherwise .

(5)
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